linux/arch/arm/mach-integrator/integrator_cp.c

609 lines
14 KiB
C
Raw Normal View History

/*
* linux/arch/arm/mach-integrator/integrator_cp.c
*
* Copyright (C) 2003 Deep Blue Solutions Ltd
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/string.h>
#include <linux/sysdev.h>
#include <linux/amba/bus.h>
#include <linux/amba/kmi.h>
#include <linux/amba/clcd.h>
#include <linux/amba/mmci.h>
#include <linux/io.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/gfp.h>
#include <asm/clkdev.h>
#include <mach/clkdev.h>
#include <mach/hardware.h>
#include <mach/platform.h>
#include <asm/irq.h>
#include <asm/setup.h>
#include <asm/mach-types.h>
#include <asm/hardware/arm_timer.h>
#include <asm/hardware/icst.h>
#include <mach/cm.h>
#include <mach/lm.h>
#include <asm/mach/arch.h>
#include <asm/mach/flash.h>
#include <asm/mach/irq.h>
#include <asm/mach/map.h>
#include <asm/mach/time.h>
#include <plat/timer-sp.h>
#include "common.h"
#define INTCP_PA_FLASH_BASE 0x24000000
#define INTCP_FLASH_SIZE SZ_32M
#define INTCP_PA_CLCD_BASE 0xc0000000
#define INTCP_VA_CIC_BASE IO_ADDRESS(INTEGRATOR_HDR_BASE + 0x40)
#define INTCP_VA_PIC_BASE IO_ADDRESS(INTEGRATOR_IC_BASE)
#define INTCP_VA_SIC_BASE IO_ADDRESS(INTEGRATOR_CP_SIC_BASE)
#define INTCP_ETH_SIZE 0x10
#define INTCP_VA_CTRL_BASE IO_ADDRESS(INTEGRATOR_CP_CTL_BASE)
#define INTCP_FLASHPROG 0x04
#define CINTEGRATOR_FLASHPROG_FLVPPEN (1 << 0)
#define CINTEGRATOR_FLASHPROG_FLWREN (1 << 1)
/*
* Logical Physical
* f1000000 10000000 Core module registers
* f1100000 11000000 System controller registers
* f1200000 12000000 EBI registers
* f1300000 13000000 Counter/Timer
* f1400000 14000000 Interrupt controller
* f1600000 16000000 UART 0
* f1700000 17000000 UART 1
* f1a00000 1a000000 Debug LEDs
* fc900000 c9000000 GPIO
* fca00000 ca000000 SIC
* fcb00000 cb000000 CP system control
*/
static struct map_desc intcp_io_desc[] __initdata = {
{
.virtual = IO_ADDRESS(INTEGRATOR_HDR_BASE),
.pfn = __phys_to_pfn(INTEGRATOR_HDR_BASE),
.length = SZ_4K,
.type = MT_DEVICE
}, {
.virtual = IO_ADDRESS(INTEGRATOR_SC_BASE),
.pfn = __phys_to_pfn(INTEGRATOR_SC_BASE),
.length = SZ_4K,
.type = MT_DEVICE
}, {
.virtual = IO_ADDRESS(INTEGRATOR_EBI_BASE),
.pfn = __phys_to_pfn(INTEGRATOR_EBI_BASE),
.length = SZ_4K,
.type = MT_DEVICE
}, {
.virtual = IO_ADDRESS(INTEGRATOR_CT_BASE),
.pfn = __phys_to_pfn(INTEGRATOR_CT_BASE),
.length = SZ_4K,
.type = MT_DEVICE
}, {
.virtual = IO_ADDRESS(INTEGRATOR_IC_BASE),
.pfn = __phys_to_pfn(INTEGRATOR_IC_BASE),
.length = SZ_4K,
.type = MT_DEVICE
}, {
.virtual = IO_ADDRESS(INTEGRATOR_UART0_BASE),
.pfn = __phys_to_pfn(INTEGRATOR_UART0_BASE),
.length = SZ_4K,
.type = MT_DEVICE
}, {
.virtual = IO_ADDRESS(INTEGRATOR_UART1_BASE),
.pfn = __phys_to_pfn(INTEGRATOR_UART1_BASE),
.length = SZ_4K,
.type = MT_DEVICE
}, {
.virtual = IO_ADDRESS(INTEGRATOR_DBG_BASE),
.pfn = __phys_to_pfn(INTEGRATOR_DBG_BASE),
.length = SZ_4K,
.type = MT_DEVICE
}, {
.virtual = IO_ADDRESS(INTEGRATOR_CP_GPIO_BASE),
.pfn = __phys_to_pfn(INTEGRATOR_CP_GPIO_BASE),
.length = SZ_4K,
.type = MT_DEVICE
}, {
.virtual = IO_ADDRESS(INTEGRATOR_CP_SIC_BASE),
.pfn = __phys_to_pfn(INTEGRATOR_CP_SIC_BASE),
.length = SZ_4K,
.type = MT_DEVICE
}, {
.virtual = IO_ADDRESS(INTEGRATOR_CP_CTL_BASE),
.pfn = __phys_to_pfn(INTEGRATOR_CP_CTL_BASE),
.length = SZ_4K,
.type = MT_DEVICE
}
};
static void __init intcp_map_io(void)
{
iotable_init(intcp_io_desc, ARRAY_SIZE(intcp_io_desc));
}
#define cic_writel __raw_writel
#define cic_readl __raw_readl
#define pic_writel __raw_writel
#define pic_readl __raw_readl
#define sic_writel __raw_writel
#define sic_readl __raw_readl
static void cic_mask_irq(unsigned int irq)
{
irq -= IRQ_CIC_START;
cic_writel(1 << irq, INTCP_VA_CIC_BASE + IRQ_ENABLE_CLEAR);
}
static void cic_unmask_irq(unsigned int irq)
{
irq -= IRQ_CIC_START;
cic_writel(1 << irq, INTCP_VA_CIC_BASE + IRQ_ENABLE_SET);
}
static struct irq_chip cic_chip = {
.name = "CIC",
.ack = cic_mask_irq,
.mask = cic_mask_irq,
.unmask = cic_unmask_irq,
};
static void pic_mask_irq(unsigned int irq)
{
irq -= IRQ_PIC_START;
pic_writel(1 << irq, INTCP_VA_PIC_BASE + IRQ_ENABLE_CLEAR);
}
static void pic_unmask_irq(unsigned int irq)
{
irq -= IRQ_PIC_START;
pic_writel(1 << irq, INTCP_VA_PIC_BASE + IRQ_ENABLE_SET);
}
static struct irq_chip pic_chip = {
.name = "PIC",
.ack = pic_mask_irq,
.mask = pic_mask_irq,
.unmask = pic_unmask_irq,
};
static void sic_mask_irq(unsigned int irq)
{
irq -= IRQ_SIC_START;
sic_writel(1 << irq, INTCP_VA_SIC_BASE + IRQ_ENABLE_CLEAR);
}
static void sic_unmask_irq(unsigned int irq)
{
irq -= IRQ_SIC_START;
sic_writel(1 << irq, INTCP_VA_SIC_BASE + IRQ_ENABLE_SET);
}
static struct irq_chip sic_chip = {
.name = "SIC",
.ack = sic_mask_irq,
.mask = sic_mask_irq,
.unmask = sic_unmask_irq,
};
static void
sic_handle_irq(unsigned int irq, struct irq_desc *desc)
{
unsigned long status = sic_readl(INTCP_VA_SIC_BASE + IRQ_STATUS);
if (status == 0) {
do_bad_IRQ(irq, desc);
return;
}
do {
irq = ffs(status) - 1;
status &= ~(1 << irq);
irq += IRQ_SIC_START;
generic_handle_irq(irq);
} while (status);
}
static void __init intcp_init_irq(void)
{
unsigned int i;
/*
* Disable all interrupt sources
*/
pic_writel(0xffffffff, INTCP_VA_PIC_BASE + IRQ_ENABLE_CLEAR);
pic_writel(0xffffffff, INTCP_VA_PIC_BASE + FIQ_ENABLE_CLEAR);
for (i = IRQ_PIC_START; i <= IRQ_PIC_END; i++) {
if (i == 11)
i = 22;
if (i == 29)
break;
set_irq_chip(i, &pic_chip);
set_irq_handler(i, handle_level_irq);
set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
}
cic_writel(0xffffffff, INTCP_VA_CIC_BASE + IRQ_ENABLE_CLEAR);
cic_writel(0xffffffff, INTCP_VA_CIC_BASE + FIQ_ENABLE_CLEAR);
for (i = IRQ_CIC_START; i <= IRQ_CIC_END; i++) {
set_irq_chip(i, &cic_chip);
set_irq_handler(i, handle_level_irq);
set_irq_flags(i, IRQF_VALID);
}
sic_writel(0x00000fff, INTCP_VA_SIC_BASE + IRQ_ENABLE_CLEAR);
sic_writel(0x00000fff, INTCP_VA_SIC_BASE + FIQ_ENABLE_CLEAR);
for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
set_irq_chip(i, &sic_chip);
set_irq_handler(i, handle_level_irq);
set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
}
set_irq_chained_handler(IRQ_CP_CPPLDINT, sic_handle_irq);
}
/*
* Clock handling
*/
#define CM_LOCK (__io_address(INTEGRATOR_HDR_BASE)+INTEGRATOR_HDR_LOCK_OFFSET)
#define CM_AUXOSC (__io_address(INTEGRATOR_HDR_BASE)+0x1c)
static const struct icst_params cp_auxvco_params = {
.ref = 24000000,
.vco_max = ICST525_VCO_MAX_5V,
.vco_min = ICST525_VCO_MIN,
.vd_min = 8,
.vd_max = 263,
.rd_min = 3,
.rd_max = 65,
.s2div = icst525_s2div,
.idx2s = icst525_idx2s,
};
static void cp_auxvco_set(struct clk *clk, struct icst_vco vco)
{
u32 val;
val = readl(clk->vcoreg) & ~0x7ffff;
val |= vco.v | (vco.r << 9) | (vco.s << 16);
writel(0xa05f, CM_LOCK);
writel(val, clk->vcoreg);
writel(0, CM_LOCK);
}
static const struct clk_ops cp_auxclk_ops = {
.round = icst_clk_round,
.set = icst_clk_set,
.setvco = cp_auxvco_set,
};
static struct clk cp_auxclk = {
.ops = &cp_auxclk_ops,
.params = &cp_auxvco_params,
.vcoreg = CM_AUXOSC,
};
static struct clk_lookup cp_lookups[] = {
{ /* CLCD */
.dev_id = "mb:c0",
.clk = &cp_auxclk,
},
};
/*
* Flash handling.
*/
static int intcp_flash_init(void)
{
u32 val;
val = readl(INTCP_VA_CTRL_BASE + INTCP_FLASHPROG);
val |= CINTEGRATOR_FLASHPROG_FLWREN;
writel(val, INTCP_VA_CTRL_BASE + INTCP_FLASHPROG);
return 0;
}
static void intcp_flash_exit(void)
{
u32 val;
val = readl(INTCP_VA_CTRL_BASE + INTCP_FLASHPROG);
val &= ~(CINTEGRATOR_FLASHPROG_FLVPPEN|CINTEGRATOR_FLASHPROG_FLWREN);
writel(val, INTCP_VA_CTRL_BASE + INTCP_FLASHPROG);
}
static void intcp_flash_set_vpp(int on)
{
u32 val;
val = readl(INTCP_VA_CTRL_BASE + INTCP_FLASHPROG);
if (on)
val |= CINTEGRATOR_FLASHPROG_FLVPPEN;
else
val &= ~CINTEGRATOR_FLASHPROG_FLVPPEN;
writel(val, INTCP_VA_CTRL_BASE + INTCP_FLASHPROG);
}
static struct flash_platform_data intcp_flash_data = {
.map_name = "cfi_probe",
.width = 4,
.init = intcp_flash_init,
.exit = intcp_flash_exit,
.set_vpp = intcp_flash_set_vpp,
};
static struct resource intcp_flash_resource = {
.start = INTCP_PA_FLASH_BASE,
.end = INTCP_PA_FLASH_BASE + INTCP_FLASH_SIZE - 1,
.flags = IORESOURCE_MEM,
};
static struct platform_device intcp_flash_device = {
.name = "armflash",
.id = 0,
.dev = {
.platform_data = &intcp_flash_data,
},
.num_resources = 1,
.resource = &intcp_flash_resource,
};
static struct resource smc91x_resources[] = {
[0] = {
.start = INTEGRATOR_CP_ETH_BASE,
.end = INTEGRATOR_CP_ETH_BASE + INTCP_ETH_SIZE - 1,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = IRQ_CP_ETHINT,
.end = IRQ_CP_ETHINT,
.flags = IORESOURCE_IRQ,
},
};
static struct platform_device smc91x_device = {
.name = "smc91x",
.id = 0,
.num_resources = ARRAY_SIZE(smc91x_resources),
.resource = smc91x_resources,
};
static struct platform_device *intcp_devs[] __initdata = {
&intcp_flash_device,
&smc91x_device,
};
/*
* It seems that the card insertion interrupt remains active after
* we've acknowledged it. We therefore ignore the interrupt, and
* rely on reading it from the SIC. This also means that we must
* clear the latched interrupt.
*/
static unsigned int mmc_status(struct device *dev)
{
unsigned int status = readl(IO_ADDRESS(0xca000000 + 4));
writel(8, IO_ADDRESS(INTEGRATOR_CP_CTL_BASE + 8));
return status & 8;
}
static struct mmci_platform_data mmc_data = {
.ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
.status = mmc_status,
.gpio_wp = -1,
.gpio_cd = -1,
};
static struct amba_device mmc_device = {
.dev = {
.init_name = "mb:1c",
.platform_data = &mmc_data,
},
.res = {
.start = INTEGRATOR_CP_MMC_BASE,
.end = INTEGRATOR_CP_MMC_BASE + SZ_4K - 1,
.flags = IORESOURCE_MEM,
},
.irq = { IRQ_CP_MMCIINT0, IRQ_CP_MMCIINT1 },
.periphid = 0,
};
static struct amba_device aaci_device = {
.dev = {
.init_name = "mb:1d",
},
.res = {
.start = INTEGRATOR_CP_AACI_BASE,
.end = INTEGRATOR_CP_AACI_BASE + SZ_4K - 1,
.flags = IORESOURCE_MEM,
},
.irq = { IRQ_CP_AACIINT, NO_IRQ },
.periphid = 0,
};
/*
* CLCD support
*/
static struct clcd_panel vga = {
.mode = {
.name = "VGA",
.refresh = 60,
.xres = 640,
.yres = 480,
.pixclock = 39721,
.left_margin = 40,
.right_margin = 24,
.upper_margin = 32,
.lower_margin = 11,
.hsync_len = 96,
.vsync_len = 2,
.sync = 0,
.vmode = FB_VMODE_NONINTERLACED,
},
.width = -1,
.height = -1,
.tim2 = TIM2_BCD | TIM2_IPC,
.cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
.bpp = 16,
.grayscale = 0,
};
/*
* Ensure VGA is selected.
*/
static void cp_clcd_enable(struct clcd_fb *fb)
{
u32 val;
if (fb->fb.var.bits_per_pixel <= 8)
val = CM_CTRL_LCDMUXSEL_VGA_8421BPP;
else if (fb->fb.var.bits_per_pixel <= 16)
val = CM_CTRL_LCDMUXSEL_VGA_16BPP
| CM_CTRL_LCDEN0 | CM_CTRL_LCDEN1
| CM_CTRL_STATIC1 | CM_CTRL_STATIC2;
else
val = 0; /* no idea for this, don't trust the docs */
cm_control(CM_CTRL_LCDMUXSEL_MASK|
CM_CTRL_LCDEN0|
CM_CTRL_LCDEN1|
CM_CTRL_STATIC1|
CM_CTRL_STATIC2|
CM_CTRL_STATIC|
CM_CTRL_n24BITEN, val);
}
static unsigned long framesize = SZ_1M;
static int cp_clcd_setup(struct clcd_fb *fb)
{
dma_addr_t dma;
fb->panel = &vga;
fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
&dma, GFP_KERNEL);
if (!fb->fb.screen_base) {
printk(KERN_ERR "CLCD: unable to map framebuffer\n");
return -ENOMEM;
}
fb->fb.fix.smem_start = dma;
fb->fb.fix.smem_len = framesize;
return 0;
}
static int cp_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
{
return dma_mmap_writecombine(&fb->dev->dev, vma,
fb->fb.screen_base,
fb->fb.fix.smem_start,
fb->fb.fix.smem_len);
}
static void cp_clcd_remove(struct clcd_fb *fb)
{
dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
fb->fb.screen_base, fb->fb.fix.smem_start);
}
static struct clcd_board clcd_data = {
.name = "Integrator/CP",
.check = clcdfb_check,
.decode = clcdfb_decode,
.enable = cp_clcd_enable,
.setup = cp_clcd_setup,
.mmap = cp_clcd_mmap,
.remove = cp_clcd_remove,
};
static struct amba_device clcd_device = {
.dev = {
.init_name = "mb:c0",
.coherent_dma_mask = ~0,
.platform_data = &clcd_data,
},
.res = {
.start = INTCP_PA_CLCD_BASE,
.end = INTCP_PA_CLCD_BASE + SZ_4K - 1,
.flags = IORESOURCE_MEM,
},
.dma_mask = ~0,
.irq = { IRQ_CP_CLCDCINT, NO_IRQ },
.periphid = 0,
};
static struct amba_device *amba_devs[] __initdata = {
&mmc_device,
&aaci_device,
&clcd_device,
};
static void __init intcp_init(void)
{
int i;
clkdev_add_table(cp_lookups, ARRAY_SIZE(cp_lookups));
platform_add_devices(intcp_devs, ARRAY_SIZE(intcp_devs));
for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
struct amba_device *d = amba_devs[i];
amba_device_register(d, &iomem_resource);
}
}
#define TIMER0_VA_BASE __io_address(INTEGRATOR_TIMER0_BASE)
#define TIMER1_VA_BASE __io_address(INTEGRATOR_TIMER1_BASE)
#define TIMER2_VA_BASE __io_address(INTEGRATOR_TIMER2_BASE)
static void __init intcp_timer_init(void)
{
writel(0, TIMER0_VA_BASE + TIMER_CTRL);
writel(0, TIMER1_VA_BASE + TIMER_CTRL);
writel(0, TIMER2_VA_BASE + TIMER_CTRL);
sp804_clocksource_init(TIMER2_VA_BASE);
sp804_clockevents_init(TIMER1_VA_BASE, IRQ_TIMERINT1);
}
static struct sys_timer cp_timer = {
.init = intcp_timer_init,
};
MACHINE_START(CINTEGRATOR, "ARM-IntegratorCP")
/* Maintainer: ARM Ltd/Deep Blue Solutions Ltd */
.boot_params = 0x00000100,
.map_io = intcp_map_io,
.reserve = integrator_reserve,
.init_irq = intcp_init_irq,
.timer = &cp_timer,
.init_machine = intcp_init,
MACHINE_END