linux/arch/sparc/kernel/process_64.c

788 lines
20 KiB
C
Raw Normal View History

/* arch/sparc64/kernel/process.c
*
* Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
* Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*/
/*
* This file handles the architecture-dependent parts of process handling..
*/
#include <stdarg.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
Remove fs.h from mm.h Remove fs.h from mm.h. For this, 1) Uninline vma_wants_writenotify(). It's pretty huge anyway. 2) Add back fs.h or less bloated headers (err.h) to files that need it. As result, on x86_64 allyesconfig, fs.h dependencies cut down from 3929 files rebuilt down to 3444 (-12.3%). Cross-compile tested without regressions on my two usual configs and (sigh): alpha arm-mx1ads mips-bigsur powerpc-ebony alpha-allnoconfig arm-neponset mips-capcella powerpc-g5 alpha-defconfig arm-netwinder mips-cobalt powerpc-holly alpha-up arm-netx mips-db1000 powerpc-iseries arm arm-ns9xxx mips-db1100 powerpc-linkstation arm-assabet arm-omap_h2_1610 mips-db1200 powerpc-lite5200 arm-at91rm9200dk arm-onearm mips-db1500 powerpc-maple arm-at91rm9200ek arm-picotux200 mips-db1550 powerpc-mpc7448_hpc2 arm-at91sam9260ek arm-pleb mips-ddb5477 powerpc-mpc8272_ads arm-at91sam9261ek arm-pnx4008 mips-decstation powerpc-mpc8313_rdb arm-at91sam9263ek arm-pxa255-idp mips-e55 powerpc-mpc832x_mds arm-at91sam9rlek arm-realview mips-emma2rh powerpc-mpc832x_rdb arm-ateb9200 arm-realview-smp mips-excite powerpc-mpc834x_itx arm-badge4 arm-rpc mips-fulong powerpc-mpc834x_itxgp arm-carmeva arm-s3c2410 mips-ip22 powerpc-mpc834x_mds arm-cerfcube arm-shannon mips-ip27 powerpc-mpc836x_mds arm-clps7500 arm-shark mips-ip32 powerpc-mpc8540_ads arm-collie arm-simpad mips-jazz powerpc-mpc8544_ds arm-corgi arm-spitz mips-jmr3927 powerpc-mpc8560_ads arm-csb337 arm-trizeps4 mips-malta powerpc-mpc8568mds arm-csb637 arm-versatile mips-mipssim powerpc-mpc85xx_cds arm-ebsa110 i386 mips-mpc30x powerpc-mpc8641_hpcn arm-edb7211 i386-allnoconfig mips-msp71xx powerpc-mpc866_ads arm-em_x270 i386-defconfig mips-ocelot powerpc-mpc885_ads arm-ep93xx i386-up mips-pb1100 powerpc-pasemi arm-footbridge ia64 mips-pb1500 powerpc-pmac32 arm-fortunet ia64-allnoconfig mips-pb1550 powerpc-ppc64 arm-h3600 ia64-bigsur mips-pnx8550-jbs powerpc-prpmc2800 arm-h7201 ia64-defconfig mips-pnx8550-stb810 powerpc-ps3 arm-h7202 ia64-gensparse mips-qemu powerpc-pseries arm-hackkit ia64-sim mips-rbhma4200 powerpc-up arm-integrator ia64-sn2 mips-rbhma4500 s390 arm-iop13xx ia64-tiger mips-rm200 s390-allnoconfig arm-iop32x ia64-up mips-sb1250-swarm s390-defconfig arm-iop33x ia64-zx1 mips-sead s390-up arm-ixp2000 m68k mips-tb0219 sparc arm-ixp23xx m68k-amiga mips-tb0226 sparc-allnoconfig arm-ixp4xx m68k-apollo mips-tb0287 sparc-defconfig arm-jornada720 m68k-atari mips-workpad sparc-up arm-kafa m68k-bvme6000 mips-wrppmc sparc64 arm-kb9202 m68k-hp300 mips-yosemite sparc64-allnoconfig arm-ks8695 m68k-mac parisc sparc64-defconfig arm-lart m68k-mvme147 parisc-allnoconfig sparc64-up arm-lpd270 m68k-mvme16x parisc-defconfig um-x86_64 arm-lpd7a400 m68k-q40 parisc-up x86_64 arm-lpd7a404 m68k-sun3 powerpc x86_64-allnoconfig arm-lubbock m68k-sun3x powerpc-cell x86_64-defconfig arm-lusl7200 mips powerpc-celleb x86_64-up arm-mainstone mips-atlas powerpc-chrp32 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-30 06:36:13 +08:00
#include <linux/fs.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/delay.h>
#include <linux/compat.h>
#include <linux/tick.h>
#include <linux/init.h>
#include <linux/cpu.h>
#include <linux/elfcore.h>
#include <linux/sysrq.h>
#include <linux/nmi.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/pstate.h>
#include <asm/elf.h>
#include <asm/fpumacro.h>
#include <asm/head.h>
#include <asm/cpudata.h>
#include <asm/mmu_context.h>
#include <asm/unistd.h>
#include <asm/hypervisor.h>
#include <asm/syscalls.h>
#include <asm/irq_regs.h>
#include <asm/smp.h>
#include "kstack.h"
static void sparc64_yield(int cpu)
{
if (tlb_type != hypervisor) {
touch_nmi_watchdog();
return;
}
clear_thread_flag(TIF_POLLING_NRFLAG);
smp_mb__after_clear_bit();
while (!need_resched() && !cpu_is_offline(cpu)) {
unsigned long pstate;
/* Disable interrupts. */
__asm__ __volatile__(
"rdpr %%pstate, %0\n\t"
"andn %0, %1, %0\n\t"
"wrpr %0, %%g0, %%pstate"
: "=&r" (pstate)
: "i" (PSTATE_IE));
if (!need_resched() && !cpu_is_offline(cpu))
sun4v_cpu_yield();
/* Re-enable interrupts. */
__asm__ __volatile__(
"rdpr %%pstate, %0\n\t"
"or %0, %1, %0\n\t"
"wrpr %0, %%g0, %%pstate"
: "=&r" (pstate)
: "i" (PSTATE_IE));
}
set_thread_flag(TIF_POLLING_NRFLAG);
}
/* The idle loop on sparc64. */
void cpu_idle(void)
{
int cpu = smp_processor_id();
set_thread_flag(TIF_POLLING_NRFLAG);
[PATCH] sched: resched and cpu_idle rework Make some changes to the NEED_RESCHED and POLLING_NRFLAG to reduce confusion, and make their semantics rigid. Improves efficiency of resched_task and some cpu_idle routines. * In resched_task: - TIF_NEED_RESCHED is only cleared with the task's runqueue lock held, and as we hold it during resched_task, then there is no need for an atomic test and set there. The only other time this should be set is when the task's quantum expires, in the timer interrupt - this is protected against because the rq lock is irq-safe. - If TIF_NEED_RESCHED is set, then we don't need to do anything. It won't get unset until the task get's schedule()d off. - If we are running on the same CPU as the task we resched, then set TIF_NEED_RESCHED and no further action is required. - If we are running on another CPU, and TIF_POLLING_NRFLAG is *not* set after TIF_NEED_RESCHED has been set, then we need to send an IPI. Using these rules, we are able to remove the test and set operation in resched_task, and make clear the previously vague semantics of POLLING_NRFLAG. * In idle routines: - Enter cpu_idle with preempt disabled. When the need_resched() condition becomes true, explicitly call schedule(). This makes things a bit clearer (IMO), but haven't updated all architectures yet. - Many do a test and clear of TIF_NEED_RESCHED for some reason. According to the resched_task rules, this isn't needed (and actually breaks the assumption that TIF_NEED_RESCHED is only cleared with the runqueue lock held). So remove that. Generally one less locked memory op when switching to the idle thread. - Many idle routines clear TIF_POLLING_NRFLAG, and only set it in the inner most polling idle loops. The above resched_task semantics allow it to be set until before the last time need_resched() is checked before going into a halt requiring interrupt wakeup. Many idle routines simply never enter such a halt, and so POLLING_NRFLAG can be always left set, completely eliminating resched IPIs when rescheduling the idle task. POLLING_NRFLAG width can be increased, to reduce the chance of resched IPIs. Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: Con Kolivas <kernel@kolivas.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-09 13:39:04 +08:00
while(1) {
tick_nohz_stop_sched_tick(1);
while (!need_resched() && !cpu_is_offline(cpu))
sparc64_yield(cpu);
tick_nohz_restart_sched_tick();
preempt_enable_no_resched();
#ifdef CONFIG_HOTPLUG_CPU
if (cpu_is_offline(cpu))
cpu_play_dead();
#endif
schedule();
preempt_disable();
}
}
#ifdef CONFIG_COMPAT
static void show_regwindow32(struct pt_regs *regs)
{
struct reg_window32 __user *rw;
struct reg_window32 r_w;
mm_segment_t old_fs;
__asm__ __volatile__ ("flushw");
rw = compat_ptr((unsigned)regs->u_regs[14]);
old_fs = get_fs();
set_fs (USER_DS);
if (copy_from_user (&r_w, rw, sizeof(r_w))) {
set_fs (old_fs);
return;
}
set_fs (old_fs);
printk("l0: %08x l1: %08x l2: %08x l3: %08x "
"l4: %08x l5: %08x l6: %08x l7: %08x\n",
r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
printk("i0: %08x i1: %08x i2: %08x i3: %08x "
"i4: %08x i5: %08x i6: %08x i7: %08x\n",
r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
}
#else
#define show_regwindow32(regs) do { } while (0)
#endif
static void show_regwindow(struct pt_regs *regs)
{
struct reg_window __user *rw;
struct reg_window *rwk;
struct reg_window r_w;
mm_segment_t old_fs;
if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
__asm__ __volatile__ ("flushw");
rw = (struct reg_window __user *)
(regs->u_regs[14] + STACK_BIAS);
rwk = (struct reg_window *)
(regs->u_regs[14] + STACK_BIAS);
if (!(regs->tstate & TSTATE_PRIV)) {
old_fs = get_fs();
set_fs (USER_DS);
if (copy_from_user (&r_w, rw, sizeof(r_w))) {
set_fs (old_fs);
return;
}
rwk = &r_w;
set_fs (old_fs);
}
} else {
show_regwindow32(regs);
return;
}
printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
if (regs->tstate & TSTATE_PRIV)
printk("I7: <%pS>\n", (void *) rwk->ins[7]);
}
void show_regs(struct pt_regs *regs)
{
printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
regs->tpc, regs->tnpc, regs->y, print_tainted());
printk("TPC: <%pS>\n", (void *) regs->tpc);
printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
regs->u_regs[3]);
printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
regs->u_regs[7]);
printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
regs->u_regs[11]);
printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
regs->u_regs[15]);
printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
show_regwindow(regs);
show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
}
struct global_reg_snapshot global_reg_snapshot[NR_CPUS];
static DEFINE_SPINLOCK(global_reg_snapshot_lock);
static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
int this_cpu)
{
flushw_all();
global_reg_snapshot[this_cpu].tstate = regs->tstate;
global_reg_snapshot[this_cpu].tpc = regs->tpc;
global_reg_snapshot[this_cpu].tnpc = regs->tnpc;
global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7];
if (regs->tstate & TSTATE_PRIV) {
struct reg_window *rw;
rw = (struct reg_window *)
(regs->u_regs[UREG_FP] + STACK_BIAS);
if (kstack_valid(tp, (unsigned long) rw)) {
global_reg_snapshot[this_cpu].i7 = rw->ins[7];
rw = (struct reg_window *)
(rw->ins[6] + STACK_BIAS);
if (kstack_valid(tp, (unsigned long) rw))
global_reg_snapshot[this_cpu].rpc = rw->ins[7];
}
} else {
global_reg_snapshot[this_cpu].i7 = 0;
global_reg_snapshot[this_cpu].rpc = 0;
}
global_reg_snapshot[this_cpu].thread = tp;
}
/* In order to avoid hangs we do not try to synchronize with the
* global register dump client cpus. The last store they make is to
* the thread pointer, so do a short poll waiting for that to become
* non-NULL.
*/
static void __global_reg_poll(struct global_reg_snapshot *gp)
{
int limit = 0;
while (!gp->thread && ++limit < 100) {
barrier();
udelay(1);
}
}
void arch_trigger_all_cpu_backtrace(void)
{
struct thread_info *tp = current_thread_info();
struct pt_regs *regs = get_irq_regs();
unsigned long flags;
int this_cpu, cpu;
if (!regs)
regs = tp->kregs;
spin_lock_irqsave(&global_reg_snapshot_lock, flags);
memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
this_cpu = raw_smp_processor_id();
__global_reg_self(tp, regs, this_cpu);
smp_fetch_global_regs();
for_each_online_cpu(cpu) {
struct global_reg_snapshot *gp = &global_reg_snapshot[cpu];
__global_reg_poll(gp);
tp = gp->thread;
printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
(cpu == this_cpu ? '*' : ' '), cpu,
gp->tstate, gp->tpc, gp->tnpc,
((tp && tp->task) ? tp->task->comm : "NULL"),
((tp && tp->task) ? tp->task->pid : -1));
if (gp->tstate & TSTATE_PRIV) {
printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
(void *) gp->tpc,
(void *) gp->o7,
(void *) gp->i7,
(void *) gp->rpc);
} else {
printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
gp->tpc, gp->o7, gp->i7, gp->rpc);
}
}
memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
spin_unlock_irqrestore(&global_reg_snapshot_lock, flags);
}
#ifdef CONFIG_MAGIC_SYSRQ
static void sysrq_handle_globreg(int key)
{
arch_trigger_all_cpu_backtrace();
}
static struct sysrq_key_op sparc_globalreg_op = {
.handler = sysrq_handle_globreg,
.help_msg = "Globalregs",
.action_msg = "Show Global CPU Regs",
};
static int __init sparc_globreg_init(void)
{
return register_sysrq_key('y', &sparc_globalreg_op);
}
core_initcall(sparc_globreg_init);
#endif
unsigned long thread_saved_pc(struct task_struct *tsk)
{
struct thread_info *ti = task_thread_info(tsk);
unsigned long ret = 0xdeadbeefUL;
if (ti && ti->ksp) {
unsigned long *sp;
sp = (unsigned long *)(ti->ksp + STACK_BIAS);
if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
sp[14]) {
unsigned long *fp;
fp = (unsigned long *)(sp[14] + STACK_BIAS);
if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
ret = fp[15];
}
}
return ret;
}
/* Free current thread data structures etc.. */
void exit_thread(void)
{
struct thread_info *t = current_thread_info();
if (t->utraps) {
if (t->utraps[0] < 2)
kfree (t->utraps);
else
t->utraps[0]--;
}
}
void flush_thread(void)
{
struct thread_info *t = current_thread_info();
struct mm_struct *mm;
mm = t->task->mm;
if (mm)
tsb_context_switch(mm);
set_thread_wsaved(0);
/* Clear FPU register state. */
t->fpsaved[0] = 0;
if (get_thread_current_ds() != ASI_AIUS)
set_fs(USER_DS);
}
/* It's a bit more tricky when 64-bit tasks are involved... */
static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
{
unsigned long fp, distance, rval;
if (!(test_thread_flag(TIF_32BIT))) {
csp += STACK_BIAS;
psp += STACK_BIAS;
__get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
fp += STACK_BIAS;
} else
__get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
/* Now align the stack as this is mandatory in the Sparc ABI
* due to how register windows work. This hides the
* restriction from thread libraries etc.
*/
csp &= ~15UL;
distance = fp - psp;
rval = (csp - distance);
if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
rval = 0;
else if (test_thread_flag(TIF_32BIT)) {
if (put_user(((u32)csp),
&(((struct reg_window32 __user *)rval)->ins[6])))
rval = 0;
} else {
if (put_user(((u64)csp - STACK_BIAS),
&(((struct reg_window __user *)rval)->ins[6])))
rval = 0;
else
rval = rval - STACK_BIAS;
}
return rval;
}
/* Standard stuff. */
static inline void shift_window_buffer(int first_win, int last_win,
struct thread_info *t)
{
int i;
for (i = first_win; i < last_win; i++) {
t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
memcpy(&t->reg_window[i], &t->reg_window[i+1],
sizeof(struct reg_window));
}
}
void synchronize_user_stack(void)
{
struct thread_info *t = current_thread_info();
unsigned long window;
flush_user_windows();
if ((window = get_thread_wsaved()) != 0) {
int winsize = sizeof(struct reg_window);
int bias = 0;
if (test_thread_flag(TIF_32BIT))
winsize = sizeof(struct reg_window32);
else
bias = STACK_BIAS;
window -= 1;
do {
unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
struct reg_window *rwin = &t->reg_window[window];
if (!copy_to_user((char __user *)sp, rwin, winsize)) {
shift_window_buffer(window, get_thread_wsaved() - 1, t);
set_thread_wsaved(get_thread_wsaved() - 1);
}
} while (window--);
}
}
static void stack_unaligned(unsigned long sp)
{
siginfo_t info;
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = BUS_ADRALN;
info.si_addr = (void __user *) sp;
info.si_trapno = 0;
force_sig_info(SIGBUS, &info, current);
}
void fault_in_user_windows(void)
{
struct thread_info *t = current_thread_info();
unsigned long window;
int winsize = sizeof(struct reg_window);
int bias = 0;
if (test_thread_flag(TIF_32BIT))
winsize = sizeof(struct reg_window32);
else
bias = STACK_BIAS;
flush_user_windows();
window = get_thread_wsaved();
if (likely(window != 0)) {
window -= 1;
do {
unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
struct reg_window *rwin = &t->reg_window[window];
if (unlikely(sp & 0x7UL))
stack_unaligned(sp);
if (unlikely(copy_to_user((char __user *)sp,
rwin, winsize)))
goto barf;
} while (window--);
}
set_thread_wsaved(0);
return;
barf:
set_thread_wsaved(window + 1);
do_exit(SIGILL);
}
asmlinkage long sparc_do_fork(unsigned long clone_flags,
unsigned long stack_start,
struct pt_regs *regs,
unsigned long stack_size)
{
int __user *parent_tid_ptr, *child_tid_ptr;
unsigned long orig_i1 = regs->u_regs[UREG_I1];
long ret;
#ifdef CONFIG_COMPAT
if (test_thread_flag(TIF_32BIT)) {
parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
} else
#endif
{
parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
}
ret = do_fork(clone_flags, stack_start,
regs, stack_size,
parent_tid_ptr, child_tid_ptr);
/* If we get an error and potentially restart the system
* call, we're screwed because copy_thread() clobbered
* the parent's %o1. So detect that case and restore it
* here.
*/
if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
regs->u_regs[UREG_I1] = orig_i1;
return ret;
}
/* Copy a Sparc thread. The fork() return value conventions
* under SunOS are nothing short of bletcherous:
* Parent --> %o0 == childs pid, %o1 == 0
* Child --> %o0 == parents pid, %o1 == 1
*/
int copy_thread(unsigned long clone_flags, unsigned long sp,
unsigned long unused,
struct task_struct *p, struct pt_regs *regs)
{
struct thread_info *t = task_thread_info(p);
struct sparc_stackf *parent_sf;
unsigned long child_stack_sz;
char *child_trap_frame;
int kernel_thread;
kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
parent_sf = ((struct sparc_stackf *) regs) - 1;
/* Calculate offset to stack_frame & pt_regs */
child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
(kernel_thread ? STACKFRAME_SZ : 0));
child_trap_frame = (task_stack_page(p) +
(THREAD_SIZE - child_stack_sz));
memcpy(child_trap_frame, parent_sf, child_stack_sz);
t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) |
(0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
(((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
t->new_child = 1;
t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
t->kregs = (struct pt_regs *) (child_trap_frame +
sizeof(struct sparc_stackf));
t->fpsaved[0] = 0;
if (kernel_thread) {
struct sparc_stackf *child_sf = (struct sparc_stackf *)
(child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
/* Zero terminate the stack backtrace. */
child_sf->fp = NULL;
t->kregs->u_regs[UREG_FP] =
((unsigned long) child_sf) - STACK_BIAS;
t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
t->kregs->u_regs[UREG_G6] = (unsigned long) t;
t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
} else {
if (t->flags & _TIF_32BIT) {
sp &= 0x00000000ffffffffUL;
regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
}
t->kregs->u_regs[UREG_FP] = sp;
t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
if (sp != regs->u_regs[UREG_FP]) {
unsigned long csp;
csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
if (!csp)
return -EFAULT;
t->kregs->u_regs[UREG_FP] = csp;
}
if (t->utraps)
t->utraps[0]++;
}
/* Set the return value for the child. */
t->kregs->u_regs[UREG_I0] = current->pid;
t->kregs->u_regs[UREG_I1] = 1;
/* Set the second return value for the parent. */
regs->u_regs[UREG_I1] = 0;
if (clone_flags & CLONE_SETTLS)
t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
return 0;
}
/*
* This is the mechanism for creating a new kernel thread.
*
* NOTE! Only a kernel-only process(ie the swapper or direct descendants
* who haven't done an "execve()") should use this: it will work within
* a system call from a "real" process, but the process memory space will
* not be freed until both the parent and the child have exited.
*/
pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
{
long retval;
/* If the parent runs before fn(arg) is called by the child,
* the input registers of this function can be clobbered.
* So we stash 'fn' and 'arg' into global registers which
* will not be modified by the parent.
*/
__asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */
"mov %5, %%g3\n\t" /* Save ARG into global */
"mov %1, %%g1\n\t" /* Clone syscall nr. */
"mov %2, %%o0\n\t" /* Clone flags. */
"mov 0, %%o1\n\t" /* usp arg == 0 */
"t 0x6d\n\t" /* Linux/Sparc clone(). */
"brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
" mov %%o0, %0\n\t"
"jmpl %%g2, %%o7\n\t" /* Call the function. */
" mov %%g3, %%o0\n\t" /* Set arg in delay. */
"mov %3, %%g1\n\t"
"t 0x6d\n\t" /* Linux/Sparc exit(). */
/* Notreached by child. */
"1:" :
"=r" (retval) :
"i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
"i" (__NR_exit), "r" (fn), "r" (arg) :
"g1", "g2", "g3", "o0", "o1", "memory", "cc");
return retval;
}
EXPORT_SYMBOL(kernel_thread);
typedef struct {
union {
unsigned int pr_regs[32];
unsigned long pr_dregs[16];
} pr_fr;
unsigned int __unused;
unsigned int pr_fsr;
unsigned char pr_qcnt;
unsigned char pr_q_entrysize;
unsigned char pr_en;
unsigned int pr_q[64];
} elf_fpregset_t32;
/*
* fill in the fpu structure for a core dump.
*/
int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
{
unsigned long *kfpregs = current_thread_info()->fpregs;
unsigned long fprs = current_thread_info()->fpsaved[0];
if (test_thread_flag(TIF_32BIT)) {
elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
if (fprs & FPRS_DL)
memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
sizeof(unsigned int) * 32);
else
memset(&fpregs32->pr_fr.pr_regs[0], 0,
sizeof(unsigned int) * 32);
fpregs32->pr_qcnt = 0;
fpregs32->pr_q_entrysize = 8;
memset(&fpregs32->pr_q[0], 0,
(sizeof(unsigned int) * 64));
if (fprs & FPRS_FEF) {
fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
fpregs32->pr_en = 1;
} else {
fpregs32->pr_fsr = 0;
fpregs32->pr_en = 0;
}
} else {
if(fprs & FPRS_DL)
memcpy(&fpregs->pr_regs[0], kfpregs,
sizeof(unsigned int) * 32);
else
memset(&fpregs->pr_regs[0], 0,
sizeof(unsigned int) * 32);
if(fprs & FPRS_DU)
memcpy(&fpregs->pr_regs[16], kfpregs+16,
sizeof(unsigned int) * 32);
else
memset(&fpregs->pr_regs[16], 0,
sizeof(unsigned int) * 32);
if(fprs & FPRS_FEF) {
fpregs->pr_fsr = current_thread_info()->xfsr[0];
fpregs->pr_gsr = current_thread_info()->gsr[0];
} else {
fpregs->pr_fsr = fpregs->pr_gsr = 0;
}
fpregs->pr_fprs = fprs;
}
return 1;
}
EXPORT_SYMBOL(dump_fpu);
/*
* sparc_execve() executes a new program after the asm stub has set
* things up for us. This should basically do what I want it to.
*/
asmlinkage int sparc_execve(struct pt_regs *regs)
{
int error, base = 0;
char *filename;
/* User register window flush is done by entry.S */
/* Check for indirect call. */
if (regs->u_regs[UREG_G1] == 0)
base = 1;
filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
error = PTR_ERR(filename);
if (IS_ERR(filename))
goto out;
error = do_execve(filename,
(const char __user *const __user *)
regs->u_regs[base + UREG_I1],
(const char __user *const __user *)
regs->u_regs[base + UREG_I2], regs);
putname(filename);
if (!error) {
fprs_write(0);
current_thread_info()->xfsr[0] = 0;
current_thread_info()->fpsaved[0] = 0;
regs->tstate &= ~TSTATE_PEF;
}
out:
return error;
}
unsigned long get_wchan(struct task_struct *task)
{
unsigned long pc, fp, bias = 0;
struct thread_info *tp;
struct reg_window *rw;
unsigned long ret = 0;
int count = 0;
if (!task || task == current ||
task->state == TASK_RUNNING)
goto out;
tp = task_thread_info(task);
bias = STACK_BIAS;
fp = task_thread_info(task)->ksp + bias;
do {
if (!kstack_valid(tp, fp))
break;
rw = (struct reg_window *) fp;
pc = rw->ins[7];
if (!in_sched_functions(pc)) {
ret = pc;
goto out;
}
fp = rw->ins[6] + bias;
} while (++count < 16);
out:
return ret;
}