2021-02-07 11:10:28 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/*
|
|
|
|
* ACRN_HSM: Virtual Machine management
|
|
|
|
*
|
|
|
|
* Copyright (C) 2020 Intel Corporation. All rights reserved.
|
|
|
|
*
|
|
|
|
* Authors:
|
|
|
|
* Jason Chen CJ <jason.cj.chen@intel.com>
|
|
|
|
* Yakui Zhao <yakui.zhao@intel.com>
|
|
|
|
*/
|
|
|
|
#include <linux/io.h>
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
|
|
|
|
#include "acrn_drv.h"
|
|
|
|
|
|
|
|
/* List of VMs */
|
virt: acrn: Introduce I/O request management
An I/O request of a User VM, which is constructed by the hypervisor, is
distributed by the ACRN Hypervisor Service Module to an I/O client
corresponding to the address range of the I/O request.
For each User VM, there is a shared 4-KByte memory region used for I/O
requests communication between the hypervisor and Service VM. An I/O
request is a 256-byte structure buffer, which is 'struct
acrn_io_request', that is filled by an I/O handler of the hypervisor
when a trapped I/O access happens in a User VM. ACRN userspace in the
Service VM first allocates a 4-KByte page and passes the GPA (Guest
Physical Address) of the buffer to the hypervisor. The buffer is used as
an array of 16 I/O request slots with each I/O request slot being 256
bytes. This array is indexed by vCPU ID.
An I/O client, which is 'struct acrn_ioreq_client', is responsible for
handling User VM I/O requests whose accessed GPA falls in a certain
range. Multiple I/O clients can be associated with each User VM. There
is a special client associated with each User VM, called the default
client, that handles all I/O requests that do not fit into the range of
any other I/O clients. The ACRN userspace acts as the default client for
each User VM.
The state transitions of a ACRN I/O request are as follows.
FREE -> PENDING -> PROCESSING -> COMPLETE -> FREE -> ...
FREE: this I/O request slot is empty
PENDING: a valid I/O request is pending in this slot
PROCESSING: the I/O request is being processed
COMPLETE: the I/O request has been processed
An I/O request in COMPLETE or FREE state is owned by the hypervisor. HSM
and ACRN userspace are in charge of processing the others.
The processing flow of I/O requests are listed as following:
a) The I/O handler of the hypervisor will fill an I/O request with
PENDING state when a trapped I/O access happens in a User VM.
b) The hypervisor makes an upcall, which is a notification interrupt, to
the Service VM.
c) The upcall handler schedules a worker to dispatch I/O requests.
d) The worker looks for the PENDING I/O requests, assigns them to
different registered clients based on the address of the I/O accesses,
updates their state to PROCESSING, and notifies the corresponding
client to handle.
e) The notified client handles the assigned I/O requests.
f) The HSM updates I/O requests states to COMPLETE and notifies the
hypervisor of the completion via hypercalls.
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Zhi Wang <zhi.a.wang@intel.com>
Cc: Zhenyu Wang <zhenyuw@linux.intel.com>
Cc: Yu Wang <yu1.wang@intel.com>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Zhi Wang <zhi.a.wang@intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Shuo Liu <shuo.a.liu@intel.com>
Link: https://lore.kernel.org/r/20210207031040.49576-10-shuo.a.liu@intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-07 11:10:31 +08:00
|
|
|
LIST_HEAD(acrn_vm_list);
|
|
|
|
/*
|
|
|
|
* acrn_vm_list is read in a worker thread which dispatch I/O requests and
|
|
|
|
* is wrote in VM creation ioctl. Use the rwlock mechanism to protect it.
|
|
|
|
*/
|
|
|
|
DEFINE_RWLOCK(acrn_vm_list_lock);
|
2021-02-07 11:10:28 +08:00
|
|
|
|
|
|
|
struct acrn_vm *acrn_vm_create(struct acrn_vm *vm,
|
|
|
|
struct acrn_vm_creation *vm_param)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = hcall_create_vm(virt_to_phys(vm_param));
|
|
|
|
if (ret < 0 || vm_param->vmid == ACRN_INVALID_VMID) {
|
|
|
|
dev_err(acrn_dev.this_device,
|
|
|
|
"Failed to create VM! Error: %d\n", ret);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2021-02-07 11:10:30 +08:00
|
|
|
mutex_init(&vm->regions_mapping_lock);
|
virt: acrn: Introduce I/O request management
An I/O request of a User VM, which is constructed by the hypervisor, is
distributed by the ACRN Hypervisor Service Module to an I/O client
corresponding to the address range of the I/O request.
For each User VM, there is a shared 4-KByte memory region used for I/O
requests communication between the hypervisor and Service VM. An I/O
request is a 256-byte structure buffer, which is 'struct
acrn_io_request', that is filled by an I/O handler of the hypervisor
when a trapped I/O access happens in a User VM. ACRN userspace in the
Service VM first allocates a 4-KByte page and passes the GPA (Guest
Physical Address) of the buffer to the hypervisor. The buffer is used as
an array of 16 I/O request slots with each I/O request slot being 256
bytes. This array is indexed by vCPU ID.
An I/O client, which is 'struct acrn_ioreq_client', is responsible for
handling User VM I/O requests whose accessed GPA falls in a certain
range. Multiple I/O clients can be associated with each User VM. There
is a special client associated with each User VM, called the default
client, that handles all I/O requests that do not fit into the range of
any other I/O clients. The ACRN userspace acts as the default client for
each User VM.
The state transitions of a ACRN I/O request are as follows.
FREE -> PENDING -> PROCESSING -> COMPLETE -> FREE -> ...
FREE: this I/O request slot is empty
PENDING: a valid I/O request is pending in this slot
PROCESSING: the I/O request is being processed
COMPLETE: the I/O request has been processed
An I/O request in COMPLETE or FREE state is owned by the hypervisor. HSM
and ACRN userspace are in charge of processing the others.
The processing flow of I/O requests are listed as following:
a) The I/O handler of the hypervisor will fill an I/O request with
PENDING state when a trapped I/O access happens in a User VM.
b) The hypervisor makes an upcall, which is a notification interrupt, to
the Service VM.
c) The upcall handler schedules a worker to dispatch I/O requests.
d) The worker looks for the PENDING I/O requests, assigns them to
different registered clients based on the address of the I/O accesses,
updates their state to PROCESSING, and notifies the corresponding
client to handle.
e) The notified client handles the assigned I/O requests.
f) The HSM updates I/O requests states to COMPLETE and notifies the
hypervisor of the completion via hypercalls.
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Zhi Wang <zhi.a.wang@intel.com>
Cc: Zhenyu Wang <zhenyuw@linux.intel.com>
Cc: Yu Wang <yu1.wang@intel.com>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Zhi Wang <zhi.a.wang@intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Shuo Liu <shuo.a.liu@intel.com>
Link: https://lore.kernel.org/r/20210207031040.49576-10-shuo.a.liu@intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-07 11:10:31 +08:00
|
|
|
INIT_LIST_HEAD(&vm->ioreq_clients);
|
|
|
|
spin_lock_init(&vm->ioreq_clients_lock);
|
2021-02-07 11:10:28 +08:00
|
|
|
vm->vmid = vm_param->vmid;
|
|
|
|
vm->vcpu_num = vm_param->vcpu_num;
|
|
|
|
|
virt: acrn: Introduce I/O request management
An I/O request of a User VM, which is constructed by the hypervisor, is
distributed by the ACRN Hypervisor Service Module to an I/O client
corresponding to the address range of the I/O request.
For each User VM, there is a shared 4-KByte memory region used for I/O
requests communication between the hypervisor and Service VM. An I/O
request is a 256-byte structure buffer, which is 'struct
acrn_io_request', that is filled by an I/O handler of the hypervisor
when a trapped I/O access happens in a User VM. ACRN userspace in the
Service VM first allocates a 4-KByte page and passes the GPA (Guest
Physical Address) of the buffer to the hypervisor. The buffer is used as
an array of 16 I/O request slots with each I/O request slot being 256
bytes. This array is indexed by vCPU ID.
An I/O client, which is 'struct acrn_ioreq_client', is responsible for
handling User VM I/O requests whose accessed GPA falls in a certain
range. Multiple I/O clients can be associated with each User VM. There
is a special client associated with each User VM, called the default
client, that handles all I/O requests that do not fit into the range of
any other I/O clients. The ACRN userspace acts as the default client for
each User VM.
The state transitions of a ACRN I/O request are as follows.
FREE -> PENDING -> PROCESSING -> COMPLETE -> FREE -> ...
FREE: this I/O request slot is empty
PENDING: a valid I/O request is pending in this slot
PROCESSING: the I/O request is being processed
COMPLETE: the I/O request has been processed
An I/O request in COMPLETE or FREE state is owned by the hypervisor. HSM
and ACRN userspace are in charge of processing the others.
The processing flow of I/O requests are listed as following:
a) The I/O handler of the hypervisor will fill an I/O request with
PENDING state when a trapped I/O access happens in a User VM.
b) The hypervisor makes an upcall, which is a notification interrupt, to
the Service VM.
c) The upcall handler schedules a worker to dispatch I/O requests.
d) The worker looks for the PENDING I/O requests, assigns them to
different registered clients based on the address of the I/O accesses,
updates their state to PROCESSING, and notifies the corresponding
client to handle.
e) The notified client handles the assigned I/O requests.
f) The HSM updates I/O requests states to COMPLETE and notifies the
hypervisor of the completion via hypercalls.
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Zhi Wang <zhi.a.wang@intel.com>
Cc: Zhenyu Wang <zhenyuw@linux.intel.com>
Cc: Yu Wang <yu1.wang@intel.com>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Zhi Wang <zhi.a.wang@intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Shuo Liu <shuo.a.liu@intel.com>
Link: https://lore.kernel.org/r/20210207031040.49576-10-shuo.a.liu@intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-07 11:10:31 +08:00
|
|
|
if (acrn_ioreq_init(vm, vm_param->ioreq_buf) < 0) {
|
|
|
|
hcall_destroy_vm(vm_param->vmid);
|
|
|
|
vm->vmid = ACRN_INVALID_VMID;
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
write_lock_bh(&acrn_vm_list_lock);
|
2021-02-07 11:10:28 +08:00
|
|
|
list_add(&vm->list, &acrn_vm_list);
|
virt: acrn: Introduce I/O request management
An I/O request of a User VM, which is constructed by the hypervisor, is
distributed by the ACRN Hypervisor Service Module to an I/O client
corresponding to the address range of the I/O request.
For each User VM, there is a shared 4-KByte memory region used for I/O
requests communication between the hypervisor and Service VM. An I/O
request is a 256-byte structure buffer, which is 'struct
acrn_io_request', that is filled by an I/O handler of the hypervisor
when a trapped I/O access happens in a User VM. ACRN userspace in the
Service VM first allocates a 4-KByte page and passes the GPA (Guest
Physical Address) of the buffer to the hypervisor. The buffer is used as
an array of 16 I/O request slots with each I/O request slot being 256
bytes. This array is indexed by vCPU ID.
An I/O client, which is 'struct acrn_ioreq_client', is responsible for
handling User VM I/O requests whose accessed GPA falls in a certain
range. Multiple I/O clients can be associated with each User VM. There
is a special client associated with each User VM, called the default
client, that handles all I/O requests that do not fit into the range of
any other I/O clients. The ACRN userspace acts as the default client for
each User VM.
The state transitions of a ACRN I/O request are as follows.
FREE -> PENDING -> PROCESSING -> COMPLETE -> FREE -> ...
FREE: this I/O request slot is empty
PENDING: a valid I/O request is pending in this slot
PROCESSING: the I/O request is being processed
COMPLETE: the I/O request has been processed
An I/O request in COMPLETE or FREE state is owned by the hypervisor. HSM
and ACRN userspace are in charge of processing the others.
The processing flow of I/O requests are listed as following:
a) The I/O handler of the hypervisor will fill an I/O request with
PENDING state when a trapped I/O access happens in a User VM.
b) The hypervisor makes an upcall, which is a notification interrupt, to
the Service VM.
c) The upcall handler schedules a worker to dispatch I/O requests.
d) The worker looks for the PENDING I/O requests, assigns them to
different registered clients based on the address of the I/O accesses,
updates their state to PROCESSING, and notifies the corresponding
client to handle.
e) The notified client handles the assigned I/O requests.
f) The HSM updates I/O requests states to COMPLETE and notifies the
hypervisor of the completion via hypercalls.
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Zhi Wang <zhi.a.wang@intel.com>
Cc: Zhenyu Wang <zhenyuw@linux.intel.com>
Cc: Yu Wang <yu1.wang@intel.com>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Zhi Wang <zhi.a.wang@intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Shuo Liu <shuo.a.liu@intel.com>
Link: https://lore.kernel.org/r/20210207031040.49576-10-shuo.a.liu@intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-07 11:10:31 +08:00
|
|
|
write_unlock_bh(&acrn_vm_list_lock);
|
2021-02-07 11:10:28 +08:00
|
|
|
|
|
|
|
dev_dbg(acrn_dev.this_device, "VM %u created.\n", vm->vmid);
|
|
|
|
return vm;
|
|
|
|
}
|
|
|
|
|
|
|
|
int acrn_vm_destroy(struct acrn_vm *vm)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (vm->vmid == ACRN_INVALID_VMID ||
|
|
|
|
test_and_set_bit(ACRN_VM_FLAG_DESTROYED, &vm->flags))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* Remove from global VM list */
|
virt: acrn: Introduce I/O request management
An I/O request of a User VM, which is constructed by the hypervisor, is
distributed by the ACRN Hypervisor Service Module to an I/O client
corresponding to the address range of the I/O request.
For each User VM, there is a shared 4-KByte memory region used for I/O
requests communication between the hypervisor and Service VM. An I/O
request is a 256-byte structure buffer, which is 'struct
acrn_io_request', that is filled by an I/O handler of the hypervisor
when a trapped I/O access happens in a User VM. ACRN userspace in the
Service VM first allocates a 4-KByte page and passes the GPA (Guest
Physical Address) of the buffer to the hypervisor. The buffer is used as
an array of 16 I/O request slots with each I/O request slot being 256
bytes. This array is indexed by vCPU ID.
An I/O client, which is 'struct acrn_ioreq_client', is responsible for
handling User VM I/O requests whose accessed GPA falls in a certain
range. Multiple I/O clients can be associated with each User VM. There
is a special client associated with each User VM, called the default
client, that handles all I/O requests that do not fit into the range of
any other I/O clients. The ACRN userspace acts as the default client for
each User VM.
The state transitions of a ACRN I/O request are as follows.
FREE -> PENDING -> PROCESSING -> COMPLETE -> FREE -> ...
FREE: this I/O request slot is empty
PENDING: a valid I/O request is pending in this slot
PROCESSING: the I/O request is being processed
COMPLETE: the I/O request has been processed
An I/O request in COMPLETE or FREE state is owned by the hypervisor. HSM
and ACRN userspace are in charge of processing the others.
The processing flow of I/O requests are listed as following:
a) The I/O handler of the hypervisor will fill an I/O request with
PENDING state when a trapped I/O access happens in a User VM.
b) The hypervisor makes an upcall, which is a notification interrupt, to
the Service VM.
c) The upcall handler schedules a worker to dispatch I/O requests.
d) The worker looks for the PENDING I/O requests, assigns them to
different registered clients based on the address of the I/O accesses,
updates their state to PROCESSING, and notifies the corresponding
client to handle.
e) The notified client handles the assigned I/O requests.
f) The HSM updates I/O requests states to COMPLETE and notifies the
hypervisor of the completion via hypercalls.
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Zhi Wang <zhi.a.wang@intel.com>
Cc: Zhenyu Wang <zhenyuw@linux.intel.com>
Cc: Yu Wang <yu1.wang@intel.com>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Zhi Wang <zhi.a.wang@intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Shuo Liu <shuo.a.liu@intel.com>
Link: https://lore.kernel.org/r/20210207031040.49576-10-shuo.a.liu@intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-07 11:10:31 +08:00
|
|
|
write_lock_bh(&acrn_vm_list_lock);
|
2021-02-07 11:10:28 +08:00
|
|
|
list_del_init(&vm->list);
|
virt: acrn: Introduce I/O request management
An I/O request of a User VM, which is constructed by the hypervisor, is
distributed by the ACRN Hypervisor Service Module to an I/O client
corresponding to the address range of the I/O request.
For each User VM, there is a shared 4-KByte memory region used for I/O
requests communication between the hypervisor and Service VM. An I/O
request is a 256-byte structure buffer, which is 'struct
acrn_io_request', that is filled by an I/O handler of the hypervisor
when a trapped I/O access happens in a User VM. ACRN userspace in the
Service VM first allocates a 4-KByte page and passes the GPA (Guest
Physical Address) of the buffer to the hypervisor. The buffer is used as
an array of 16 I/O request slots with each I/O request slot being 256
bytes. This array is indexed by vCPU ID.
An I/O client, which is 'struct acrn_ioreq_client', is responsible for
handling User VM I/O requests whose accessed GPA falls in a certain
range. Multiple I/O clients can be associated with each User VM. There
is a special client associated with each User VM, called the default
client, that handles all I/O requests that do not fit into the range of
any other I/O clients. The ACRN userspace acts as the default client for
each User VM.
The state transitions of a ACRN I/O request are as follows.
FREE -> PENDING -> PROCESSING -> COMPLETE -> FREE -> ...
FREE: this I/O request slot is empty
PENDING: a valid I/O request is pending in this slot
PROCESSING: the I/O request is being processed
COMPLETE: the I/O request has been processed
An I/O request in COMPLETE or FREE state is owned by the hypervisor. HSM
and ACRN userspace are in charge of processing the others.
The processing flow of I/O requests are listed as following:
a) The I/O handler of the hypervisor will fill an I/O request with
PENDING state when a trapped I/O access happens in a User VM.
b) The hypervisor makes an upcall, which is a notification interrupt, to
the Service VM.
c) The upcall handler schedules a worker to dispatch I/O requests.
d) The worker looks for the PENDING I/O requests, assigns them to
different registered clients based on the address of the I/O accesses,
updates their state to PROCESSING, and notifies the corresponding
client to handle.
e) The notified client handles the assigned I/O requests.
f) The HSM updates I/O requests states to COMPLETE and notifies the
hypervisor of the completion via hypercalls.
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Zhi Wang <zhi.a.wang@intel.com>
Cc: Zhenyu Wang <zhenyuw@linux.intel.com>
Cc: Yu Wang <yu1.wang@intel.com>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Zhi Wang <zhi.a.wang@intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Shuo Liu <shuo.a.liu@intel.com>
Link: https://lore.kernel.org/r/20210207031040.49576-10-shuo.a.liu@intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-07 11:10:31 +08:00
|
|
|
write_unlock_bh(&acrn_vm_list_lock);
|
|
|
|
|
|
|
|
acrn_ioreq_deinit(vm);
|
2021-02-07 11:10:34 +08:00
|
|
|
if (vm->monitor_page) {
|
|
|
|
put_page(vm->monitor_page);
|
|
|
|
vm->monitor_page = NULL;
|
|
|
|
}
|
2021-02-07 11:10:28 +08:00
|
|
|
|
|
|
|
ret = hcall_destroy_vm(vm->vmid);
|
|
|
|
if (ret < 0) {
|
|
|
|
dev_err(acrn_dev.this_device,
|
|
|
|
"Failed to destroy VM %u\n", vm->vmid);
|
|
|
|
clear_bit(ACRN_VM_FLAG_DESTROYED, &vm->flags);
|
|
|
|
return ret;
|
|
|
|
}
|
2021-02-07 11:10:30 +08:00
|
|
|
|
|
|
|
acrn_vm_all_ram_unmap(vm);
|
|
|
|
|
2021-02-07 11:10:28 +08:00
|
|
|
dev_dbg(acrn_dev.this_device, "VM %u destroyed.\n", vm->vmid);
|
|
|
|
vm->vmid = ACRN_INVALID_VMID;
|
|
|
|
return 0;
|
|
|
|
}
|
2021-02-07 11:10:34 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* acrn_inject_msi() - Inject a MSI interrupt into a User VM
|
|
|
|
* @vm: User VM
|
|
|
|
* @msi_addr: The MSI address
|
|
|
|
* @msi_data: The MSI data
|
|
|
|
*
|
|
|
|
* Return: 0 on success, <0 on error
|
|
|
|
*/
|
|
|
|
int acrn_msi_inject(struct acrn_vm *vm, u64 msi_addr, u64 msi_data)
|
|
|
|
{
|
|
|
|
struct acrn_msi_entry *msi;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* might be used in interrupt context, so use GFP_ATOMIC */
|
|
|
|
msi = kzalloc(sizeof(*msi), GFP_ATOMIC);
|
|
|
|
if (!msi)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* msi_addr: addr[19:12] with dest vcpu id
|
|
|
|
* msi_data: data[7:0] with vector
|
|
|
|
*/
|
|
|
|
msi->msi_addr = msi_addr;
|
|
|
|
msi->msi_data = msi_data;
|
|
|
|
ret = hcall_inject_msi(vm->vmid, virt_to_phys(msi));
|
|
|
|
if (ret < 0)
|
|
|
|
dev_err(acrn_dev.this_device,
|
|
|
|
"Failed to inject MSI to VM %u!\n", vm->vmid);
|
|
|
|
kfree(msi);
|
|
|
|
return ret;
|
|
|
|
}
|