linux/drivers/hwmon/w83791d.c

1683 lines
49 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* w83791d.c - Part of lm_sensors, Linux kernel modules for hardware
* monitoring
*
* Copyright (C) 2006-2007 Charles Spirakis <bezaur@gmail.com>
*/
/*
* Supports following chips:
*
* Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA
* w83791d 10 5 5 3 0x71 0x5ca3 yes no
*
* The w83791d chip appears to be part way between the 83781d and the
* 83792d. Thus, this file is derived from both the w83792d.c and
* w83781d.c files.
*
* The w83791g chip is the same as the w83791d but lead-free.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-vid.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/jiffies.h>
#define NUMBER_OF_VIN 10
#define NUMBER_OF_FANIN 5
#define NUMBER_OF_TEMPIN 3
#define NUMBER_OF_PWM 5
/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, 0x2f,
I2C_CLIENT_END };
/* Insmod parameters */
static unsigned short force_subclients[4];
module_param_array(force_subclients, short, NULL, 0);
MODULE_PARM_DESC(force_subclients,
"List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}");
static bool reset;
module_param(reset, bool, 0);
MODULE_PARM_DESC(reset, "Set to one to force a hardware chip reset");
static bool init;
module_param(init, bool, 0);
MODULE_PARM_DESC(init, "Set to one to force extra software initialization");
/* The W83791D registers */
static const u8 W83791D_REG_IN[NUMBER_OF_VIN] = {
0x20, /* VCOREA in DataSheet */
0x21, /* VINR0 in DataSheet */
0x22, /* +3.3VIN in DataSheet */
0x23, /* VDD5V in DataSheet */
0x24, /* +12VIN in DataSheet */
0x25, /* -12VIN in DataSheet */
0x26, /* -5VIN in DataSheet */
0xB0, /* 5VSB in DataSheet */
0xB1, /* VBAT in DataSheet */
0xB2 /* VINR1 in DataSheet */
};
static const u8 W83791D_REG_IN_MAX[NUMBER_OF_VIN] = {
0x2B, /* VCOREA High Limit in DataSheet */
0x2D, /* VINR0 High Limit in DataSheet */
0x2F, /* +3.3VIN High Limit in DataSheet */
0x31, /* VDD5V High Limit in DataSheet */
0x33, /* +12VIN High Limit in DataSheet */
0x35, /* -12VIN High Limit in DataSheet */
0x37, /* -5VIN High Limit in DataSheet */
0xB4, /* 5VSB High Limit in DataSheet */
0xB6, /* VBAT High Limit in DataSheet */
0xB8 /* VINR1 High Limit in DataSheet */
};
static const u8 W83791D_REG_IN_MIN[NUMBER_OF_VIN] = {
0x2C, /* VCOREA Low Limit in DataSheet */
0x2E, /* VINR0 Low Limit in DataSheet */
0x30, /* +3.3VIN Low Limit in DataSheet */
0x32, /* VDD5V Low Limit in DataSheet */
0x34, /* +12VIN Low Limit in DataSheet */
0x36, /* -12VIN Low Limit in DataSheet */
0x38, /* -5VIN Low Limit in DataSheet */
0xB5, /* 5VSB Low Limit in DataSheet */
0xB7, /* VBAT Low Limit in DataSheet */
0xB9 /* VINR1 Low Limit in DataSheet */
};
static const u8 W83791D_REG_FAN[NUMBER_OF_FANIN] = {
0x28, /* FAN 1 Count in DataSheet */
0x29, /* FAN 2 Count in DataSheet */
0x2A, /* FAN 3 Count in DataSheet */
0xBA, /* FAN 4 Count in DataSheet */
0xBB, /* FAN 5 Count in DataSheet */
};
static const u8 W83791D_REG_FAN_MIN[NUMBER_OF_FANIN] = {
0x3B, /* FAN 1 Count Low Limit in DataSheet */
0x3C, /* FAN 2 Count Low Limit in DataSheet */
0x3D, /* FAN 3 Count Low Limit in DataSheet */
0xBC, /* FAN 4 Count Low Limit in DataSheet */
0xBD, /* FAN 5 Count Low Limit in DataSheet */
};
static const u8 W83791D_REG_PWM[NUMBER_OF_PWM] = {
0x81, /* PWM 1 duty cycle register in DataSheet */
0x83, /* PWM 2 duty cycle register in DataSheet */
0x94, /* PWM 3 duty cycle register in DataSheet */
0xA0, /* PWM 4 duty cycle register in DataSheet */
0xA1, /* PWM 5 duty cycle register in DataSheet */
};
static const u8 W83791D_REG_TEMP_TARGET[3] = {
0x85, /* PWM 1 target temperature for temp 1 */
0x86, /* PWM 2 target temperature for temp 2 */
0x96, /* PWM 3 target temperature for temp 3 */
};
static const u8 W83791D_REG_TEMP_TOL[2] = {
0x87, /* PWM 1/2 temperature tolerance */
0x97, /* PWM 3 temperature tolerance */
};
static const u8 W83791D_REG_FAN_CFG[2] = {
0x84, /* FAN 1/2 configuration */
0x95, /* FAN 3 configuration */
};
static const u8 W83791D_REG_FAN_DIV[3] = {
0x47, /* contains FAN1 and FAN2 Divisor */
0x4b, /* contains FAN3 Divisor */
0x5C, /* contains FAN4 and FAN5 Divisor */
};
#define W83791D_REG_BANK 0x4E
#define W83791D_REG_TEMP2_CONFIG 0xC2
#define W83791D_REG_TEMP3_CONFIG 0xCA
static const u8 W83791D_REG_TEMP1[3] = {
0x27, /* TEMP 1 in DataSheet */
0x39, /* TEMP 1 Over in DataSheet */
0x3A, /* TEMP 1 Hyst in DataSheet */
};
static const u8 W83791D_REG_TEMP_ADD[2][6] = {
{0xC0, /* TEMP 2 in DataSheet */
0xC1, /* TEMP 2(0.5 deg) in DataSheet */
0xC5, /* TEMP 2 Over High part in DataSheet */
0xC6, /* TEMP 2 Over Low part in DataSheet */
0xC3, /* TEMP 2 Thyst High part in DataSheet */
0xC4}, /* TEMP 2 Thyst Low part in DataSheet */
{0xC8, /* TEMP 3 in DataSheet */
0xC9, /* TEMP 3(0.5 deg) in DataSheet */
0xCD, /* TEMP 3 Over High part in DataSheet */
0xCE, /* TEMP 3 Over Low part in DataSheet */
0xCB, /* TEMP 3 Thyst High part in DataSheet */
0xCC} /* TEMP 3 Thyst Low part in DataSheet */
};
#define W83791D_REG_BEEP_CONFIG 0x4D
static const u8 W83791D_REG_BEEP_CTRL[3] = {
0x56, /* BEEP Control Register 1 */
0x57, /* BEEP Control Register 2 */
0xA3, /* BEEP Control Register 3 */
};
#define W83791D_REG_GPIO 0x15
#define W83791D_REG_CONFIG 0x40
#define W83791D_REG_VID_FANDIV 0x47
#define W83791D_REG_DID_VID4 0x49
#define W83791D_REG_WCHIPID 0x58
#define W83791D_REG_CHIPMAN 0x4F
#define W83791D_REG_PIN 0x4B
#define W83791D_REG_I2C_SUBADDR 0x4A
#define W83791D_REG_ALARM1 0xA9 /* realtime status register1 */
#define W83791D_REG_ALARM2 0xAA /* realtime status register2 */
#define W83791D_REG_ALARM3 0xAB /* realtime status register3 */
#define W83791D_REG_VBAT 0x5D
#define W83791D_REG_I2C_ADDR 0x48
/*
* The SMBus locks itself. The Winbond W83791D has a bank select register
* (index 0x4e), but the driver only accesses registers in bank 0. Since
* we don't switch banks, we don't need any special code to handle
* locking access between bank switches
*/
static inline int w83791d_read(struct i2c_client *client, u8 reg)
{
return i2c_smbus_read_byte_data(client, reg);
}
static inline int w83791d_write(struct i2c_client *client, u8 reg, u8 value)
{
return i2c_smbus_write_byte_data(client, reg, value);
}
/*
* The analog voltage inputs have 16mV LSB. Since the sysfs output is
* in mV as would be measured on the chip input pin, need to just
* multiply/divide by 16 to translate from/to register values.
*/
#define IN_TO_REG(val) (clamp_val((((val) + 8) / 16), 0, 255))
#define IN_FROM_REG(val) ((val) * 16)
static u8 fan_to_reg(long rpm, int div)
{
if (rpm == 0)
return 255;
rpm = clamp_val(rpm, 1, 1000000);
return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
}
#define FAN_FROM_REG(val, div) ((val) == 0 ? -1 : \
((val) == 255 ? 0 : \
1350000 / ((val) * (div))))
/* for temp1 which is 8-bit resolution, LSB = 1 degree Celsius */
#define TEMP1_FROM_REG(val) ((val) * 1000)
#define TEMP1_TO_REG(val) ((val) <= -128000 ? -128 : \
(val) >= 127000 ? 127 : \
(val) < 0 ? ((val) - 500) / 1000 : \
((val) + 500) / 1000)
/*
* for temp2 and temp3 which are 9-bit resolution, LSB = 0.5 degree Celsius
* Assumes the top 8 bits are the integral amount and the bottom 8 bits
* are the fractional amount. Since we only have 0.5 degree resolution,
* the bottom 7 bits will always be zero
*/
#define TEMP23_FROM_REG(val) ((val) / 128 * 500)
#define TEMP23_TO_REG(val) (DIV_ROUND_CLOSEST(clamp_val((val), -128000, \
127500), 500) * 128)
/* for thermal cruise target temp, 7-bits, LSB = 1 degree Celsius */
#define TARGET_TEMP_TO_REG(val) DIV_ROUND_CLOSEST(clamp_val((val), 0, 127000), \
1000)
/* for thermal cruise temp tolerance, 4-bits, LSB = 1 degree Celsius */
#define TOL_TEMP_TO_REG(val) DIV_ROUND_CLOSEST(clamp_val((val), 0, 15000), \
1000)
#define BEEP_MASK_TO_REG(val) ((val) & 0xffffff)
#define BEEP_MASK_FROM_REG(val) ((val) & 0xffffff)
#define DIV_FROM_REG(val) (1 << (val))
static u8 div_to_reg(int nr, long val)
{
int i;
/* fan divisors max out at 128 */
val = clamp_val(val, 1, 128) >> 1;
for (i = 0; i < 7; i++) {
if (val == 0)
break;
val >>= 1;
}
return (u8) i;
}
struct w83791d_data {
struct device *hwmon_dev;
struct mutex update_lock;
char valid; /* !=0 if following fields are valid */
unsigned long last_updated; /* In jiffies */
/* array of 2 pointers to subclients */
struct i2c_client *lm75[2];
/* volts */
u8 in[NUMBER_OF_VIN]; /* Register value */
u8 in_max[NUMBER_OF_VIN]; /* Register value */
u8 in_min[NUMBER_OF_VIN]; /* Register value */
/* fans */
u8 fan[NUMBER_OF_FANIN]; /* Register value */
u8 fan_min[NUMBER_OF_FANIN]; /* Register value */
u8 fan_div[NUMBER_OF_FANIN]; /* Register encoding, shifted right */
/* Temperature sensors */
s8 temp1[3]; /* current, over, thyst */
s16 temp_add[2][3]; /* fixed point value. Top 8 bits are the
* integral part, bottom 8 bits are the
* fractional part. We only use the top
* 9 bits as the resolution is only
* to the 0.5 degree C...
* two sensors with three values
* (cur, over, hyst)
*/
/* PWMs */
u8 pwm[5]; /* pwm duty cycle */
u8 pwm_enable[3]; /* pwm enable status for fan 1-3
* (fan 4-5 only support manual mode)
*/
u8 temp_target[3]; /* pwm 1-3 target temperature */
u8 temp_tolerance[3]; /* pwm 1-3 temperature tolerance */
/* Misc */
u32 alarms; /* realtime status register encoding,combined */
u8 beep_enable; /* Global beep enable */
u32 beep_mask; /* Mask off specific beeps */
u8 vid; /* Register encoding, combined */
u8 vrm; /* hwmon-vid */
};
static int w83791d_probe(struct i2c_client *client,
const struct i2c_device_id *id);
static int w83791d_detect(struct i2c_client *client,
struct i2c_board_info *info);
static int w83791d_remove(struct i2c_client *client);
static int w83791d_read(struct i2c_client *client, u8 reg);
static int w83791d_write(struct i2c_client *client, u8 reg, u8 value);
static struct w83791d_data *w83791d_update_device(struct device *dev);
#ifdef DEBUG
static void w83791d_print_debug(struct w83791d_data *data, struct device *dev);
#endif
static void w83791d_init_client(struct i2c_client *client);
static const struct i2c_device_id w83791d_id[] = {
{ "w83791d", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, w83791d_id);
static struct i2c_driver w83791d_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "w83791d",
},
.probe = w83791d_probe,
.remove = w83791d_remove,
.id_table = w83791d_id,
.detect = w83791d_detect,
.address_list = normal_i2c,
};
/* following are the sysfs callback functions */
#define show_in_reg(reg) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
struct sensor_device_attribute *sensor_attr = \
to_sensor_dev_attr(attr); \
struct w83791d_data *data = w83791d_update_device(dev); \
int nr = sensor_attr->index; \
return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
}
show_in_reg(in);
show_in_reg(in_min);
show_in_reg(in_max);
#define store_in_reg(REG, reg) \
static ssize_t store_in_##reg(struct device *dev, \
struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
struct sensor_device_attribute *sensor_attr = \
to_sensor_dev_attr(attr); \
struct i2c_client *client = to_i2c_client(dev); \
struct w83791d_data *data = i2c_get_clientdata(client); \
int nr = sensor_attr->index; \
unsigned long val; \
int err = kstrtoul(buf, 10, &val); \
if (err) \
return err; \
mutex_lock(&data->update_lock); \
data->in_##reg[nr] = IN_TO_REG(val); \
w83791d_write(client, W83791D_REG_IN_##REG[nr], data->in_##reg[nr]); \
mutex_unlock(&data->update_lock); \
\
return count; \
}
store_in_reg(MIN, min);
store_in_reg(MAX, max);
static struct sensor_device_attribute sda_in_input[] = {
SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0),
SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1),
SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2),
SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3),
SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4),
SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5),
SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6),
SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7),
SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8),
SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9),
};
static struct sensor_device_attribute sda_in_min[] = {
SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0),
SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1),
SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2),
SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3),
SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4),
SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5),
SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6),
SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7),
SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8),
SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9),
};
static struct sensor_device_attribute sda_in_max[] = {
SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0),
SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1),
SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2),
SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3),
SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4),
SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5),
SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6),
SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7),
SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8),
SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9),
};
static ssize_t show_beep(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr =
to_sensor_dev_attr(attr);
struct w83791d_data *data = w83791d_update_device(dev);
int bitnr = sensor_attr->index;
return sprintf(buf, "%d\n", (data->beep_mask >> bitnr) & 1);
}
static ssize_t store_beep(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr =
to_sensor_dev_attr(attr);
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
int bitnr = sensor_attr->index;
int bytenr = bitnr / 8;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
val = val ? 1 : 0;
mutex_lock(&data->update_lock);
data->beep_mask &= ~(0xff << (bytenr * 8));
data->beep_mask |= w83791d_read(client, W83791D_REG_BEEP_CTRL[bytenr])
<< (bytenr * 8);
data->beep_mask &= ~(1 << bitnr);
data->beep_mask |= val << bitnr;
w83791d_write(client, W83791D_REG_BEEP_CTRL[bytenr],
(data->beep_mask >> (bytenr * 8)) & 0xff);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr =
to_sensor_dev_attr(attr);
struct w83791d_data *data = w83791d_update_device(dev);
int bitnr = sensor_attr->index;
return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1);
}
/*
* Note: The bitmask for the beep enable/disable is different than
* the bitmask for the alarm.
*/
static struct sensor_device_attribute sda_in_beep[] = {
SENSOR_ATTR(in0_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 0),
SENSOR_ATTR(in1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 13),
SENSOR_ATTR(in2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 2),
SENSOR_ATTR(in3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 3),
SENSOR_ATTR(in4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 8),
SENSOR_ATTR(in5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 9),
SENSOR_ATTR(in6_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 10),
SENSOR_ATTR(in7_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 16),
SENSOR_ATTR(in8_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 17),
SENSOR_ATTR(in9_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 14),
};
static struct sensor_device_attribute sda_in_alarm[] = {
SENSOR_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0),
SENSOR_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1),
SENSOR_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2),
SENSOR_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3),
SENSOR_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8),
SENSOR_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9),
SENSOR_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 10),
SENSOR_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 19),
SENSOR_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 20),
SENSOR_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 14),
};
#define show_fan_reg(reg) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
struct sensor_device_attribute *sensor_attr = \
to_sensor_dev_attr(attr); \
struct w83791d_data *data = w83791d_update_device(dev); \
int nr = sensor_attr->index; \
return sprintf(buf, "%d\n", \
FAN_FROM_REG(data->reg[nr], DIV_FROM_REG(data->fan_div[nr]))); \
}
show_fan_reg(fan);
show_fan_reg(fan_min);
static ssize_t store_fan_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
int nr = sensor_attr->index;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->fan_min[nr] = fan_to_reg(val, DIV_FROM_REG(data->fan_div[nr]));
w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct w83791d_data *data = w83791d_update_device(dev);
return sprintf(buf, "%u\n", DIV_FROM_REG(data->fan_div[nr]));
}
/*
* Note: we save and restore the fan minimum here, because its value is
* determined in part by the fan divisor. This follows the principle of
* least surprise; the user doesn't expect the fan minimum to change just
* because the divisor changed.
*/
static ssize_t store_fan_div(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
int nr = sensor_attr->index;
unsigned long min;
u8 tmp_fan_div;
u8 fan_div_reg;
u8 vbat_reg;
int indx = 0;
u8 keep_mask = 0;
u8 new_shift = 0;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
/* Save fan_min */
min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr]));
mutex_lock(&data->update_lock);
data->fan_div[nr] = div_to_reg(nr, val);
switch (nr) {
case 0:
indx = 0;
keep_mask = 0xcf;
new_shift = 4;
break;
case 1:
indx = 0;
keep_mask = 0x3f;
new_shift = 6;
break;
case 2:
indx = 1;
keep_mask = 0x3f;
new_shift = 6;
break;
case 3:
indx = 2;
keep_mask = 0xf8;
new_shift = 0;
break;
case 4:
indx = 2;
keep_mask = 0x8f;
new_shift = 4;
break;
#ifdef DEBUG
default:
dev_warn(dev, "store_fan_div: Unexpected nr seen: %d\n", nr);
count = -EINVAL;
goto err_exit;
#endif
}
fan_div_reg = w83791d_read(client, W83791D_REG_FAN_DIV[indx])
& keep_mask;
tmp_fan_div = (data->fan_div[nr] << new_shift) & ~keep_mask;
w83791d_write(client, W83791D_REG_FAN_DIV[indx],
fan_div_reg | tmp_fan_div);
/* Bit 2 of fans 0-2 is stored in the vbat register (bits 5-7) */
if (nr < 3) {
keep_mask = ~(1 << (nr + 5));
vbat_reg = w83791d_read(client, W83791D_REG_VBAT)
& keep_mask;
tmp_fan_div = (data->fan_div[nr] << (3 + nr)) & ~keep_mask;
w83791d_write(client, W83791D_REG_VBAT,
vbat_reg | tmp_fan_div);
}
/* Restore fan_min */
data->fan_min[nr] = fan_to_reg(min, DIV_FROM_REG(data->fan_div[nr]));
w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]);
#ifdef DEBUG
err_exit:
#endif
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute sda_fan_input[] = {
SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0),
SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1),
SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2),
SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3),
SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4),
};
static struct sensor_device_attribute sda_fan_min[] = {
SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO,
show_fan_min, store_fan_min, 0),
SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO,
show_fan_min, store_fan_min, 1),
SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO,
show_fan_min, store_fan_min, 2),
SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO,
show_fan_min, store_fan_min, 3),
SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO,
show_fan_min, store_fan_min, 4),
};
static struct sensor_device_attribute sda_fan_div[] = {
SENSOR_ATTR(fan1_div, S_IWUSR | S_IRUGO,
show_fan_div, store_fan_div, 0),
SENSOR_ATTR(fan2_div, S_IWUSR | S_IRUGO,
show_fan_div, store_fan_div, 1),
SENSOR_ATTR(fan3_div, S_IWUSR | S_IRUGO,
show_fan_div, store_fan_div, 2),
SENSOR_ATTR(fan4_div, S_IWUSR | S_IRUGO,
show_fan_div, store_fan_div, 3),
SENSOR_ATTR(fan5_div, S_IWUSR | S_IRUGO,
show_fan_div, store_fan_div, 4),
};
static struct sensor_device_attribute sda_fan_beep[] = {
SENSOR_ATTR(fan1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 6),
SENSOR_ATTR(fan2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 7),
SENSOR_ATTR(fan3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 11),
SENSOR_ATTR(fan4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 21),
SENSOR_ATTR(fan5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 22),
};
static struct sensor_device_attribute sda_fan_alarm[] = {
SENSOR_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6),
SENSOR_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7),
SENSOR_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11),
SENSOR_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 21),
SENSOR_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 22),
};
/* read/write PWMs */
static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct w83791d_data *data = w83791d_update_device(dev);
return sprintf(buf, "%u\n", data->pwm[nr]);
}
static ssize_t store_pwm(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
int nr = sensor_attr->index;
unsigned long val;
if (kstrtoul(buf, 10, &val))
return -EINVAL;
mutex_lock(&data->update_lock);
data->pwm[nr] = clamp_val(val, 0, 255);
w83791d_write(client, W83791D_REG_PWM[nr], data->pwm[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute sda_pwm[] = {
SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO,
show_pwm, store_pwm, 0),
SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO,
show_pwm, store_pwm, 1),
SENSOR_ATTR(pwm3, S_IWUSR | S_IRUGO,
show_pwm, store_pwm, 2),
SENSOR_ATTR(pwm4, S_IWUSR | S_IRUGO,
show_pwm, store_pwm, 3),
SENSOR_ATTR(pwm5, S_IWUSR | S_IRUGO,
show_pwm, store_pwm, 4),
};
static ssize_t show_pwmenable(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct w83791d_data *data = w83791d_update_device(dev);
return sprintf(buf, "%u\n", data->pwm_enable[nr] + 1);
}
static ssize_t store_pwmenable(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
int nr = sensor_attr->index;
unsigned long val;
u8 reg_cfg_tmp;
u8 reg_idx = 0;
u8 val_shift = 0;
u8 keep_mask = 0;
int ret = kstrtoul(buf, 10, &val);
if (ret || val < 1 || val > 3)
return -EINVAL;
mutex_lock(&data->update_lock);
data->pwm_enable[nr] = val - 1;
switch (nr) {
case 0:
reg_idx = 0;
val_shift = 2;
keep_mask = 0xf3;
break;
case 1:
reg_idx = 0;
val_shift = 4;
keep_mask = 0xcf;
break;
case 2:
reg_idx = 1;
val_shift = 2;
keep_mask = 0xf3;
break;
}
reg_cfg_tmp = w83791d_read(client, W83791D_REG_FAN_CFG[reg_idx]);
reg_cfg_tmp = (reg_cfg_tmp & keep_mask) |
data->pwm_enable[nr] << val_shift;
w83791d_write(client, W83791D_REG_FAN_CFG[reg_idx], reg_cfg_tmp);
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute sda_pwmenable[] = {
SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO,
show_pwmenable, store_pwmenable, 0),
SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO,
show_pwmenable, store_pwmenable, 1),
SENSOR_ATTR(pwm3_enable, S_IWUSR | S_IRUGO,
show_pwmenable, store_pwmenable, 2),
};
/* For Smart Fan I / Thermal Cruise */
static ssize_t show_temp_target(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
struct w83791d_data *data = w83791d_update_device(dev);
int nr = sensor_attr->index;
return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_target[nr]));
}
static ssize_t store_temp_target(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
int nr = sensor_attr->index;
long val;
u8 target_mask;
if (kstrtol(buf, 10, &val))
return -EINVAL;
mutex_lock(&data->update_lock);
data->temp_target[nr] = TARGET_TEMP_TO_REG(val);
target_mask = w83791d_read(client,
W83791D_REG_TEMP_TARGET[nr]) & 0x80;
w83791d_write(client, W83791D_REG_TEMP_TARGET[nr],
data->temp_target[nr] | target_mask);
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute sda_temp_target[] = {
SENSOR_ATTR(temp1_target, S_IWUSR | S_IRUGO,
show_temp_target, store_temp_target, 0),
SENSOR_ATTR(temp2_target, S_IWUSR | S_IRUGO,
show_temp_target, store_temp_target, 1),
SENSOR_ATTR(temp3_target, S_IWUSR | S_IRUGO,
show_temp_target, store_temp_target, 2),
};
static ssize_t show_temp_tolerance(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
struct w83791d_data *data = w83791d_update_device(dev);
int nr = sensor_attr->index;
return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_tolerance[nr]));
}
static ssize_t store_temp_tolerance(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
int nr = sensor_attr->index;
unsigned long val;
u8 target_mask;
u8 reg_idx = 0;
u8 val_shift = 0;
u8 keep_mask = 0;
if (kstrtoul(buf, 10, &val))
return -EINVAL;
switch (nr) {
case 0:
reg_idx = 0;
val_shift = 0;
keep_mask = 0xf0;
break;
case 1:
reg_idx = 0;
val_shift = 4;
keep_mask = 0x0f;
break;
case 2:
reg_idx = 1;
val_shift = 0;
keep_mask = 0xf0;
break;
}
mutex_lock(&data->update_lock);
data->temp_tolerance[nr] = TOL_TEMP_TO_REG(val);
target_mask = w83791d_read(client,
W83791D_REG_TEMP_TOL[reg_idx]) & keep_mask;
w83791d_write(client, W83791D_REG_TEMP_TOL[reg_idx],
(data->temp_tolerance[nr] << val_shift) | target_mask);
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute sda_temp_tolerance[] = {
SENSOR_ATTR(temp1_tolerance, S_IWUSR | S_IRUGO,
show_temp_tolerance, store_temp_tolerance, 0),
SENSOR_ATTR(temp2_tolerance, S_IWUSR | S_IRUGO,
show_temp_tolerance, store_temp_tolerance, 1),
SENSOR_ATTR(temp3_tolerance, S_IWUSR | S_IRUGO,
show_temp_tolerance, store_temp_tolerance, 2),
};
/* read/write the temperature1, includes measured value and limits */
static ssize_t show_temp1(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct w83791d_data *data = w83791d_update_device(dev);
return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp1[attr->index]));
}
static ssize_t store_temp1(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
int nr = attr->index;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->temp1[nr] = TEMP1_TO_REG(val);
w83791d_write(client, W83791D_REG_TEMP1[nr], data->temp1[nr]);
mutex_unlock(&data->update_lock);
return count;
}
/* read/write temperature2-3, includes measured value and limits */
static ssize_t show_temp23(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct w83791d_data *data = w83791d_update_device(dev);
int nr = attr->nr;
int index = attr->index;
return sprintf(buf, "%d\n", TEMP23_FROM_REG(data->temp_add[nr][index]));
}
static ssize_t store_temp23(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
long val;
int err;
int nr = attr->nr;
int index = attr->index;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->temp_add[nr][index] = TEMP23_TO_REG(val);
w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2],
data->temp_add[nr][index] >> 8);
w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2 + 1],
data->temp_add[nr][index] & 0x80);
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute_2 sda_temp_input[] = {
SENSOR_ATTR_2(temp1_input, S_IRUGO, show_temp1, NULL, 0, 0),
SENSOR_ATTR_2(temp2_input, S_IRUGO, show_temp23, NULL, 0, 0),
SENSOR_ATTR_2(temp3_input, S_IRUGO, show_temp23, NULL, 1, 0),
};
static struct sensor_device_attribute_2 sda_temp_max[] = {
SENSOR_ATTR_2(temp1_max, S_IRUGO | S_IWUSR,
show_temp1, store_temp1, 0, 1),
SENSOR_ATTR_2(temp2_max, S_IRUGO | S_IWUSR,
show_temp23, store_temp23, 0, 1),
SENSOR_ATTR_2(temp3_max, S_IRUGO | S_IWUSR,
show_temp23, store_temp23, 1, 1),
};
static struct sensor_device_attribute_2 sda_temp_max_hyst[] = {
SENSOR_ATTR_2(temp1_max_hyst, S_IRUGO | S_IWUSR,
show_temp1, store_temp1, 0, 2),
SENSOR_ATTR_2(temp2_max_hyst, S_IRUGO | S_IWUSR,
show_temp23, store_temp23, 0, 2),
SENSOR_ATTR_2(temp3_max_hyst, S_IRUGO | S_IWUSR,
show_temp23, store_temp23, 1, 2),
};
/*
* Note: The bitmask for the beep enable/disable is different than
* the bitmask for the alarm.
*/
static struct sensor_device_attribute sda_temp_beep[] = {
SENSOR_ATTR(temp1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 4),
SENSOR_ATTR(temp2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 5),
SENSOR_ATTR(temp3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 1),
};
static struct sensor_device_attribute sda_temp_alarm[] = {
SENSOR_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4),
SENSOR_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5),
SENSOR_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13),
};
/* get realtime status of all sensors items: voltage, temp, fan */
static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct w83791d_data *data = w83791d_update_device(dev);
return sprintf(buf, "%u\n", data->alarms);
}
static DEVICE_ATTR_RO(alarms);
/* Beep control */
#define GLOBAL_BEEP_ENABLE_SHIFT 15
#define GLOBAL_BEEP_ENABLE_MASK (1 << GLOBAL_BEEP_ENABLE_SHIFT)
static ssize_t show_beep_enable(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct w83791d_data *data = w83791d_update_device(dev);
return sprintf(buf, "%d\n", data->beep_enable);
}
static ssize_t show_beep_mask(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct w83791d_data *data = w83791d_update_device(dev);
return sprintf(buf, "%d\n", BEEP_MASK_FROM_REG(data->beep_mask));
}
static ssize_t store_beep_mask(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
int i;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
/*
* The beep_enable state overrides any enabling request from
* the masks
*/
data->beep_mask = BEEP_MASK_TO_REG(val) & ~GLOBAL_BEEP_ENABLE_MASK;
data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT);
val = data->beep_mask;
for (i = 0; i < 3; i++) {
w83791d_write(client, W83791D_REG_BEEP_CTRL[i], (val & 0xff));
val >>= 8;
}
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t store_beep_enable(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->beep_enable = val ? 1 : 0;
/* Keep the full mask value in sync with the current enable */
data->beep_mask &= ~GLOBAL_BEEP_ENABLE_MASK;
data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT);
/*
* The global control is in the second beep control register
* so only need to update that register
*/
val = (data->beep_mask >> 8) & 0xff;
w83791d_write(client, W83791D_REG_BEEP_CTRL[1], val);
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute sda_beep_ctrl[] = {
SENSOR_ATTR(beep_enable, S_IRUGO | S_IWUSR,
show_beep_enable, store_beep_enable, 0),
SENSOR_ATTR(beep_mask, S_IRUGO | S_IWUSR,
show_beep_mask, store_beep_mask, 1)
};
/* cpu voltage regulation information */
static ssize_t cpu0_vid_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct w83791d_data *data = w83791d_update_device(dev);
return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
}
static DEVICE_ATTR_RO(cpu0_vid);
static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct w83791d_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", data->vrm);
}
static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct w83791d_data *data = dev_get_drvdata(dev);
unsigned long val;
int err;
/*
* No lock needed as vrm is internal to the driver
* (not read from a chip register) and so is not
* updated in w83791d_update_device()
*/
err = kstrtoul(buf, 10, &val);
if (err)
return err;
if (val > 255)
return -EINVAL;
data->vrm = val;
return count;
}
static DEVICE_ATTR_RW(vrm);
#define IN_UNIT_ATTRS(X) \
&sda_in_input[X].dev_attr.attr, \
&sda_in_min[X].dev_attr.attr, \
&sda_in_max[X].dev_attr.attr, \
&sda_in_beep[X].dev_attr.attr, \
&sda_in_alarm[X].dev_attr.attr
#define FAN_UNIT_ATTRS(X) \
&sda_fan_input[X].dev_attr.attr, \
&sda_fan_min[X].dev_attr.attr, \
&sda_fan_div[X].dev_attr.attr, \
&sda_fan_beep[X].dev_attr.attr, \
&sda_fan_alarm[X].dev_attr.attr
#define TEMP_UNIT_ATTRS(X) \
&sda_temp_input[X].dev_attr.attr, \
&sda_temp_max[X].dev_attr.attr, \
&sda_temp_max_hyst[X].dev_attr.attr, \
&sda_temp_beep[X].dev_attr.attr, \
&sda_temp_alarm[X].dev_attr.attr
static struct attribute *w83791d_attributes[] = {
IN_UNIT_ATTRS(0),
IN_UNIT_ATTRS(1),
IN_UNIT_ATTRS(2),
IN_UNIT_ATTRS(3),
IN_UNIT_ATTRS(4),
IN_UNIT_ATTRS(5),
IN_UNIT_ATTRS(6),
IN_UNIT_ATTRS(7),
IN_UNIT_ATTRS(8),
IN_UNIT_ATTRS(9),
FAN_UNIT_ATTRS(0),
FAN_UNIT_ATTRS(1),
FAN_UNIT_ATTRS(2),
TEMP_UNIT_ATTRS(0),
TEMP_UNIT_ATTRS(1),
TEMP_UNIT_ATTRS(2),
&dev_attr_alarms.attr,
&sda_beep_ctrl[0].dev_attr.attr,
&sda_beep_ctrl[1].dev_attr.attr,
&dev_attr_cpu0_vid.attr,
&dev_attr_vrm.attr,
&sda_pwm[0].dev_attr.attr,
&sda_pwm[1].dev_attr.attr,
&sda_pwm[2].dev_attr.attr,
&sda_pwmenable[0].dev_attr.attr,
&sda_pwmenable[1].dev_attr.attr,
&sda_pwmenable[2].dev_attr.attr,
&sda_temp_target[0].dev_attr.attr,
&sda_temp_target[1].dev_attr.attr,
&sda_temp_target[2].dev_attr.attr,
&sda_temp_tolerance[0].dev_attr.attr,
&sda_temp_tolerance[1].dev_attr.attr,
&sda_temp_tolerance[2].dev_attr.attr,
NULL
};
static const struct attribute_group w83791d_group = {
.attrs = w83791d_attributes,
};
/*
* Separate group of attributes for fan/pwm 4-5. Their pins can also be
* in use for GPIO in which case their sysfs-interface should not be made
* available
*/
static struct attribute *w83791d_attributes_fanpwm45[] = {
FAN_UNIT_ATTRS(3),
FAN_UNIT_ATTRS(4),
&sda_pwm[3].dev_attr.attr,
&sda_pwm[4].dev_attr.attr,
NULL
};
static const struct attribute_group w83791d_group_fanpwm45 = {
.attrs = w83791d_attributes_fanpwm45,
};
static int w83791d_detect_subclients(struct i2c_client *client)
{
struct i2c_adapter *adapter = client->adapter;
struct w83791d_data *data = i2c_get_clientdata(client);
int address = client->addr;
int i, id, err;
u8 val;
id = i2c_adapter_id(adapter);
if (force_subclients[0] == id && force_subclients[1] == address) {
for (i = 2; i <= 3; i++) {
if (force_subclients[i] < 0x48 ||
force_subclients[i] > 0x4f) {
dev_err(&client->dev,
"invalid subclient "
"address %d; must be 0x48-0x4f\n",
force_subclients[i]);
err = -ENODEV;
goto error_sc_0;
}
}
w83791d_write(client, W83791D_REG_I2C_SUBADDR,
(force_subclients[2] & 0x07) |
((force_subclients[3] & 0x07) << 4));
}
val = w83791d_read(client, W83791D_REG_I2C_SUBADDR);
if (!(val & 0x08))
data->lm75[0] = i2c_new_dummy(adapter, 0x48 + (val & 0x7));
if (!(val & 0x80)) {
if ((data->lm75[0] != NULL) &&
((val & 0x7) == ((val >> 4) & 0x7))) {
dev_err(&client->dev,
"duplicate addresses 0x%x, "
"use force_subclient\n",
data->lm75[0]->addr);
err = -ENODEV;
goto error_sc_1;
}
data->lm75[1] = i2c_new_dummy(adapter,
0x48 + ((val >> 4) & 0x7));
}
return 0;
/* Undo inits in case of errors */
error_sc_1:
i2c_unregister_device(data->lm75[0]);
error_sc_0:
return err;
}
/* Return 0 if detection is successful, -ENODEV otherwise */
static int w83791d_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
int val1, val2;
unsigned short address = client->addr;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
if (w83791d_read(client, W83791D_REG_CONFIG) & 0x80)
return -ENODEV;
val1 = w83791d_read(client, W83791D_REG_BANK);
val2 = w83791d_read(client, W83791D_REG_CHIPMAN);
/* Check for Winbond ID if in bank 0 */
if (!(val1 & 0x07)) {
if ((!(val1 & 0x80) && val2 != 0xa3) ||
((val1 & 0x80) && val2 != 0x5c)) {
return -ENODEV;
}
}
/*
* If Winbond chip, address of chip and W83791D_REG_I2C_ADDR
* should match
*/
if (w83791d_read(client, W83791D_REG_I2C_ADDR) != address)
return -ENODEV;
/* We want bank 0 and Vendor ID high byte */
val1 = w83791d_read(client, W83791D_REG_BANK) & 0x78;
w83791d_write(client, W83791D_REG_BANK, val1 | 0x80);
/* Verify it is a Winbond w83791d */
val1 = w83791d_read(client, W83791D_REG_WCHIPID);
val2 = w83791d_read(client, W83791D_REG_CHIPMAN);
if (val1 != 0x71 || val2 != 0x5c)
return -ENODEV;
strlcpy(info->type, "w83791d", I2C_NAME_SIZE);
return 0;
}
static int w83791d_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct w83791d_data *data;
struct device *dev = &client->dev;
int i, err;
u8 has_fanpwm45;
#ifdef DEBUG
int val1;
val1 = w83791d_read(client, W83791D_REG_DID_VID4);
dev_dbg(dev, "Device ID version: %d.%d (0x%02x)\n",
(val1 >> 5) & 0x07, (val1 >> 1) & 0x0f, val1);
#endif
data = devm_kzalloc(&client->dev, sizeof(struct w83791d_data),
GFP_KERNEL);
if (!data)
return -ENOMEM;
i2c_set_clientdata(client, data);
mutex_init(&data->update_lock);
err = w83791d_detect_subclients(client);
if (err)
return err;
/* Initialize the chip */
w83791d_init_client(client);
/*
* If the fan_div is changed, make sure there is a rational
* fan_min in place
*/
for (i = 0; i < NUMBER_OF_FANIN; i++)
data->fan_min[i] = w83791d_read(client, W83791D_REG_FAN_MIN[i]);
/* Register sysfs hooks */
err = sysfs_create_group(&client->dev.kobj, &w83791d_group);
if (err)
goto error3;
/* Check if pins of fan/pwm 4-5 are in use as GPIO */
has_fanpwm45 = w83791d_read(client, W83791D_REG_GPIO) & 0x10;
if (has_fanpwm45) {
err = sysfs_create_group(&client->dev.kobj,
&w83791d_group_fanpwm45);
if (err)
goto error4;
}
/* Everything is ready, now register the working device */
data->hwmon_dev = hwmon_device_register(dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
goto error5;
}
return 0;
error5:
if (has_fanpwm45)
sysfs_remove_group(&client->dev.kobj, &w83791d_group_fanpwm45);
error4:
sysfs_remove_group(&client->dev.kobj, &w83791d_group);
error3:
i2c_unregister_device(data->lm75[0]);
i2c_unregister_device(data->lm75[1]);
return err;
}
static int w83791d_remove(struct i2c_client *client)
{
struct w83791d_data *data = i2c_get_clientdata(client);
hwmon_device_unregister(data->hwmon_dev);
sysfs_remove_group(&client->dev.kobj, &w83791d_group);
i2c_unregister_device(data->lm75[0]);
i2c_unregister_device(data->lm75[1]);
return 0;
}
static void w83791d_init_client(struct i2c_client *client)
{
struct w83791d_data *data = i2c_get_clientdata(client);
u8 tmp;
u8 old_beep;
/*
* The difference between reset and init is that reset
* does a hard reset of the chip via index 0x40, bit 7,
* but init simply forces certain registers to have "sane"
* values. The hope is that the BIOS has done the right
* thing (which is why the default is reset=0, init=0),
* but if not, reset is the hard hammer and init
* is the soft mallet both of which are trying to whack
* things into place...
* NOTE: The data sheet makes a distinction between
* "power on defaults" and "reset by MR". As far as I can tell,
* the hard reset puts everything into a power-on state so I'm
* not sure what "reset by MR" means or how it can happen.
*/
if (reset || init) {
/* keep some BIOS settings when we... */
old_beep = w83791d_read(client, W83791D_REG_BEEP_CONFIG);
if (reset) {
/* ... reset the chip and ... */
w83791d_write(client, W83791D_REG_CONFIG, 0x80);
}
/* ... disable power-on abnormal beep */
w83791d_write(client, W83791D_REG_BEEP_CONFIG, old_beep | 0x80);
/* disable the global beep (not done by hard reset) */
tmp = w83791d_read(client, W83791D_REG_BEEP_CTRL[1]);
w83791d_write(client, W83791D_REG_BEEP_CTRL[1], tmp & 0xef);
if (init) {
/* Make sure monitoring is turned on for add-ons */
tmp = w83791d_read(client, W83791D_REG_TEMP2_CONFIG);
if (tmp & 1) {
w83791d_write(client, W83791D_REG_TEMP2_CONFIG,
tmp & 0xfe);
}
tmp = w83791d_read(client, W83791D_REG_TEMP3_CONFIG);
if (tmp & 1) {
w83791d_write(client, W83791D_REG_TEMP3_CONFIG,
tmp & 0xfe);
}
/* Start monitoring */
tmp = w83791d_read(client, W83791D_REG_CONFIG) & 0xf7;
w83791d_write(client, W83791D_REG_CONFIG, tmp | 0x01);
}
}
data->vrm = vid_which_vrm();
}
static struct w83791d_data *w83791d_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct w83791d_data *data = i2c_get_clientdata(client);
int i, j;
u8 reg_array_tmp[3];
u8 vbat_reg;
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + (HZ * 3))
|| !data->valid) {
dev_dbg(dev, "Starting w83791d device update\n");
/* Update the voltages measured value and limits */
for (i = 0; i < NUMBER_OF_VIN; i++) {
data->in[i] = w83791d_read(client,
W83791D_REG_IN[i]);
data->in_max[i] = w83791d_read(client,
W83791D_REG_IN_MAX[i]);
data->in_min[i] = w83791d_read(client,
W83791D_REG_IN_MIN[i]);
}
/* Update the fan counts and limits */
for (i = 0; i < NUMBER_OF_FANIN; i++) {
/* Update the Fan measured value and limits */
data->fan[i] = w83791d_read(client,
W83791D_REG_FAN[i]);
data->fan_min[i] = w83791d_read(client,
W83791D_REG_FAN_MIN[i]);
}
/* Update the fan divisor */
for (i = 0; i < 3; i++) {
reg_array_tmp[i] = w83791d_read(client,
W83791D_REG_FAN_DIV[i]);
}
data->fan_div[0] = (reg_array_tmp[0] >> 4) & 0x03;
data->fan_div[1] = (reg_array_tmp[0] >> 6) & 0x03;
data->fan_div[2] = (reg_array_tmp[1] >> 6) & 0x03;
data->fan_div[3] = reg_array_tmp[2] & 0x07;
data->fan_div[4] = (reg_array_tmp[2] >> 4) & 0x07;
/*
* The fan divisor for fans 0-2 get bit 2 from
* bits 5-7 respectively of vbat register
*/
vbat_reg = w83791d_read(client, W83791D_REG_VBAT);
for (i = 0; i < 3; i++)
data->fan_div[i] |= (vbat_reg >> (3 + i)) & 0x04;
/* Update PWM duty cycle */
for (i = 0; i < NUMBER_OF_PWM; i++) {
data->pwm[i] = w83791d_read(client,
W83791D_REG_PWM[i]);
}
/* Update PWM enable status */
for (i = 0; i < 2; i++) {
reg_array_tmp[i] = w83791d_read(client,
W83791D_REG_FAN_CFG[i]);
}
data->pwm_enable[0] = (reg_array_tmp[0] >> 2) & 0x03;
data->pwm_enable[1] = (reg_array_tmp[0] >> 4) & 0x03;
data->pwm_enable[2] = (reg_array_tmp[1] >> 2) & 0x03;
/* Update PWM target temperature */
for (i = 0; i < 3; i++) {
data->temp_target[i] = w83791d_read(client,
W83791D_REG_TEMP_TARGET[i]) & 0x7f;
}
/* Update PWM temperature tolerance */
for (i = 0; i < 2; i++) {
reg_array_tmp[i] = w83791d_read(client,
W83791D_REG_TEMP_TOL[i]);
}
data->temp_tolerance[0] = reg_array_tmp[0] & 0x0f;
data->temp_tolerance[1] = (reg_array_tmp[0] >> 4) & 0x0f;
data->temp_tolerance[2] = reg_array_tmp[1] & 0x0f;
/* Update the first temperature sensor */
for (i = 0; i < 3; i++) {
data->temp1[i] = w83791d_read(client,
W83791D_REG_TEMP1[i]);
}
/* Update the rest of the temperature sensors */
for (i = 0; i < 2; i++) {
for (j = 0; j < 3; j++) {
data->temp_add[i][j] =
(w83791d_read(client,
W83791D_REG_TEMP_ADD[i][j * 2]) << 8) |
w83791d_read(client,
W83791D_REG_TEMP_ADD[i][j * 2 + 1]);
}
}
/* Update the realtime status */
data->alarms =
w83791d_read(client, W83791D_REG_ALARM1) +
(w83791d_read(client, W83791D_REG_ALARM2) << 8) +
(w83791d_read(client, W83791D_REG_ALARM3) << 16);
/* Update the beep configuration information */
data->beep_mask =
w83791d_read(client, W83791D_REG_BEEP_CTRL[0]) +
(w83791d_read(client, W83791D_REG_BEEP_CTRL[1]) << 8) +
(w83791d_read(client, W83791D_REG_BEEP_CTRL[2]) << 16);
/* Extract global beep enable flag */
data->beep_enable =
(data->beep_mask >> GLOBAL_BEEP_ENABLE_SHIFT) & 0x01;
/* Update the cpu voltage information */
i = w83791d_read(client, W83791D_REG_VID_FANDIV);
data->vid = i & 0x0f;
data->vid |= (w83791d_read(client, W83791D_REG_DID_VID4) & 0x01)
<< 4;
data->last_updated = jiffies;
data->valid = 1;
}
mutex_unlock(&data->update_lock);
#ifdef DEBUG
w83791d_print_debug(data, dev);
#endif
return data;
}
#ifdef DEBUG
static void w83791d_print_debug(struct w83791d_data *data, struct device *dev)
{
int i = 0, j = 0;
dev_dbg(dev, "======Start of w83791d debug values======\n");
dev_dbg(dev, "%d set of Voltages: ===>\n", NUMBER_OF_VIN);
for (i = 0; i < NUMBER_OF_VIN; i++) {
dev_dbg(dev, "vin[%d] is: 0x%02x\n", i, data->in[i]);
dev_dbg(dev, "vin[%d] min is: 0x%02x\n", i, data->in_min[i]);
dev_dbg(dev, "vin[%d] max is: 0x%02x\n", i, data->in_max[i]);
}
dev_dbg(dev, "%d set of Fan Counts/Divisors: ===>\n", NUMBER_OF_FANIN);
for (i = 0; i < NUMBER_OF_FANIN; i++) {
dev_dbg(dev, "fan[%d] is: 0x%02x\n", i, data->fan[i]);
dev_dbg(dev, "fan[%d] min is: 0x%02x\n", i, data->fan_min[i]);
dev_dbg(dev, "fan_div[%d] is: 0x%02x\n", i, data->fan_div[i]);
}
/*
* temperature math is signed, but only print out the
* bits that matter
*/
dev_dbg(dev, "%d set of Temperatures: ===>\n", NUMBER_OF_TEMPIN);
for (i = 0; i < 3; i++)
dev_dbg(dev, "temp1[%d] is: 0x%02x\n", i, (u8) data->temp1[i]);
for (i = 0; i < 2; i++) {
for (j = 0; j < 3; j++) {
dev_dbg(dev, "temp_add[%d][%d] is: 0x%04x\n", i, j,
(u16) data->temp_add[i][j]);
}
}
dev_dbg(dev, "Misc Information: ===>\n");
dev_dbg(dev, "alarm is: 0x%08x\n", data->alarms);
dev_dbg(dev, "beep_mask is: 0x%08x\n", data->beep_mask);
dev_dbg(dev, "beep_enable is: %d\n", data->beep_enable);
dev_dbg(dev, "vid is: 0x%02x\n", data->vid);
dev_dbg(dev, "vrm is: 0x%02x\n", data->vrm);
dev_dbg(dev, "=======End of w83791d debug values========\n");
dev_dbg(dev, "\n");
}
#endif
module_i2c_driver(w83791d_driver);
MODULE_AUTHOR("Charles Spirakis <bezaur@gmail.com>");
MODULE_DESCRIPTION("W83791D driver");
MODULE_LICENSE("GPL");