linux/arch/powerpc/mm/pgtable_32.c

405 lines
9.6 KiB
C
Raw Normal View History

/*
* This file contains the routines setting up the linux page tables.
* -- paulus
*
* Derived from arch/ppc/mm/init.c:
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
*
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
* Copyright (C) 1996 Paul Mackerras
*
* Derived from "arch/i386/mm/init.c"
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <linux/init.h>
#include <linux/highmem.h>
#include <linux/memblock.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/fixmap.h>
#include <asm/io.h>
#include <asm/setup.h>
#include <asm/sections.h>
#include "mmu_decl.h"
unsigned long ioremap_bot;
EXPORT_SYMBOL(ioremap_bot); /* aka VMALLOC_END */
powerpc32: PAGE_EXEC required for inittext PAGE_EXEC is required for inittext, otherwise CONFIG_DEBUG_PAGEALLOC ends up with an Oops [ 0.000000] Inode-cache hash table entries: 8192 (order: 1, 32768 bytes) [ 0.000000] Sorting __ex_table... [ 0.000000] bootmem::free_all_bootmem_core nid=0 start=0 end=2000 [ 0.000000] Unable to handle kernel paging request for instruction fetch [ 0.000000] Faulting instruction address: 0xc045b970 [ 0.000000] Oops: Kernel access of bad area, sig: 11 [#1] [ 0.000000] PREEMPT DEBUG_PAGEALLOC CMPC885 [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 3.18.25-local-dirty #1673 [ 0.000000] task: c04d83d0 ti: c04f8000 task.ti: c04f8000 [ 0.000000] NIP: c045b970 LR: c045b970 CTR: 0000000a [ 0.000000] REGS: c04f9ea0 TRAP: 0400 Not tainted (3.18.25-local-dirty) [ 0.000000] MSR: 08001032 <ME,IR,DR,RI> CR: 39955d35 XER: a000ff40 [ 0.000000] GPR00: c045b970 c04f9f50 c04d83d0 00000000 ffffffff c04dcdf4 00000048 c04f6b10 GPR08: c04f6ab0 00000001 c0563488 c04f6ab0 c04f8000 00000000 00000000 b6db6db7 GPR16: 00003474 00000180 00002000 c7fec000 00000000 000003ff 00000176 c0415014 GPR24: c0471018 c0414ee8 c05304e8 c03aeaac c0510000 c0471018 c0471010 00000000 [ 0.000000] NIP [c045b970] free_all_bootmem+0x164/0x228 [ 0.000000] LR [c045b970] free_all_bootmem+0x164/0x228 [ 0.000000] Call Trace: [ 0.000000] [c04f9f50] [c045b970] free_all_bootmem+0x164/0x228 (unreliable) [ 0.000000] [c04f9fa0] [c0454044] mem_init+0x3c/0xd0 [ 0.000000] [c04f9fb0] [c045080c] start_kernel+0x1f4/0x390 [ 0.000000] [c04f9ff0] [c0002214] start_here+0x38/0x98 [ 0.000000] Instruction dump: [ 0.000000] 2f150000 7f968840 72a90001 3ad60001 56b5f87e 419a0028 419e0024 41a20018 [ 0.000000] 807cc20c 38800000 7c638214 4bffd2f5 <3a940001> 3a100024 4bffffc8 7e368b78 [ 0.000000] ---[ end trace dc8fa200cb88537f ]--- Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Scott Wood <oss@buserror.net>
2016-02-10 15:17:08 +08:00
extern char etext[], _stext[], _sinittext[], _einittext[];
__ref pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
{
pte_t *pte;
if (slab_is_available()) {
tree wide: get rid of __GFP_REPEAT for order-0 allocations part I This is the third version of the patchset previously sent [1]. I have basically only rebased it on top of 4.7-rc1 tree and dropped "dm: get rid of superfluous gfp flags" which went through dm tree. I am sending it now because it is tree wide and chances for conflicts are reduced considerably when we want to target rc2. I plan to send the next step and rename the flag and move to a better semantic later during this release cycle so we will have a new semantic ready for 4.8 merge window hopefully. Motivation: While working on something unrelated I've checked the current usage of __GFP_REPEAT in the tree. It seems that a majority of the usage is and always has been bogus because __GFP_REPEAT has always been about costly high order allocations while we are using it for order-0 or very small orders very often. It seems that a big pile of them is just a copy&paste when a code has been adopted from one arch to another. I think it makes some sense to get rid of them because they are just making the semantic more unclear. Please note that GFP_REPEAT is documented as * __GFP_REPEAT: Try hard to allocate the memory, but the allocation attempt * _might_ fail. This depends upon the particular VM implementation. while !costly requests have basically nofail semantic. So one could reasonably expect that order-0 request with __GFP_REPEAT will not loop for ever. This is not implemented right now though. I would like to move on with __GFP_REPEAT and define a better semantic for it. $ git grep __GFP_REPEAT origin/master | wc -l 111 $ git grep __GFP_REPEAT | wc -l 36 So we are down to the third after this patch series. The remaining places really seem to be relying on __GFP_REPEAT due to large allocation requests. This still needs some double checking which I will do later after all the simple ones are sorted out. I am touching a lot of arch specific code here and I hope I got it right but as a matter of fact I even didn't compile test for some archs as I do not have cross compiler for them. Patches should be quite trivial to review for stupid compile mistakes though. The tricky parts are usually hidden by macro definitions and thats where I would appreciate help from arch maintainers. [1] http://lkml.kernel.org/r/1461849846-27209-1-git-send-email-mhocko@kernel.org This patch (of 19): __GFP_REPEAT has a rather weak semantic but since it has been introduced around 2.6.12 it has been ignored for low order allocations. Yet we have the full kernel tree with its usage for apparently order-0 allocations. This is really confusing because __GFP_REPEAT is explicitly documented to allow allocation failures which is a weaker semantic than the current order-0 has (basically nofail). Let's simply drop __GFP_REPEAT from those places. This would allow to identify place which really need allocator to retry harder and formulate a more specific semantic for what the flag is supposed to do actually. Link: http://lkml.kernel.org/r/1464599699-30131-2-git-send-email-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andy Lutomirski <luto@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Liqin <liqin.linux@gmail.com> Cc: Chris Metcalf <cmetcalf@mellanox.com> [for tile] Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: John Crispin <blogic@openwrt.org> Cc: Lennox Wu <lennox.wu@gmail.com> Cc: Ley Foon Tan <lftan@altera.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-25 05:48:47 +08:00
pte = (pte_t *)__get_free_page(GFP_KERNEL|__GFP_ZERO);
} else {
pte = __va(memblock_alloc(PAGE_SIZE, PAGE_SIZE));
if (pte)
clear_page(pte);
}
return pte;
}
CONFIG_HIGHPTE vs. sub-page page tables. Background: I've implemented 1K/2K page tables for s390. These sub-page page tables are required to properly support the s390 virtualization instruction with KVM. The SIE instruction requires that the page tables have 256 page table entries (pte) followed by 256 page status table entries (pgste). The pgstes are only required if the process is using the SIE instruction. The pgstes are updated by the hardware and by the hypervisor for a number of reasons, one of them is dirty and reference bit tracking. To avoid wasting memory the standard pte table allocation should return 1K/2K (31/64 bit) and 2K/4K if the process is using SIE. Problem: Page size on s390 is 4K, page table size is 1K or 2K. That means the s390 version for pte_alloc_one cannot return a pointer to a struct page. Trouble is that with the CONFIG_HIGHPTE feature on x86 pte_alloc_one cannot return a pointer to a pte either, since that would require more than 32 bit for the return value of pte_alloc_one (and the pte * would not be accessible since its not kmapped). Solution: The only solution I found to this dilemma is a new typedef: a pgtable_t. For s390 pgtable_t will be a (pte *) - to be introduced with a later patch. For everybody else it will be a (struct page *). The additional problem with the initialization of the ptl lock and the NR_PAGETABLE accounting is solved with a constructor pgtable_page_ctor and a destructor pgtable_page_dtor. The page table allocation and free functions need to call these two whenever a page table page is allocated or freed. pmd_populate will get a pgtable_t instead of a struct page pointer. To get the pgtable_t back from a pmd entry that has been installed with pmd_populate a new function pmd_pgtable is added. It replaces the pmd_page call in free_pte_range and apply_to_pte_range. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 20:22:04 +08:00
pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
{
struct page *ptepage;
gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_ACCOUNT;
ptepage = alloc_pages(flags, 0);
CONFIG_HIGHPTE vs. sub-page page tables. Background: I've implemented 1K/2K page tables for s390. These sub-page page tables are required to properly support the s390 virtualization instruction with KVM. The SIE instruction requires that the page tables have 256 page table entries (pte) followed by 256 page status table entries (pgste). The pgstes are only required if the process is using the SIE instruction. The pgstes are updated by the hardware and by the hypervisor for a number of reasons, one of them is dirty and reference bit tracking. To avoid wasting memory the standard pte table allocation should return 1K/2K (31/64 bit) and 2K/4K if the process is using SIE. Problem: Page size on s390 is 4K, page table size is 1K or 2K. That means the s390 version for pte_alloc_one cannot return a pointer to a struct page. Trouble is that with the CONFIG_HIGHPTE feature on x86 pte_alloc_one cannot return a pointer to a pte either, since that would require more than 32 bit for the return value of pte_alloc_one (and the pte * would not be accessible since its not kmapped). Solution: The only solution I found to this dilemma is a new typedef: a pgtable_t. For s390 pgtable_t will be a (pte *) - to be introduced with a later patch. For everybody else it will be a (struct page *). The additional problem with the initialization of the ptl lock and the NR_PAGETABLE accounting is solved with a constructor pgtable_page_ctor and a destructor pgtable_page_dtor. The page table allocation and free functions need to call these two whenever a page table page is allocated or freed. pmd_populate will get a pgtable_t instead of a struct page pointer. To get the pgtable_t back from a pmd entry that has been installed with pmd_populate a new function pmd_pgtable is added. It replaces the pmd_page call in free_pte_range and apply_to_pte_range. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 20:22:04 +08:00
if (!ptepage)
return NULL;
if (!pgtable_page_ctor(ptepage)) {
__free_page(ptepage);
return NULL;
}
return ptepage;
}
void __iomem *
ioremap(phys_addr_t addr, unsigned long size)
{
return __ioremap_caller(addr, size, _PAGE_NO_CACHE | _PAGE_GUARDED,
__builtin_return_address(0));
}
EXPORT_SYMBOL(ioremap);
void __iomem *
ioremap_wc(phys_addr_t addr, unsigned long size)
{
return __ioremap_caller(addr, size, _PAGE_NO_CACHE,
__builtin_return_address(0));
}
EXPORT_SYMBOL(ioremap_wc);
void __iomem *
ioremap_prot(phys_addr_t addr, unsigned long size, unsigned long flags)
{
/* writeable implies dirty for kernel addresses */
if ((flags & (_PAGE_RW | _PAGE_RO)) != _PAGE_RO)
flags |= _PAGE_DIRTY | _PAGE_HWWRITE;
/* we don't want to let _PAGE_USER and _PAGE_EXEC leak out */
flags &= ~(_PAGE_USER | _PAGE_EXEC);
flags |= _PAGE_PRIVILEGED;
return __ioremap_caller(addr, size, flags, __builtin_return_address(0));
}
EXPORT_SYMBOL(ioremap_prot);
void __iomem *
__ioremap(phys_addr_t addr, unsigned long size, unsigned long flags)
{
return __ioremap_caller(addr, size, flags, __builtin_return_address(0));
}
void __iomem *
__ioremap_caller(phys_addr_t addr, unsigned long size, unsigned long flags,
void *caller)
{
unsigned long v, i;
phys_addr_t p;
int err;
/* Make sure we have the base flags */
if ((flags & _PAGE_PRESENT) == 0)
flags |= pgprot_val(PAGE_KERNEL);
/* Non-cacheable page cannot be coherent */
if (flags & _PAGE_NO_CACHE)
flags &= ~_PAGE_COHERENT;
/*
* Choose an address to map it to.
* Once the vmalloc system is running, we use it.
* Before then, we use space going down from IOREMAP_TOP
* (ioremap_bot records where we're up to).
*/
p = addr & PAGE_MASK;
size = PAGE_ALIGN(addr + size) - p;
/*
* If the address lies within the first 16 MB, assume it's in ISA
* memory space
*/
if (p < 16*1024*1024)
p += _ISA_MEM_BASE;
#ifndef CONFIG_CRASH_DUMP
/*
* Don't allow anybody to remap normal RAM that we're using.
* mem_init() sets high_memory so only do the check after that.
*/
if (slab_is_available() && (p < virt_to_phys(high_memory)) &&
page_is_ram(__phys_to_pfn(p)) &&
!(__allow_ioremap_reserved && memblock_is_region_reserved(p, size))) {
printk("__ioremap(): phys addr 0x%llx is RAM lr %ps\n",
(unsigned long long)p, __builtin_return_address(0));
return NULL;
}
#endif
if (size == 0)
return NULL;
/*
* Is it already mapped? Perhaps overlapped by a previous
* mapping.
*/
v = p_block_mapped(p);
if (v)
goto out;
if (slab_is_available()) {
struct vm_struct *area;
area = get_vm_area_caller(size, VM_IOREMAP, caller);
if (area == 0)
return NULL;
area->phys_addr = p;
v = (unsigned long) area->addr;
} else {
v = (ioremap_bot -= size);
}
/*
* Should check if it is a candidate for a BAT mapping
*/
err = 0;
for (i = 0; i < size && err == 0; i += PAGE_SIZE)
err = map_kernel_page(v+i, p+i, flags);
if (err) {
if (slab_is_available())
vunmap((void *)v);
return NULL;
}
out:
return (void __iomem *) (v + ((unsigned long)addr & ~PAGE_MASK));
}
EXPORT_SYMBOL(__ioremap);
void iounmap(volatile void __iomem *addr)
{
/*
* If mapped by BATs then there is nothing to do.
* Calling vfree() generates a benign warning.
*/
if (v_block_mapped((unsigned long)addr))
return;
if (addr > high_memory && (unsigned long) addr < ioremap_bot)
vunmap((void *) (PAGE_MASK & (unsigned long)addr));
}
EXPORT_SYMBOL(iounmap);
int map_kernel_page(unsigned long va, phys_addr_t pa, int flags)
{
pmd_t *pd;
pte_t *pg;
int err = -ENOMEM;
/* Use upper 10 bits of VA to index the first level map */
pd = pmd_offset(pud_offset(pgd_offset_k(va), va), va);
/* Use middle 10 bits of VA to index the second-level map */
pg = pte_alloc_kernel(pd, va);
if (pg != 0) {
err = 0;
/* The PTE should never be already set nor present in the
* hash table
*/
BUG_ON((pte_val(*pg) & (_PAGE_PRESENT | _PAGE_HASHPTE)) &&
flags);
set_pte_at(&init_mm, va, pg, pfn_pte(pa >> PAGE_SHIFT,
__pgprot(flags)));
}
smp_wmb();
return err;
}
/*
* Map in a chunk of physical memory starting at start.
*/
static void __init __mapin_ram_chunk(unsigned long offset, unsigned long top)
{
unsigned long v, s, f;
phys_addr_t p;
int ktext;
s = offset;
v = PAGE_OFFSET + s;
p = memstart_addr + s;
for (; s < top; s += PAGE_SIZE) {
powerpc32: PAGE_EXEC required for inittext PAGE_EXEC is required for inittext, otherwise CONFIG_DEBUG_PAGEALLOC ends up with an Oops [ 0.000000] Inode-cache hash table entries: 8192 (order: 1, 32768 bytes) [ 0.000000] Sorting __ex_table... [ 0.000000] bootmem::free_all_bootmem_core nid=0 start=0 end=2000 [ 0.000000] Unable to handle kernel paging request for instruction fetch [ 0.000000] Faulting instruction address: 0xc045b970 [ 0.000000] Oops: Kernel access of bad area, sig: 11 [#1] [ 0.000000] PREEMPT DEBUG_PAGEALLOC CMPC885 [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 3.18.25-local-dirty #1673 [ 0.000000] task: c04d83d0 ti: c04f8000 task.ti: c04f8000 [ 0.000000] NIP: c045b970 LR: c045b970 CTR: 0000000a [ 0.000000] REGS: c04f9ea0 TRAP: 0400 Not tainted (3.18.25-local-dirty) [ 0.000000] MSR: 08001032 <ME,IR,DR,RI> CR: 39955d35 XER: a000ff40 [ 0.000000] GPR00: c045b970 c04f9f50 c04d83d0 00000000 ffffffff c04dcdf4 00000048 c04f6b10 GPR08: c04f6ab0 00000001 c0563488 c04f6ab0 c04f8000 00000000 00000000 b6db6db7 GPR16: 00003474 00000180 00002000 c7fec000 00000000 000003ff 00000176 c0415014 GPR24: c0471018 c0414ee8 c05304e8 c03aeaac c0510000 c0471018 c0471010 00000000 [ 0.000000] NIP [c045b970] free_all_bootmem+0x164/0x228 [ 0.000000] LR [c045b970] free_all_bootmem+0x164/0x228 [ 0.000000] Call Trace: [ 0.000000] [c04f9f50] [c045b970] free_all_bootmem+0x164/0x228 (unreliable) [ 0.000000] [c04f9fa0] [c0454044] mem_init+0x3c/0xd0 [ 0.000000] [c04f9fb0] [c045080c] start_kernel+0x1f4/0x390 [ 0.000000] [c04f9ff0] [c0002214] start_here+0x38/0x98 [ 0.000000] Instruction dump: [ 0.000000] 2f150000 7f968840 72a90001 3ad60001 56b5f87e 419a0028 419e0024 41a20018 [ 0.000000] 807cc20c 38800000 7c638214 4bffd2f5 <3a940001> 3a100024 4bffffc8 7e368b78 [ 0.000000] ---[ end trace dc8fa200cb88537f ]--- Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Scott Wood <oss@buserror.net>
2016-02-10 15:17:08 +08:00
ktext = ((char *)v >= _stext && (char *)v < etext) ||
((char *)v >= _sinittext && (char *)v < _einittext);
f = ktext ? pgprot_val(PAGE_KERNEL_TEXT) : pgprot_val(PAGE_KERNEL);
map_kernel_page(v, p, f);
#ifdef CONFIG_PPC_STD_MMU_32
if (ktext)
hash_preload(&init_mm, v, 0, 0x300);
#endif
v += PAGE_SIZE;
p += PAGE_SIZE;
}
}
void __init mapin_ram(void)
{
unsigned long s, top;
#ifndef CONFIG_WII
top = total_lowmem;
s = mmu_mapin_ram(top);
__mapin_ram_chunk(s, top);
#else
if (!wii_hole_size) {
s = mmu_mapin_ram(total_lowmem);
__mapin_ram_chunk(s, total_lowmem);
} else {
top = wii_hole_start;
s = mmu_mapin_ram(top);
__mapin_ram_chunk(s, top);
top = memblock_end_of_DRAM();
s = wii_mmu_mapin_mem2(top);
__mapin_ram_chunk(s, top);
}
#endif
}
/* Scan the real Linux page tables and return a PTE pointer for
* a virtual address in a context.
* Returns true (1) if PTE was found, zero otherwise. The pointer to
* the PTE pointer is unmodified if PTE is not found.
*/
static int
get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep, pmd_t **pmdp)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
int retval = 0;
pgd = pgd_offset(mm, addr & PAGE_MASK);
if (pgd) {
pud = pud_offset(pgd, addr & PAGE_MASK);
if (pud && pud_present(*pud)) {
pmd = pmd_offset(pud, addr & PAGE_MASK);
if (pmd_present(*pmd)) {
pte = pte_offset_map(pmd, addr & PAGE_MASK);
if (pte) {
retval = 1;
*ptep = pte;
if (pmdp)
*pmdp = pmd;
/* XXX caller needs to do pte_unmap, yuck */
}
}
}
}
return(retval);
}
static int __change_page_attr_noflush(struct page *page, pgprot_t prot)
{
pte_t *kpte;
pmd_t *kpmd;
unsigned long address;
BUG_ON(PageHighMem(page));
address = (unsigned long)page_address(page);
if (v_block_mapped(address))
return 0;
if (!get_pteptr(&init_mm, address, &kpte, &kpmd))
return -EINVAL;
__set_pte_at(&init_mm, address, kpte, mk_pte(page, prot), 0);
pte_unmap(kpte);
return 0;
}
/*
* Change the page attributes of an page in the linear mapping.
*
* THIS DOES NOTHING WITH BAT MAPPINGS, DEBUG USE ONLY
*/
static int change_page_attr(struct page *page, int numpages, pgprot_t prot)
{
int i, err = 0;
unsigned long flags;
struct page *start = page;
local_irq_save(flags);
for (i = 0; i < numpages; i++, page++) {
err = __change_page_attr_noflush(page, prot);
if (err)
break;
}
wmb();
powerpc/mm: Call flush_tlb_kernel_range with interrupts enabled flush_tlb_kernel_range() may call smp_call_function_many() which expects interrupts to be enabled. This results in a traceback. WARNING: CPU: 0 PID: 1 at kernel/smp.c:416 smp_call_function_many+0xcc/0x2fc CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.14.0-rc1-00009-g0666f56 #1 task: cf830000 task.stack: cf82e000 NIP: c00a93c8 LR: c00a9634 CTR: 00000001 REGS: cf82fde0 TRAP: 0700 Not tainted (4.14.0-rc1-00009-g0666f56) MSR: 00021000 <CE,ME> CR: 24000082 XER: 00000000 GPR00: c00a9634 cf82fe90 cf830000 c050ad3c c0015a54 00000000 00000001 00000001 GPR08: 00000001 00000000 00000000 cf82e000 24000084 00000000 c0003150 00000000 GPR16: 00000000 00000000 00000000 00000000 00000000 00000001 00000000 c0510000 GPR24: 00000000 c0015a54 00000000 c050ad3c c051823c c050ad3c 00000025 00000000 NIP [c00a93c8] smp_call_function_many+0xcc/0x2fc LR [c00a9634] smp_call_function+0x3c/0x50 Call Trace: [cf82fe90] [00000010] 0x10 (unreliable) [cf82fed0] [c00a9634] smp_call_function+0x3c/0x50 [cf82fee0] [c0015d2c] flush_tlb_kernel_range+0x20/0x38 [cf82fef0] [c001524c] mark_initmem_nx+0x154/0x16c [cf82ff20] [c001484c] free_initmem+0x20/0x4c [cf82ff30] [c000316c] kernel_init+0x1c/0x108 [cf82ff40] [c000f3a8] ret_from_kernel_thread+0x5c/0x64 Instruction dump: 7c0803a6 7d808120 38210040 4e800020 3d20c052 812981a0 2f890000 40beffac 3d20c051 8929ac64 2f890000 40beff9c <0fe00000> 4bffff94 7fc3f378 7f64db78 Fixes: 3184cc4b6f6a ("powerpc/mm: Fix kernel RAM protection after freeing ...") Fixes: e611939fc8ec ("powerpc/mm: Ensure change_page_attr() doesn't ...") Cc: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Guenter Roeck <linux@roeck-us.net> Reviewed-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-09-25 01:30:43 +08:00
local_irq_restore(flags);
flush_tlb_kernel_range((unsigned long)page_address(start),
(unsigned long)page_address(page));
return err;
}
void mark_initmem_nx(void)
{
struct page *page = virt_to_page(_sinittext);
unsigned long numpages = PFN_UP((unsigned long)_einittext) -
PFN_DOWN((unsigned long)_sinittext);
change_page_attr(page, numpages, PAGE_KERNEL);
}
#ifdef CONFIG_STRICT_KERNEL_RWX
void mark_rodata_ro(void)
{
struct page *page;
unsigned long numpages;
page = virt_to_page(_stext);
numpages = PFN_UP((unsigned long)_etext) -
PFN_DOWN((unsigned long)_stext);
change_page_attr(page, numpages, PAGE_KERNEL_ROX);
/*
* mark .rodata as read only. Use __init_begin rather than __end_rodata
* to cover NOTES and EXCEPTION_TABLE.
*/
page = virt_to_page(__start_rodata);
numpages = PFN_UP((unsigned long)__init_begin) -
PFN_DOWN((unsigned long)__start_rodata);
change_page_attr(page, numpages, PAGE_KERNEL_RO);
}
#endif
#ifdef CONFIG_DEBUG_PAGEALLOC
void __kernel_map_pages(struct page *page, int numpages, int enable)
{
if (PageHighMem(page))
return;
change_page_attr(page, numpages, enable ? PAGE_KERNEL : __pgprot(0));
}
#endif /* CONFIG_DEBUG_PAGEALLOC */