linux/arch/arm/boot/dts/imx6sx-sdb.dtsi

563 lines
14 KiB
Plaintext
Raw Normal View History

/*
* Copyright (C) 2014 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/dts-v1/;
#include <dt-bindings/gpio/gpio.h>
#include <dt-bindings/input/input.h>
#include "imx6sx.dtsi"
/ {
model = "Freescale i.MX6 SoloX SDB Board";
compatible = "fsl,imx6sx-sdb", "fsl,imx6sx";
chosen {
stdout-path = &uart1;
};
memory {
reg = <0x80000000 0x40000000>;
};
backlight {
compatible = "pwm-backlight";
pwms = <&pwm3 0 5000000>;
brightness-levels = <0 4 8 16 32 64 128 255>;
default-brightness-level = <6>;
};
gpio-keys {
compatible = "gpio-keys";
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_gpio_keys>;
volume-up {
label = "Volume Up";
gpios = <&gpio1 18 GPIO_ACTIVE_LOW>;
linux,code = <KEY_VOLUMEUP>;
};
volume-down {
label = "Volume Down";
gpios = <&gpio1 19 GPIO_ACTIVE_LOW>;
linux,code = <KEY_VOLUMEDOWN>;
};
};
regulators {
compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <0>;
vcc_sd3: regulator@0 {
compatible = "regulator-fixed";
reg = <0>;
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_vcc_sd3>;
regulator-name = "VCC_SD3";
regulator-min-microvolt = <3000000>;
regulator-max-microvolt = <3000000>;
gpio = <&gpio2 11 GPIO_ACTIVE_HIGH>;
enable-active-high;
};
reg_usb_otg1_vbus: regulator@1 {
compatible = "regulator-fixed";
reg = <1>;
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_usb_otg1>;
regulator-name = "usb_otg1_vbus";
regulator-min-microvolt = <5000000>;
regulator-max-microvolt = <5000000>;
gpio = <&gpio1 9 GPIO_ACTIVE_HIGH>;
enable-active-high;
};
reg_usb_otg2_vbus: regulator@2 {
compatible = "regulator-fixed";
reg = <2>;
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_usb_otg2>;
regulator-name = "usb_otg2_vbus";
regulator-min-microvolt = <5000000>;
regulator-max-microvolt = <5000000>;
gpio = <&gpio1 12 GPIO_ACTIVE_HIGH>;
enable-active-high;
};
reg_psu_5v: regulator@3 {
compatible = "regulator-fixed";
reg = <3>;
regulator-name = "PSU-5V0";
regulator-min-microvolt = <5000000>;
regulator-max-microvolt = <5000000>;
};
reg_lcd_3v3: regulator@4 {
compatible = "regulator-fixed";
reg = <4>;
regulator-name = "lcd-3v3";
gpio = <&gpio3 27 0>;
enable-active-high;
};
reg_peri_3v3: regulator@5 {
compatible = "regulator-fixed";
reg = <5>;
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_peri_3v3>;
regulator-name = "peri_3v3";
regulator-min-microvolt = <3300000>;
regulator-max-microvolt = <3300000>;
gpio = <&gpio4 16 GPIO_ACTIVE_HIGH>;
enable-active-high;
regulator-always-on;
};
reg_enet_3v3: regulator@6 {
compatible = "regulator-fixed";
reg = <6>;
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_enet_3v3>;
regulator-name = "enet_3v3";
regulator-min-microvolt = <3300000>;
regulator-max-microvolt = <3300000>;
gpios = <&gpio2 6 GPIO_ACTIVE_LOW>;
};
};
sound {
compatible = "fsl,imx6sx-sdb-wm8962", "fsl,imx-audio-wm8962";
model = "wm8962-audio";
ssi-controller = <&ssi2>;
audio-codec = <&codec>;
audio-routing =
"Headphone Jack", "HPOUTL",
"Headphone Jack", "HPOUTR",
"Ext Spk", "SPKOUTL",
"Ext Spk", "SPKOUTR",
"AMIC", "MICBIAS",
"IN3R", "AMIC";
mux-int-port = <2>;
mux-ext-port = <6>;
};
};
&audmux {
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_audmux>;
status = "okay";
};
&fec1 {
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_enet1>;
phy-supply = <&reg_enet_3v3>;
phy-mode = "rgmii";
net: fec: fix MDIO bus assignement for dual fec SoC's On i.MX28, the MDIO bus is shared between the two FEC instances. The driver makes sure that the second FEC uses the MDIO bus of the first FEC. This is done conditionally if FEC_QUIRK_ENET_MAC is set. However, in newer designs, such as Vybrid or i.MX6SX, each FEC MAC has its own MDIO bus. Simply removing the quirk FEC_QUIRK_ENET_MAC is not an option since other logic, triggered by this quirk, is still needed. Furthermore, there are board designs which use the same MDIO bus for both PHY's even though the second bus would be available on the SoC side. Such layout are popular since it saves pins on SoC side. Due to the above quirk, those boards currently do work fine. The boards in the mainline tree with such a layout are: - Freescale Vybrid Tower with TWR-SER2 (vf610-twr.dts) - Freescale i.MX6 SoloX SDB Board (imx6sx-sdb.dts) This patch adds a new quirk FEC_QUIRK_SINGLE_MDIO for i.MX28, which makes sure that the MDIO bus of the first FEC is used in any case. However, the boards above do have a SoC with a MDIO bus for each FEC instance. But the PHY's are not connected in a 1:1 configuration. A proper device tree description is needed to allow the driver to figure out where to find its PHY. This patch fixes that shortcoming by adding a MDIO bus child node to the first FEC instance, along with the two PHY's on that bus, and making use of the phy-handle property to add a reference to the PHY's. Acked-by: Sascha Hauer <s.hauer@pengutronix.de> Signed-off-by: Stefan Agner <stefan@agner.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-14 07:20:21 +08:00
phy-handle = <&ethphy1>;
status = "okay";
net: fec: fix MDIO bus assignement for dual fec SoC's On i.MX28, the MDIO bus is shared between the two FEC instances. The driver makes sure that the second FEC uses the MDIO bus of the first FEC. This is done conditionally if FEC_QUIRK_ENET_MAC is set. However, in newer designs, such as Vybrid or i.MX6SX, each FEC MAC has its own MDIO bus. Simply removing the quirk FEC_QUIRK_ENET_MAC is not an option since other logic, triggered by this quirk, is still needed. Furthermore, there are board designs which use the same MDIO bus for both PHY's even though the second bus would be available on the SoC side. Such layout are popular since it saves pins on SoC side. Due to the above quirk, those boards currently do work fine. The boards in the mainline tree with such a layout are: - Freescale Vybrid Tower with TWR-SER2 (vf610-twr.dts) - Freescale i.MX6 SoloX SDB Board (imx6sx-sdb.dts) This patch adds a new quirk FEC_QUIRK_SINGLE_MDIO for i.MX28, which makes sure that the MDIO bus of the first FEC is used in any case. However, the boards above do have a SoC with a MDIO bus for each FEC instance. But the PHY's are not connected in a 1:1 configuration. A proper device tree description is needed to allow the driver to figure out where to find its PHY. This patch fixes that shortcoming by adding a MDIO bus child node to the first FEC instance, along with the two PHY's on that bus, and making use of the phy-handle property to add a reference to the PHY's. Acked-by: Sascha Hauer <s.hauer@pengutronix.de> Signed-off-by: Stefan Agner <stefan@agner.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-14 07:20:21 +08:00
mdio {
#address-cells = <1>;
#size-cells = <0>;
ethphy1: ethernet-phy@1 {
reg = <1>;
net: fec: fix MDIO bus assignement for dual fec SoC's On i.MX28, the MDIO bus is shared between the two FEC instances. The driver makes sure that the second FEC uses the MDIO bus of the first FEC. This is done conditionally if FEC_QUIRK_ENET_MAC is set. However, in newer designs, such as Vybrid or i.MX6SX, each FEC MAC has its own MDIO bus. Simply removing the quirk FEC_QUIRK_ENET_MAC is not an option since other logic, triggered by this quirk, is still needed. Furthermore, there are board designs which use the same MDIO bus for both PHY's even though the second bus would be available on the SoC side. Such layout are popular since it saves pins on SoC side. Due to the above quirk, those boards currently do work fine. The boards in the mainline tree with such a layout are: - Freescale Vybrid Tower with TWR-SER2 (vf610-twr.dts) - Freescale i.MX6 SoloX SDB Board (imx6sx-sdb.dts) This patch adds a new quirk FEC_QUIRK_SINGLE_MDIO for i.MX28, which makes sure that the MDIO bus of the first FEC is used in any case. However, the boards above do have a SoC with a MDIO bus for each FEC instance. But the PHY's are not connected in a 1:1 configuration. A proper device tree description is needed to allow the driver to figure out where to find its PHY. This patch fixes that shortcoming by adding a MDIO bus child node to the first FEC instance, along with the two PHY's on that bus, and making use of the phy-handle property to add a reference to the PHY's. Acked-by: Sascha Hauer <s.hauer@pengutronix.de> Signed-off-by: Stefan Agner <stefan@agner.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-14 07:20:21 +08:00
};
ethphy2: ethernet-phy@2 {
reg = <2>;
net: fec: fix MDIO bus assignement for dual fec SoC's On i.MX28, the MDIO bus is shared between the two FEC instances. The driver makes sure that the second FEC uses the MDIO bus of the first FEC. This is done conditionally if FEC_QUIRK_ENET_MAC is set. However, in newer designs, such as Vybrid or i.MX6SX, each FEC MAC has its own MDIO bus. Simply removing the quirk FEC_QUIRK_ENET_MAC is not an option since other logic, triggered by this quirk, is still needed. Furthermore, there are board designs which use the same MDIO bus for both PHY's even though the second bus would be available on the SoC side. Such layout are popular since it saves pins on SoC side. Due to the above quirk, those boards currently do work fine. The boards in the mainline tree with such a layout are: - Freescale Vybrid Tower with TWR-SER2 (vf610-twr.dts) - Freescale i.MX6 SoloX SDB Board (imx6sx-sdb.dts) This patch adds a new quirk FEC_QUIRK_SINGLE_MDIO for i.MX28, which makes sure that the MDIO bus of the first FEC is used in any case. However, the boards above do have a SoC with a MDIO bus for each FEC instance. But the PHY's are not connected in a 1:1 configuration. A proper device tree description is needed to allow the driver to figure out where to find its PHY. This patch fixes that shortcoming by adding a MDIO bus child node to the first FEC instance, along with the two PHY's on that bus, and making use of the phy-handle property to add a reference to the PHY's. Acked-by: Sascha Hauer <s.hauer@pengutronix.de> Signed-off-by: Stefan Agner <stefan@agner.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-14 07:20:21 +08:00
};
};
};
&fec2 {
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_enet2>;
phy-mode = "rgmii";
net: fec: fix MDIO bus assignement for dual fec SoC's On i.MX28, the MDIO bus is shared between the two FEC instances. The driver makes sure that the second FEC uses the MDIO bus of the first FEC. This is done conditionally if FEC_QUIRK_ENET_MAC is set. However, in newer designs, such as Vybrid or i.MX6SX, each FEC MAC has its own MDIO bus. Simply removing the quirk FEC_QUIRK_ENET_MAC is not an option since other logic, triggered by this quirk, is still needed. Furthermore, there are board designs which use the same MDIO bus for both PHY's even though the second bus would be available on the SoC side. Such layout are popular since it saves pins on SoC side. Due to the above quirk, those boards currently do work fine. The boards in the mainline tree with such a layout are: - Freescale Vybrid Tower with TWR-SER2 (vf610-twr.dts) - Freescale i.MX6 SoloX SDB Board (imx6sx-sdb.dts) This patch adds a new quirk FEC_QUIRK_SINGLE_MDIO for i.MX28, which makes sure that the MDIO bus of the first FEC is used in any case. However, the boards above do have a SoC with a MDIO bus for each FEC instance. But the PHY's are not connected in a 1:1 configuration. A proper device tree description is needed to allow the driver to figure out where to find its PHY. This patch fixes that shortcoming by adding a MDIO bus child node to the first FEC instance, along with the two PHY's on that bus, and making use of the phy-handle property to add a reference to the PHY's. Acked-by: Sascha Hauer <s.hauer@pengutronix.de> Signed-off-by: Stefan Agner <stefan@agner.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-14 07:20:21 +08:00
phy-handle = <&ethphy2>;
status = "okay";
};
&i2c4 {
clock-frequency = <100000>;
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_i2c4>;
status = "okay";
codec: wm8962@1a {
compatible = "wlf,wm8962";
reg = <0x1a>;
clocks = <&clks IMX6SX_CLK_AUDIO>;
DCVDD-supply = <&vgen4_reg>;
DBVDD-supply = <&vgen4_reg>;
AVDD-supply = <&vgen4_reg>;
CPVDD-supply = <&vgen4_reg>;
MICVDD-supply = <&vgen3_reg>;
PLLVDD-supply = <&vgen4_reg>;
SPKVDD1-supply = <&reg_psu_5v>;
SPKVDD2-supply = <&reg_psu_5v>;
};
};
&lcdif1 {
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_lcd>;
lcd-supply = <&reg_lcd_3v3>;
display = <&display0>;
status = "okay";
display0: display0 {
bits-per-pixel = <16>;
bus-width = <24>;
display-timings {
native-mode = <&timing0>;
timing0: timing0 {
clock-frequency = <33500000>;
hactive = <800>;
vactive = <480>;
hback-porch = <89>;
hfront-porch = <164>;
vback-porch = <23>;
vfront-porch = <10>;
hsync-len = <10>;
vsync-len = <10>;
hsync-active = <0>;
vsync-active = <0>;
de-active = <1>;
pixelclk-active = <0>;
};
};
};
};
&pwm3 {
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_pwm3>;
status = "okay";
};
&snvs_poweroff {
status = "okay";
};
&ssi2 {
status = "okay";
};
&uart1 {
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_uart1>;
status = "okay";
};
&uart5 { /* for bluetooth */
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_uart5>;
fsl,uart-has-rtscts;
status = "okay";
};
&usbotg1 {
vbus-supply = <&reg_usb_otg1_vbus>;
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_usb_otg1_id>;
status = "okay";
};
&usbotg2 {
vbus-supply = <&reg_usb_otg2_vbus>;
dr_mode = "host";
status = "okay";
};
&usdhc2 {
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_usdhc2>;
non-removable;
no-1-8-v;
keep-power-in-suspend;
enable-sdio-wakeup;
status = "okay";
};
&usdhc3 {
pinctrl-names = "default", "state_100mhz", "state_200mhz";
pinctrl-0 = <&pinctrl_usdhc3>;
pinctrl-1 = <&pinctrl_usdhc3_100mhz>;
pinctrl-2 = <&pinctrl_usdhc3_200mhz>;
bus-width = <8>;
cd-gpios = <&gpio2 10 GPIO_ACTIVE_LOW>;
wp-gpios = <&gpio2 15 GPIO_ACTIVE_HIGH>;
keep-power-in-suspend;
enable-sdio-wakeup;
vmmc-supply = <&vcc_sd3>;
status = "okay";
};
&usdhc4 {
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_usdhc4>;
cd-gpios = <&gpio6 21 GPIO_ACTIVE_LOW>;
wp-gpios = <&gpio6 20 GPIO_ACTIVE_HIGH>;
status = "okay";
};
&iomuxc {
imx6x-sdb {
pinctrl_audmux: audmuxgrp {
fsl,pins = <
MX6SX_PAD_CSI_DATA00__AUDMUX_AUD6_TXC 0x130b0
MX6SX_PAD_CSI_DATA01__AUDMUX_AUD6_TXFS 0x130b0
MX6SX_PAD_CSI_HSYNC__AUDMUX_AUD6_TXD 0x120b0
MX6SX_PAD_CSI_VSYNC__AUDMUX_AUD6_RXD 0x130b0
MX6SX_PAD_CSI_PIXCLK__AUDMUX_MCLK 0x130b0
>;
};
pinctrl_enet1: enet1grp {
fsl,pins = <
MX6SX_PAD_ENET1_MDIO__ENET1_MDIO 0xa0b1
MX6SX_PAD_ENET1_MDC__ENET1_MDC 0xa0b1
MX6SX_PAD_RGMII1_TXC__ENET1_RGMII_TXC 0xa0b1
MX6SX_PAD_RGMII1_TD0__ENET1_TX_DATA_0 0xa0b1
MX6SX_PAD_RGMII1_TD1__ENET1_TX_DATA_1 0xa0b1
MX6SX_PAD_RGMII1_TD2__ENET1_TX_DATA_2 0xa0b1
MX6SX_PAD_RGMII1_TD3__ENET1_TX_DATA_3 0xa0b1
MX6SX_PAD_RGMII1_TX_CTL__ENET1_TX_EN 0xa0b1
MX6SX_PAD_RGMII1_RXC__ENET1_RX_CLK 0x3081
MX6SX_PAD_RGMII1_RD0__ENET1_RX_DATA_0 0x3081
MX6SX_PAD_RGMII1_RD1__ENET1_RX_DATA_1 0x3081
MX6SX_PAD_RGMII1_RD2__ENET1_RX_DATA_2 0x3081
MX6SX_PAD_RGMII1_RD3__ENET1_RX_DATA_3 0x3081
MX6SX_PAD_RGMII1_RX_CTL__ENET1_RX_EN 0x3081
MX6SX_PAD_ENET2_RX_CLK__ENET2_REF_CLK_25M 0x91
>;
};
pinctrl_enet_3v3: enet3v3grp {
fsl,pins = <
MX6SX_PAD_ENET2_COL__GPIO2_IO_6 0x80000000
>;
};
pinctrl_enet2: enet2grp {
fsl,pins = <
MX6SX_PAD_RGMII2_TXC__ENET2_RGMII_TXC 0xa0b9
MX6SX_PAD_RGMII2_TD0__ENET2_TX_DATA_0 0xa0b1
MX6SX_PAD_RGMII2_TD1__ENET2_TX_DATA_1 0xa0b1
MX6SX_PAD_RGMII2_TD2__ENET2_TX_DATA_2 0xa0b1
MX6SX_PAD_RGMII2_TD3__ENET2_TX_DATA_3 0xa0b1
MX6SX_PAD_RGMII2_TX_CTL__ENET2_TX_EN 0xa0b1
MX6SX_PAD_RGMII2_RXC__ENET2_RX_CLK 0x3081
MX6SX_PAD_RGMII2_RD0__ENET2_RX_DATA_0 0x3081
MX6SX_PAD_RGMII2_RD1__ENET2_RX_DATA_1 0x3081
MX6SX_PAD_RGMII2_RD2__ENET2_RX_DATA_2 0x3081
MX6SX_PAD_RGMII2_RD3__ENET2_RX_DATA_3 0x3081
MX6SX_PAD_RGMII2_RX_CTL__ENET2_RX_EN 0x3081
>;
};
pinctrl_gpio_keys: gpio_keysgrp {
fsl,pins = <
MX6SX_PAD_CSI_DATA04__GPIO1_IO_18 0x17059
MX6SX_PAD_CSI_DATA05__GPIO1_IO_19 0x17059
>;
};
pinctrl_i2c1: i2c1grp {
fsl,pins = <
MX6SX_PAD_GPIO1_IO01__I2C1_SDA 0x4001b8b1
MX6SX_PAD_GPIO1_IO00__I2C1_SCL 0x4001b8b1
>;
};
pinctrl_i2c4: i2c4grp {
fsl,pins = <
MX6SX_PAD_CSI_DATA07__I2C4_SDA 0x4001b8b1
MX6SX_PAD_CSI_DATA06__I2C4_SCL 0x4001b8b1
>;
};
pinctrl_lcd: lcdgrp {
fsl,pins = <
MX6SX_PAD_LCD1_DATA00__LCDIF1_DATA_0 0x4001b0b0
MX6SX_PAD_LCD1_DATA01__LCDIF1_DATA_1 0x4001b0b0
MX6SX_PAD_LCD1_DATA02__LCDIF1_DATA_2 0x4001b0b0
MX6SX_PAD_LCD1_DATA03__LCDIF1_DATA_3 0x4001b0b0
MX6SX_PAD_LCD1_DATA04__LCDIF1_DATA_4 0x4001b0b0
MX6SX_PAD_LCD1_DATA05__LCDIF1_DATA_5 0x4001b0b0
MX6SX_PAD_LCD1_DATA06__LCDIF1_DATA_6 0x4001b0b0
MX6SX_PAD_LCD1_DATA07__LCDIF1_DATA_7 0x4001b0b0
MX6SX_PAD_LCD1_DATA08__LCDIF1_DATA_8 0x4001b0b0
MX6SX_PAD_LCD1_DATA09__LCDIF1_DATA_9 0x4001b0b0
MX6SX_PAD_LCD1_DATA10__LCDIF1_DATA_10 0x4001b0b0
MX6SX_PAD_LCD1_DATA11__LCDIF1_DATA_11 0x4001b0b0
MX6SX_PAD_LCD1_DATA12__LCDIF1_DATA_12 0x4001b0b0
MX6SX_PAD_LCD1_DATA13__LCDIF1_DATA_13 0x4001b0b0
MX6SX_PAD_LCD1_DATA14__LCDIF1_DATA_14 0x4001b0b0
MX6SX_PAD_LCD1_DATA15__LCDIF1_DATA_15 0x4001b0b0
MX6SX_PAD_LCD1_DATA16__LCDIF1_DATA_16 0x4001b0b0
MX6SX_PAD_LCD1_DATA17__LCDIF1_DATA_17 0x4001b0b0
MX6SX_PAD_LCD1_DATA18__LCDIF1_DATA_18 0x4001b0b0
MX6SX_PAD_LCD1_DATA19__LCDIF1_DATA_19 0x4001b0b0
MX6SX_PAD_LCD1_DATA20__LCDIF1_DATA_20 0x4001b0b0
MX6SX_PAD_LCD1_DATA21__LCDIF1_DATA_21 0x4001b0b0
MX6SX_PAD_LCD1_DATA22__LCDIF1_DATA_22 0x4001b0b0
MX6SX_PAD_LCD1_DATA23__LCDIF1_DATA_23 0x4001b0b0
MX6SX_PAD_LCD1_CLK__LCDIF1_CLK 0x4001b0b0
MX6SX_PAD_LCD1_ENABLE__LCDIF1_ENABLE 0x4001b0b0
MX6SX_PAD_LCD1_VSYNC__LCDIF1_VSYNC 0x4001b0b0
MX6SX_PAD_LCD1_HSYNC__LCDIF1_HSYNC 0x4001b0b0
MX6SX_PAD_LCD1_RESET__GPIO3_IO_27 0x4001b0b0
>;
};
pinctrl_peri_3v3: peri3v3grp {
fsl,pins = <
MX6SX_PAD_QSPI1A_DATA0__GPIO4_IO_16 0x80000000
>;
};
pinctrl_pwm3: pwm3grp-1 {
fsl,pins = <
MX6SX_PAD_SD1_DATA2__PWM3_OUT 0x110b0
>;
};
pinctrl_qspi2: qspi2grp {
fsl,pins = <
MX6SX_PAD_NAND_WP_B__QSPI2_A_DATA_0 0x70f1
MX6SX_PAD_NAND_READY_B__QSPI2_A_DATA_1 0x70f1
MX6SX_PAD_NAND_CE0_B__QSPI2_A_DATA_2 0x70f1
MX6SX_PAD_NAND_CE1_B__QSPI2_A_DATA_3 0x70f1
MX6SX_PAD_NAND_CLE__QSPI2_A_SCLK 0x70f1
MX6SX_PAD_NAND_ALE__QSPI2_A_SS0_B 0x70f1
MX6SX_PAD_NAND_DATA01__QSPI2_B_DATA_0 0x70f1
MX6SX_PAD_NAND_DATA00__QSPI2_B_DATA_1 0x70f1
MX6SX_PAD_NAND_WE_B__QSPI2_B_DATA_2 0x70f1
MX6SX_PAD_NAND_RE_B__QSPI2_B_DATA_3 0x70f1
MX6SX_PAD_NAND_DATA02__QSPI2_B_SCLK 0x70f1
MX6SX_PAD_NAND_DATA03__QSPI2_B_SS0_B 0x70f1
>;
};
pinctrl_vcc_sd3: vccsd3grp {
fsl,pins = <
MX6SX_PAD_KEY_COL1__GPIO2_IO_11 0x17059
>;
};
pinctrl_uart1: uart1grp {
fsl,pins = <
MX6SX_PAD_GPIO1_IO04__UART1_TX 0x1b0b1
MX6SX_PAD_GPIO1_IO05__UART1_RX 0x1b0b1
>;
};
pinctrl_uart5: uart5grp {
fsl,pins = <
MX6SX_PAD_KEY_ROW3__UART5_RX 0x1b0b1
MX6SX_PAD_KEY_COL3__UART5_TX 0x1b0b1
MX6SX_PAD_KEY_ROW2__UART5_CTS_B 0x1b0b1
MX6SX_PAD_KEY_COL2__UART5_RTS_B 0x1b0b1
>;
};
pinctrl_usb_otg1: usbotg1grp {
fsl,pins = <
MX6SX_PAD_GPIO1_IO09__GPIO1_IO_9 0x10b0
>;
};
pinctrl_usb_otg1_id: usbotg1idgrp {
fsl,pins = <
MX6SX_PAD_GPIO1_IO10__ANATOP_OTG1_ID 0x17059
>;
};
pinctrl_usb_otg2: usbot2ggrp {
fsl,pins = <
MX6SX_PAD_GPIO1_IO12__GPIO1_IO_12 0x10b0
>;
};
pinctrl_usdhc2: usdhc2grp {
fsl,pins = <
MX6SX_PAD_SD2_CMD__USDHC2_CMD 0x17059
MX6SX_PAD_SD2_CLK__USDHC2_CLK 0x10059
MX6SX_PAD_SD2_DATA0__USDHC2_DATA0 0x17059
MX6SX_PAD_SD2_DATA1__USDHC2_DATA1 0x17059
MX6SX_PAD_SD2_DATA2__USDHC2_DATA2 0x17059
MX6SX_PAD_SD2_DATA3__USDHC2_DATA3 0x17059
>;
};
pinctrl_usdhc3: usdhc3grp {
fsl,pins = <
MX6SX_PAD_SD3_CMD__USDHC3_CMD 0x17059
MX6SX_PAD_SD3_CLK__USDHC3_CLK 0x10059
MX6SX_PAD_SD3_DATA0__USDHC3_DATA0 0x17059
MX6SX_PAD_SD3_DATA1__USDHC3_DATA1 0x17059
MX6SX_PAD_SD3_DATA2__USDHC3_DATA2 0x17059
MX6SX_PAD_SD3_DATA3__USDHC3_DATA3 0x17059
MX6SX_PAD_SD3_DATA4__USDHC3_DATA4 0x17059
MX6SX_PAD_SD3_DATA5__USDHC3_DATA5 0x17059
MX6SX_PAD_SD3_DATA6__USDHC3_DATA6 0x17059
MX6SX_PAD_SD3_DATA7__USDHC3_DATA7 0x17059
MX6SX_PAD_KEY_COL0__GPIO2_IO_10 0x17059 /* CD */
MX6SX_PAD_KEY_ROW0__GPIO2_IO_15 0x17059 /* WP */
>;
};
pinctrl_usdhc3_100mhz: usdhc3grp-100mhz {
fsl,pins = <
MX6SX_PAD_SD3_CMD__USDHC3_CMD 0x170b9
MX6SX_PAD_SD3_CLK__USDHC3_CLK 0x100b9
MX6SX_PAD_SD3_DATA0__USDHC3_DATA0 0x170b9
MX6SX_PAD_SD3_DATA1__USDHC3_DATA1 0x170b9
MX6SX_PAD_SD3_DATA2__USDHC3_DATA2 0x170b9
MX6SX_PAD_SD3_DATA3__USDHC3_DATA3 0x170b9
MX6SX_PAD_SD3_DATA4__USDHC3_DATA4 0x170b9
MX6SX_PAD_SD3_DATA5__USDHC3_DATA5 0x170b9
MX6SX_PAD_SD3_DATA6__USDHC3_DATA6 0x170b9
MX6SX_PAD_SD3_DATA7__USDHC3_DATA7 0x170b9
>;
};
pinctrl_usdhc3_200mhz: usdhc3grp-200mhz {
fsl,pins = <
MX6SX_PAD_SD3_CMD__USDHC3_CMD 0x170f9
MX6SX_PAD_SD3_CLK__USDHC3_CLK 0x100f9
MX6SX_PAD_SD3_DATA0__USDHC3_DATA0 0x170f9
MX6SX_PAD_SD3_DATA1__USDHC3_DATA1 0x170f9
MX6SX_PAD_SD3_DATA2__USDHC3_DATA2 0x170f9
MX6SX_PAD_SD3_DATA3__USDHC3_DATA3 0x170f9
MX6SX_PAD_SD3_DATA4__USDHC3_DATA4 0x170f9
MX6SX_PAD_SD3_DATA5__USDHC3_DATA5 0x170f9
MX6SX_PAD_SD3_DATA6__USDHC3_DATA6 0x170f9
MX6SX_PAD_SD3_DATA7__USDHC3_DATA7 0x170f9
>;
};
pinctrl_usdhc4: usdhc4grp {
fsl,pins = <
MX6SX_PAD_SD4_CMD__USDHC4_CMD 0x17059
MX6SX_PAD_SD4_CLK__USDHC4_CLK 0x10059
MX6SX_PAD_SD4_DATA0__USDHC4_DATA0 0x17059
MX6SX_PAD_SD4_DATA1__USDHC4_DATA1 0x17059
MX6SX_PAD_SD4_DATA2__USDHC4_DATA2 0x17059
MX6SX_PAD_SD4_DATA3__USDHC4_DATA3 0x17059
MX6SX_PAD_SD4_DATA7__GPIO6_IO_21 0x17059 /* CD */
MX6SX_PAD_SD4_DATA6__GPIO6_IO_20 0x17059 /* WP */
>;
};
};
};