linux/drivers/iio/industrialio-core.c

1384 lines
35 KiB
C
Raw Normal View History

/* The industrial I/O core
*
* Copyright (c) 2008 Jonathan Cameron
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* Based on elements of hwmon and input subsystems.
*/
#define pr_fmt(fmt) "iio-core: " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/idr.h>
#include <linux/kdev_t.h>
#include <linux/err.h>
#include <linux/device.h>
#include <linux/fs.h>
#include <linux/poll.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/cdev.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/anon_inodes.h>
#include <linux/debugfs.h>
#include <linux/iio/iio.h>
#include "iio_core.h"
#include "iio_core_trigger.h"
#include <linux/iio/sysfs.h>
#include <linux/iio/events.h>
#include <linux/iio/buffer.h>
/* IDA to assign each registered device a unique id */
static DEFINE_IDA(iio_ida);
static dev_t iio_devt;
#define IIO_DEV_MAX 256
struct bus_type iio_bus_type = {
.name = "iio",
};
EXPORT_SYMBOL(iio_bus_type);
static struct dentry *iio_debugfs_dentry;
static const char * const iio_direction[] = {
[0] = "in",
[1] = "out",
};
static const char * const iio_chan_type_name_spec[] = {
[IIO_VOLTAGE] = "voltage",
[IIO_CURRENT] = "current",
[IIO_POWER] = "power",
[IIO_ACCEL] = "accel",
[IIO_ANGL_VEL] = "anglvel",
[IIO_MAGN] = "magn",
[IIO_LIGHT] = "illuminance",
[IIO_INTENSITY] = "intensity",
[IIO_PROXIMITY] = "proximity",
[IIO_TEMP] = "temp",
[IIO_INCLI] = "incli",
[IIO_ROT] = "rot",
[IIO_ANGL] = "angl",
[IIO_TIMESTAMP] = "timestamp",
[IIO_CAPACITANCE] = "capacitance",
[IIO_ALTVOLTAGE] = "altvoltage",
[IIO_CCT] = "cct",
[IIO_PRESSURE] = "pressure",
[IIO_HUMIDITYRELATIVE] = "humidityrelative",
[IIO_ACTIVITY] = "activity",
[IIO_STEPS] = "steps",
[IIO_ENERGY] = "energy",
[IIO_DISTANCE] = "distance",
[IIO_VELOCITY] = "velocity",
[IIO_CONCENTRATION] = "concentration",
[IIO_RESISTANCE] = "resistance",
[IIO_PH] = "ph",
};
static const char * const iio_modifier_names[] = {
[IIO_MOD_X] = "x",
[IIO_MOD_Y] = "y",
[IIO_MOD_Z] = "z",
[IIO_MOD_X_AND_Y] = "x&y",
[IIO_MOD_X_AND_Z] = "x&z",
[IIO_MOD_Y_AND_Z] = "y&z",
[IIO_MOD_X_AND_Y_AND_Z] = "x&y&z",
[IIO_MOD_X_OR_Y] = "x|y",
[IIO_MOD_X_OR_Z] = "x|z",
[IIO_MOD_Y_OR_Z] = "y|z",
[IIO_MOD_X_OR_Y_OR_Z] = "x|y|z",
[IIO_MOD_ROOT_SUM_SQUARED_X_Y] = "sqrt(x^2+y^2)",
[IIO_MOD_SUM_SQUARED_X_Y_Z] = "x^2+y^2+z^2",
[IIO_MOD_LIGHT_BOTH] = "both",
[IIO_MOD_LIGHT_IR] = "ir",
[IIO_MOD_LIGHT_CLEAR] = "clear",
[IIO_MOD_LIGHT_RED] = "red",
[IIO_MOD_LIGHT_GREEN] = "green",
[IIO_MOD_LIGHT_BLUE] = "blue",
[IIO_MOD_QUATERNION] = "quaternion",
[IIO_MOD_TEMP_AMBIENT] = "ambient",
[IIO_MOD_TEMP_OBJECT] = "object",
[IIO_MOD_NORTH_MAGN] = "from_north_magnetic",
[IIO_MOD_NORTH_TRUE] = "from_north_true",
[IIO_MOD_NORTH_MAGN_TILT_COMP] = "from_north_magnetic_tilt_comp",
[IIO_MOD_NORTH_TRUE_TILT_COMP] = "from_north_true_tilt_comp",
[IIO_MOD_RUNNING] = "running",
[IIO_MOD_JOGGING] = "jogging",
[IIO_MOD_WALKING] = "walking",
[IIO_MOD_STILL] = "still",
[IIO_MOD_ROOT_SUM_SQUARED_X_Y_Z] = "sqrt(x^2+y^2+z^2)",
[IIO_MOD_I] = "i",
[IIO_MOD_Q] = "q",
[IIO_MOD_CO2] = "co2",
[IIO_MOD_VOC] = "voc",
};
/* relies on pairs of these shared then separate */
static const char * const iio_chan_info_postfix[] = {
[IIO_CHAN_INFO_RAW] = "raw",
[IIO_CHAN_INFO_PROCESSED] = "input",
[IIO_CHAN_INFO_SCALE] = "scale",
[IIO_CHAN_INFO_OFFSET] = "offset",
[IIO_CHAN_INFO_CALIBSCALE] = "calibscale",
[IIO_CHAN_INFO_CALIBBIAS] = "calibbias",
[IIO_CHAN_INFO_PEAK] = "peak_raw",
[IIO_CHAN_INFO_PEAK_SCALE] = "peak_scale",
[IIO_CHAN_INFO_QUADRATURE_CORRECTION_RAW] = "quadrature_correction_raw",
[IIO_CHAN_INFO_AVERAGE_RAW] = "mean_raw",
[IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY]
= "filter_low_pass_3db_frequency",
[IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY]
= "filter_high_pass_3db_frequency",
[IIO_CHAN_INFO_SAMP_FREQ] = "sampling_frequency",
[IIO_CHAN_INFO_FREQUENCY] = "frequency",
[IIO_CHAN_INFO_PHASE] = "phase",
[IIO_CHAN_INFO_HARDWAREGAIN] = "hardwaregain",
[IIO_CHAN_INFO_HYSTERESIS] = "hysteresis",
iio: Add INT_TIME (integration time) channel info attribute Integration time is in seconds; it controls the measurement time and influences the gain of a sensor. There are two typical ways that scaling is implemented in a device: 1) input amplifier, 2) reference to the ADC is changed. These both result in the accuracy of the ADC varying (by applying its sampling over a more relevant range). Integration time is a way of dealing with noise inherent in the analog sensor itself. In the case of a light sensor, a mixture of photon noise and device specific noise. Photon noise is dealt with by either improving the efficiency of the sensor, (more photons actually captured) which is not easily varied dynamically, or by integrating the measurement over a longer time period. Note that this can also be thought of as an averaging of a number of individual samples and is infact sometimes implemented this way. Altering integration time implies that the duration of a measurement changes, a fact the device's user may be interested in. Hence it makes sense to distinguish between integration time and simple scale. In some devices both types of control are present and whilst they will have similar effects on the amplitude of the reading, their effect on the noise of the measurements will differ considerably. Used by adjd_s311, tsl4531, tcs3472 The following drivers have similar controls (and could be adapted): * tsl2563 (integration time is controlled via CALIBSCALE among other things) * tsl2583 (has integration_time device_attr, but driver doesn't use channels yet) * tsl2x7x (has integration_time attr) Signed-off-by: Peter Meerwald <pmeerw@pmeerw.net> Cc: Jon Brenner <jon.brenner@ams.com> Signed-off-by: Jonathan Cameron <jic23@kernel.org>
2013-09-08 23:20:00 +08:00
[IIO_CHAN_INFO_INT_TIME] = "integration_time",
[IIO_CHAN_INFO_ENABLE] = "en",
[IIO_CHAN_INFO_CALIBHEIGHT] = "calibheight",
[IIO_CHAN_INFO_CALIBWEIGHT] = "calibweight",
[IIO_CHAN_INFO_DEBOUNCE_COUNT] = "debounce_count",
[IIO_CHAN_INFO_DEBOUNCE_TIME] = "debounce_time",
[IIO_CHAN_INFO_CALIBEMISSIVITY] = "calibemissivity",
[IIO_CHAN_INFO_OVERSAMPLING_RATIO] = "oversampling_ratio",
};
/**
* iio_find_channel_from_si() - get channel from its scan index
* @indio_dev: device
* @si: scan index to match
*/
const struct iio_chan_spec
*iio_find_channel_from_si(struct iio_dev *indio_dev, int si)
{
int i;
for (i = 0; i < indio_dev->num_channels; i++)
if (indio_dev->channels[i].scan_index == si)
return &indio_dev->channels[i];
return NULL;
}
/* This turns up an awful lot */
ssize_t iio_read_const_attr(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%s\n", to_iio_const_attr(attr)->string);
}
EXPORT_SYMBOL(iio_read_const_attr);
static int __init iio_init(void)
{
int ret;
/* Register sysfs bus */
ret = bus_register(&iio_bus_type);
if (ret < 0) {
pr_err("could not register bus type\n");
goto error_nothing;
}
ret = alloc_chrdev_region(&iio_devt, 0, IIO_DEV_MAX, "iio");
if (ret < 0) {
pr_err("failed to allocate char dev region\n");
goto error_unregister_bus_type;
}
iio_debugfs_dentry = debugfs_create_dir("iio", NULL);
return 0;
error_unregister_bus_type:
bus_unregister(&iio_bus_type);
error_nothing:
return ret;
}
static void __exit iio_exit(void)
{
if (iio_devt)
unregister_chrdev_region(iio_devt, IIO_DEV_MAX);
bus_unregister(&iio_bus_type);
debugfs_remove(iio_debugfs_dentry);
}
#if defined(CONFIG_DEBUG_FS)
static ssize_t iio_debugfs_read_reg(struct file *file, char __user *userbuf,
size_t count, loff_t *ppos)
{
struct iio_dev *indio_dev = file->private_data;
char buf[20];
unsigned val = 0;
ssize_t len;
int ret;
ret = indio_dev->info->debugfs_reg_access(indio_dev,
indio_dev->cached_reg_addr,
0, &val);
if (ret)
dev_err(indio_dev->dev.parent, "%s: read failed\n", __func__);
len = snprintf(buf, sizeof(buf), "0x%X\n", val);
return simple_read_from_buffer(userbuf, count, ppos, buf, len);
}
static ssize_t iio_debugfs_write_reg(struct file *file,
const char __user *userbuf, size_t count, loff_t *ppos)
{
struct iio_dev *indio_dev = file->private_data;
unsigned reg, val;
char buf[80];
int ret;
count = min_t(size_t, count, (sizeof(buf)-1));
if (copy_from_user(buf, userbuf, count))
return -EFAULT;
buf[count] = 0;
ret = sscanf(buf, "%i %i", &reg, &val);
switch (ret) {
case 1:
indio_dev->cached_reg_addr = reg;
break;
case 2:
indio_dev->cached_reg_addr = reg;
ret = indio_dev->info->debugfs_reg_access(indio_dev, reg,
val, NULL);
if (ret) {
dev_err(indio_dev->dev.parent, "%s: write failed\n",
__func__);
return ret;
}
break;
default:
return -EINVAL;
}
return count;
}
static const struct file_operations iio_debugfs_reg_fops = {
.open = simple_open,
.read = iio_debugfs_read_reg,
.write = iio_debugfs_write_reg,
};
static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
{
debugfs_remove_recursive(indio_dev->debugfs_dentry);
}
static int iio_device_register_debugfs(struct iio_dev *indio_dev)
{
struct dentry *d;
if (indio_dev->info->debugfs_reg_access == NULL)
return 0;
if (!iio_debugfs_dentry)
return 0;
indio_dev->debugfs_dentry =
debugfs_create_dir(dev_name(&indio_dev->dev),
iio_debugfs_dentry);
if (indio_dev->debugfs_dentry == NULL) {
dev_warn(indio_dev->dev.parent,
"Failed to create debugfs directory\n");
return -EFAULT;
}
d = debugfs_create_file("direct_reg_access", 0644,
indio_dev->debugfs_dentry,
indio_dev, &iio_debugfs_reg_fops);
if (!d) {
iio_device_unregister_debugfs(indio_dev);
return -ENOMEM;
}
return 0;
}
#else
static int iio_device_register_debugfs(struct iio_dev *indio_dev)
{
return 0;
}
static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
{
}
#endif /* CONFIG_DEBUG_FS */
static ssize_t iio_read_channel_ext_info(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
const struct iio_chan_spec_ext_info *ext_info;
ext_info = &this_attr->c->ext_info[this_attr->address];
return ext_info->read(indio_dev, ext_info->private, this_attr->c, buf);
}
static ssize_t iio_write_channel_ext_info(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
const struct iio_chan_spec_ext_info *ext_info;
ext_info = &this_attr->c->ext_info[this_attr->address];
return ext_info->write(indio_dev, ext_info->private,
this_attr->c, buf, len);
}
ssize_t iio_enum_available_read(struct iio_dev *indio_dev,
uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
{
const struct iio_enum *e = (const struct iio_enum *)priv;
unsigned int i;
size_t len = 0;
if (!e->num_items)
return 0;
for (i = 0; i < e->num_items; ++i)
len += scnprintf(buf + len, PAGE_SIZE - len, "%s ", e->items[i]);
/* replace last space with a newline */
buf[len - 1] = '\n';
return len;
}
EXPORT_SYMBOL_GPL(iio_enum_available_read);
ssize_t iio_enum_read(struct iio_dev *indio_dev,
uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
{
const struct iio_enum *e = (const struct iio_enum *)priv;
int i;
if (!e->get)
return -EINVAL;
i = e->get(indio_dev, chan);
if (i < 0)
return i;
else if (i >= e->num_items)
return -EINVAL;
return snprintf(buf, PAGE_SIZE, "%s\n", e->items[i]);
}
EXPORT_SYMBOL_GPL(iio_enum_read);
ssize_t iio_enum_write(struct iio_dev *indio_dev,
uintptr_t priv, const struct iio_chan_spec *chan, const char *buf,
size_t len)
{
const struct iio_enum *e = (const struct iio_enum *)priv;
unsigned int i;
int ret;
if (!e->set)
return -EINVAL;
for (i = 0; i < e->num_items; i++) {
if (sysfs_streq(buf, e->items[i]))
break;
}
if (i == e->num_items)
return -EINVAL;
ret = e->set(indio_dev, chan, i);
return ret ? ret : len;
}
EXPORT_SYMBOL_GPL(iio_enum_write);
/**
* iio_format_value() - Formats a IIO value into its string representation
* @buf: The buffer to which the formatted value gets written
* @type: One of the IIO_VAL_... constants. This decides how the val
* and val2 parameters are formatted.
* @size: Number of IIO value entries contained in vals
* @vals: Pointer to the values, exact meaning depends on the
* type parameter.
*
* Return: 0 by default, a negative number on failure or the
* total number of characters written for a type that belongs
* to the IIO_VAL_... constant.
*/
ssize_t iio_format_value(char *buf, unsigned int type, int size, int *vals)
{
unsigned long long tmp;
bool scale_db = false;
switch (type) {
case IIO_VAL_INT:
return sprintf(buf, "%d\n", vals[0]);
case IIO_VAL_INT_PLUS_MICRO_DB:
scale_db = true;
case IIO_VAL_INT_PLUS_MICRO:
if (vals[1] < 0)
include/linux/kernel.h: change abs() macro so it uses consistent return type Rewrite abs() so that its return type does not depend on the architecture and no unexpected type conversion happen inside of it. The only conversion is from unsigned to signed type. char is left as a return type but treated as a signed type regradless of it's actual signedness. With the old version, int arguments were promoted to long and depending on architecture a long argument might result in s64 or long return type (which may or may not be the same). This came after some back and forth with Nicolas. The current macro has different return type (for the same input type) depending on architecture which might be midly iritating. An alternative version would promote to int like so: #define abs(x) __abs_choose_expr(x, long long, \ __abs_choose_expr(x, long, \ __builtin_choose_expr( \ sizeof(x) <= sizeof(int), \ ({ int __x = (x); __x<0?-__x:__x; }), \ ((void)0)))) I have no preference but imagine Linus might. :] Nicolas argument against is that promoting to int causes iconsistent behaviour: int main(void) { unsigned short a = 0, b = 1, c = a - b; unsigned short d = abs(a - b); unsigned short e = abs(c); printf("%u %u\n", d, e); // prints: 1 65535 } Then again, no sane person expects consistent behaviour from C integer arithmetic. ;) Note: __builtin_types_compatible_p(unsigned char, char) is always false, and __builtin_types_compatible_p(signed char, char) is also always false. Signed-off-by: Michal Nazarewicz <mina86@mina86.com> Reviewed-by: Nicolas Pitre <nico@linaro.org> Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Cc: Wey-Yi Guy <wey-yi.w.guy@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:57:58 +08:00
return sprintf(buf, "-%d.%06u%s\n", abs(vals[0]),
-vals[1], scale_db ? " dB" : "");
else
return sprintf(buf, "%d.%06u%s\n", vals[0], vals[1],
scale_db ? " dB" : "");
case IIO_VAL_INT_PLUS_NANO:
if (vals[1] < 0)
include/linux/kernel.h: change abs() macro so it uses consistent return type Rewrite abs() so that its return type does not depend on the architecture and no unexpected type conversion happen inside of it. The only conversion is from unsigned to signed type. char is left as a return type but treated as a signed type regradless of it's actual signedness. With the old version, int arguments were promoted to long and depending on architecture a long argument might result in s64 or long return type (which may or may not be the same). This came after some back and forth with Nicolas. The current macro has different return type (for the same input type) depending on architecture which might be midly iritating. An alternative version would promote to int like so: #define abs(x) __abs_choose_expr(x, long long, \ __abs_choose_expr(x, long, \ __builtin_choose_expr( \ sizeof(x) <= sizeof(int), \ ({ int __x = (x); __x<0?-__x:__x; }), \ ((void)0)))) I have no preference but imagine Linus might. :] Nicolas argument against is that promoting to int causes iconsistent behaviour: int main(void) { unsigned short a = 0, b = 1, c = a - b; unsigned short d = abs(a - b); unsigned short e = abs(c); printf("%u %u\n", d, e); // prints: 1 65535 } Then again, no sane person expects consistent behaviour from C integer arithmetic. ;) Note: __builtin_types_compatible_p(unsigned char, char) is always false, and __builtin_types_compatible_p(signed char, char) is also always false. Signed-off-by: Michal Nazarewicz <mina86@mina86.com> Reviewed-by: Nicolas Pitre <nico@linaro.org> Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Cc: Wey-Yi Guy <wey-yi.w.guy@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:57:58 +08:00
return sprintf(buf, "-%d.%09u\n", abs(vals[0]),
-vals[1]);
else
return sprintf(buf, "%d.%09u\n", vals[0], vals[1]);
case IIO_VAL_FRACTIONAL:
tmp = div_s64((s64)vals[0] * 1000000000LL, vals[1]);
vals[1] = do_div(tmp, 1000000000LL);
vals[0] = tmp;
return sprintf(buf, "%d.%09u\n", vals[0], vals[1]);
case IIO_VAL_FRACTIONAL_LOG2:
tmp = (s64)vals[0] * 1000000000LL >> vals[1];
vals[1] = do_div(tmp, 1000000000LL);
vals[0] = tmp;
return sprintf(buf, "%d.%09u\n", vals[0], vals[1]);
case IIO_VAL_INT_MULTIPLE:
{
int i;
int len = 0;
for (i = 0; i < size; ++i)
len += snprintf(&buf[len], PAGE_SIZE - len, "%d ",
vals[i]);
len += snprintf(&buf[len], PAGE_SIZE - len, "\n");
return len;
}
default:
return 0;
}
}
EXPORT_SYMBOL_GPL(iio_format_value);
static ssize_t iio_read_channel_info(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
int vals[INDIO_MAX_RAW_ELEMENTS];
int ret;
int val_len = 2;
if (indio_dev->info->read_raw_multi)
ret = indio_dev->info->read_raw_multi(indio_dev, this_attr->c,
INDIO_MAX_RAW_ELEMENTS,
vals, &val_len,
this_attr->address);
else
ret = indio_dev->info->read_raw(indio_dev, this_attr->c,
&vals[0], &vals[1], this_attr->address);
if (ret < 0)
return ret;
return iio_format_value(buf, ret, val_len, vals);
}
/**
* iio_str_to_fixpoint() - Parse a fixed-point number from a string
* @str: The string to parse
* @fract_mult: Multiplier for the first decimal place, should be a power of 10
* @integer: The integer part of the number
* @fract: The fractional part of the number
*
* Returns 0 on success, or a negative error code if the string could not be
* parsed.
*/
int iio_str_to_fixpoint(const char *str, int fract_mult,
int *integer, int *fract)
{
int i = 0, f = 0;
bool integer_part = true, negative = false;
if (fract_mult == 0) {
*fract = 0;
return kstrtoint(str, 0, integer);
}
if (str[0] == '-') {
negative = true;
str++;
} else if (str[0] == '+') {
str++;
}
while (*str) {
if ('0' <= *str && *str <= '9') {
if (integer_part) {
i = i * 10 + *str - '0';
} else {
f += fract_mult * (*str - '0');
fract_mult /= 10;
}
} else if (*str == '\n') {
if (*(str + 1) == '\0')
break;
else
return -EINVAL;
} else if (*str == '.' && integer_part) {
integer_part = false;
} else {
return -EINVAL;
}
str++;
}
if (negative) {
if (i)
i = -i;
else
f = -f;
}
*integer = i;
*fract = f;
return 0;
}
EXPORT_SYMBOL_GPL(iio_str_to_fixpoint);
static ssize_t iio_write_channel_info(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
int ret, fract_mult = 100000;
int integer, fract;
/* Assumes decimal - precision based on number of digits */
if (!indio_dev->info->write_raw)
return -EINVAL;
if (indio_dev->info->write_raw_get_fmt)
switch (indio_dev->info->write_raw_get_fmt(indio_dev,
this_attr->c, this_attr->address)) {
case IIO_VAL_INT:
fract_mult = 0;
break;
case IIO_VAL_INT_PLUS_MICRO:
fract_mult = 100000;
break;
case IIO_VAL_INT_PLUS_NANO:
fract_mult = 100000000;
break;
default:
return -EINVAL;
}
ret = iio_str_to_fixpoint(buf, fract_mult, &integer, &fract);
if (ret)
return ret;
ret = indio_dev->info->write_raw(indio_dev, this_attr->c,
integer, fract, this_attr->address);
if (ret)
return ret;
return len;
}
static
int __iio_device_attr_init(struct device_attribute *dev_attr,
const char *postfix,
struct iio_chan_spec const *chan,
ssize_t (*readfunc)(struct device *dev,
struct device_attribute *attr,
char *buf),
ssize_t (*writefunc)(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len),
enum iio_shared_by shared_by)
{
int ret = 0;
char *name = NULL;
char *full_postfix;
sysfs_attr_init(&dev_attr->attr);
/* Build up postfix of <extend_name>_<modifier>_postfix */
if (chan->modified && (shared_by == IIO_SEPARATE)) {
if (chan->extend_name)
full_postfix = kasprintf(GFP_KERNEL, "%s_%s_%s",
iio_modifier_names[chan
->channel2],
chan->extend_name,
postfix);
else
full_postfix = kasprintf(GFP_KERNEL, "%s_%s",
iio_modifier_names[chan
->channel2],
postfix);
} else {
if (chan->extend_name == NULL || shared_by != IIO_SEPARATE)
full_postfix = kstrdup(postfix, GFP_KERNEL);
else
full_postfix = kasprintf(GFP_KERNEL,
"%s_%s",
chan->extend_name,
postfix);
}
if (full_postfix == NULL)
return -ENOMEM;
if (chan->differential) { /* Differential can not have modifier */
switch (shared_by) {
case IIO_SHARED_BY_ALL:
name = kasprintf(GFP_KERNEL, "%s", full_postfix);
break;
case IIO_SHARED_BY_DIR:
name = kasprintf(GFP_KERNEL, "%s_%s",
iio_direction[chan->output],
full_postfix);
break;
case IIO_SHARED_BY_TYPE:
name = kasprintf(GFP_KERNEL, "%s_%s-%s_%s",
iio_direction[chan->output],
iio_chan_type_name_spec[chan->type],
iio_chan_type_name_spec[chan->type],
full_postfix);
break;
case IIO_SEPARATE:
if (!chan->indexed) {
WARN(1, "Differential channels must be indexed\n");
ret = -EINVAL;
goto error_free_full_postfix;
}
name = kasprintf(GFP_KERNEL,
"%s_%s%d-%s%d_%s",
iio_direction[chan->output],
iio_chan_type_name_spec[chan->type],
chan->channel,
iio_chan_type_name_spec[chan->type],
chan->channel2,
full_postfix);
break;
}
} else { /* Single ended */
switch (shared_by) {
case IIO_SHARED_BY_ALL:
name = kasprintf(GFP_KERNEL, "%s", full_postfix);
break;
case IIO_SHARED_BY_DIR:
name = kasprintf(GFP_KERNEL, "%s_%s",
iio_direction[chan->output],
full_postfix);
break;
case IIO_SHARED_BY_TYPE:
name = kasprintf(GFP_KERNEL, "%s_%s_%s",
iio_direction[chan->output],
iio_chan_type_name_spec[chan->type],
full_postfix);
break;
case IIO_SEPARATE:
if (chan->indexed)
name = kasprintf(GFP_KERNEL, "%s_%s%d_%s",
iio_direction[chan->output],
iio_chan_type_name_spec[chan->type],
chan->channel,
full_postfix);
else
name = kasprintf(GFP_KERNEL, "%s_%s_%s",
iio_direction[chan->output],
iio_chan_type_name_spec[chan->type],
full_postfix);
break;
}
}
if (name == NULL) {
ret = -ENOMEM;
goto error_free_full_postfix;
}
dev_attr->attr.name = name;
if (readfunc) {
dev_attr->attr.mode |= S_IRUGO;
dev_attr->show = readfunc;
}
if (writefunc) {
dev_attr->attr.mode |= S_IWUSR;
dev_attr->store = writefunc;
}
error_free_full_postfix:
kfree(full_postfix);
return ret;
}
static void __iio_device_attr_deinit(struct device_attribute *dev_attr)
{
kfree(dev_attr->attr.name);
}
int __iio_add_chan_devattr(const char *postfix,
struct iio_chan_spec const *chan,
ssize_t (*readfunc)(struct device *dev,
struct device_attribute *attr,
char *buf),
ssize_t (*writefunc)(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len),
u64 mask,
enum iio_shared_by shared_by,
struct device *dev,
struct list_head *attr_list)
{
int ret;
struct iio_dev_attr *iio_attr, *t;
iio_attr = kzalloc(sizeof(*iio_attr), GFP_KERNEL);
if (iio_attr == NULL)
return -ENOMEM;
ret = __iio_device_attr_init(&iio_attr->dev_attr,
postfix, chan,
readfunc, writefunc, shared_by);
if (ret)
goto error_iio_dev_attr_free;
iio_attr->c = chan;
iio_attr->address = mask;
list_for_each_entry(t, attr_list, l)
if (strcmp(t->dev_attr.attr.name,
iio_attr->dev_attr.attr.name) == 0) {
if (shared_by == IIO_SEPARATE)
dev_err(dev, "tried to double register : %s\n",
t->dev_attr.attr.name);
ret = -EBUSY;
goto error_device_attr_deinit;
}
list_add(&iio_attr->l, attr_list);
return 0;
error_device_attr_deinit:
__iio_device_attr_deinit(&iio_attr->dev_attr);
error_iio_dev_attr_free:
kfree(iio_attr);
return ret;
}
static int iio_device_add_info_mask_type(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
enum iio_shared_by shared_by,
const long *infomask)
{
int i, ret, attrcount = 0;
for_each_set_bit(i, infomask, sizeof(infomask)*8) {
if (i >= ARRAY_SIZE(iio_chan_info_postfix))
return -EINVAL;
ret = __iio_add_chan_devattr(iio_chan_info_postfix[i],
chan,
&iio_read_channel_info,
&iio_write_channel_info,
i,
shared_by,
&indio_dev->dev,
&indio_dev->channel_attr_list);
if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE))
continue;
else if (ret < 0)
return ret;
attrcount++;
}
staging:iio: Add extended IIO channel info Sometimes devices have per channel properties which either do not map nicely to the current channel info scheme (e.g. string properties) or are very device specific, so it does not make sense to add generic support for them. Currently drivers define these attributes by hand for each channel. Depending on the number of channels this can amount to quite a few lines of boilerplate code. Especially if a driver supports multiple variations of a chip with different numbers of channels. In this case it becomes necessary to have a individual attribute list per chip variation and also a individual iio_info struct. This patch introduces a new scheme for handling such per channel attributes called extended channel info attributes. A extended channel info attribute consist of a name, a flag whether it is shared and read and write callbacks. The read and write callbacks are similar to the {read,write}_raw callbacks and take a IIO device and a channel as their first parameters, but instead of pre-parsed integer values they directly get passed the raw string value, which has been written to the sysfs file. It is possible to assign a list of extended channel info attributes to a channel. For each extended channel info attribute the IIO core will create a new sysfs attribute conforming to the IIO channel naming spec for the channels type, similar as for normal info attributes. Read and write access to this sysfs attribute will be redirected to the extended channel info attributes read and write callbacks. Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Acked-by: Jonathan Cameron <jic23@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-02-22 01:38:12 +08:00
return attrcount;
}
static int iio_device_add_channel_sysfs(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan)
{
int ret, attrcount = 0;
const struct iio_chan_spec_ext_info *ext_info;
if (chan->channel < 0)
return 0;
ret = iio_device_add_info_mask_type(indio_dev, chan,
IIO_SEPARATE,
&chan->info_mask_separate);
if (ret < 0)
return ret;
attrcount += ret;
ret = iio_device_add_info_mask_type(indio_dev, chan,
IIO_SHARED_BY_TYPE,
&chan->info_mask_shared_by_type);
if (ret < 0)
return ret;
attrcount += ret;
ret = iio_device_add_info_mask_type(indio_dev, chan,
IIO_SHARED_BY_DIR,
&chan->info_mask_shared_by_dir);
if (ret < 0)
return ret;
attrcount += ret;
ret = iio_device_add_info_mask_type(indio_dev, chan,
IIO_SHARED_BY_ALL,
&chan->info_mask_shared_by_all);
if (ret < 0)
return ret;
attrcount += ret;
staging:iio: Add extended IIO channel info Sometimes devices have per channel properties which either do not map nicely to the current channel info scheme (e.g. string properties) or are very device specific, so it does not make sense to add generic support for them. Currently drivers define these attributes by hand for each channel. Depending on the number of channels this can amount to quite a few lines of boilerplate code. Especially if a driver supports multiple variations of a chip with different numbers of channels. In this case it becomes necessary to have a individual attribute list per chip variation and also a individual iio_info struct. This patch introduces a new scheme for handling such per channel attributes called extended channel info attributes. A extended channel info attribute consist of a name, a flag whether it is shared and read and write callbacks. The read and write callbacks are similar to the {read,write}_raw callbacks and take a IIO device and a channel as their first parameters, but instead of pre-parsed integer values they directly get passed the raw string value, which has been written to the sysfs file. It is possible to assign a list of extended channel info attributes to a channel. For each extended channel info attribute the IIO core will create a new sysfs attribute conforming to the IIO channel naming spec for the channels type, similar as for normal info attributes. Read and write access to this sysfs attribute will be redirected to the extended channel info attributes read and write callbacks. Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Acked-by: Jonathan Cameron <jic23@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-02-22 01:38:12 +08:00
if (chan->ext_info) {
unsigned int i = 0;
for (ext_info = chan->ext_info; ext_info->name; ext_info++) {
ret = __iio_add_chan_devattr(ext_info->name,
chan,
ext_info->read ?
&iio_read_channel_ext_info : NULL,
ext_info->write ?
&iio_write_channel_ext_info : NULL,
i,
ext_info->shared,
&indio_dev->dev,
&indio_dev->channel_attr_list);
i++;
if (ret == -EBUSY && ext_info->shared)
continue;
if (ret)
return ret;
staging:iio: Add extended IIO channel info Sometimes devices have per channel properties which either do not map nicely to the current channel info scheme (e.g. string properties) or are very device specific, so it does not make sense to add generic support for them. Currently drivers define these attributes by hand for each channel. Depending on the number of channels this can amount to quite a few lines of boilerplate code. Especially if a driver supports multiple variations of a chip with different numbers of channels. In this case it becomes necessary to have a individual attribute list per chip variation and also a individual iio_info struct. This patch introduces a new scheme for handling such per channel attributes called extended channel info attributes. A extended channel info attribute consist of a name, a flag whether it is shared and read and write callbacks. The read and write callbacks are similar to the {read,write}_raw callbacks and take a IIO device and a channel as their first parameters, but instead of pre-parsed integer values they directly get passed the raw string value, which has been written to the sysfs file. It is possible to assign a list of extended channel info attributes to a channel. For each extended channel info attribute the IIO core will create a new sysfs attribute conforming to the IIO channel naming spec for the channels type, similar as for normal info attributes. Read and write access to this sysfs attribute will be redirected to the extended channel info attributes read and write callbacks. Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Acked-by: Jonathan Cameron <jic23@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-02-22 01:38:12 +08:00
attrcount++;
}
}
return attrcount;
}
/**
* iio_free_chan_devattr_list() - Free a list of IIO device attributes
* @attr_list: List of IIO device attributes
*
* This function frees the memory allocated for each of the IIO device
* attributes in the list.
*/
void iio_free_chan_devattr_list(struct list_head *attr_list)
{
struct iio_dev_attr *p, *n;
list_for_each_entry_safe(p, n, attr_list, l) {
kfree(p->dev_attr.attr.name);
list_del(&p->l);
kfree(p);
}
}
static ssize_t iio_show_dev_name(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
return snprintf(buf, PAGE_SIZE, "%s\n", indio_dev->name);
}
static DEVICE_ATTR(name, S_IRUGO, iio_show_dev_name, NULL);
static int iio_device_register_sysfs(struct iio_dev *indio_dev)
{
int i, ret = 0, attrcount, attrn, attrcount_orig = 0;
struct iio_dev_attr *p;
struct attribute **attr;
/* First count elements in any existing group */
if (indio_dev->info->attrs) {
attr = indio_dev->info->attrs->attrs;
while (*attr++ != NULL)
attrcount_orig++;
}
attrcount = attrcount_orig;
/*
* New channel registration method - relies on the fact a group does
* not need to be initialized if its name is NULL.
*/
if (indio_dev->channels)
for (i = 0; i < indio_dev->num_channels; i++) {
ret = iio_device_add_channel_sysfs(indio_dev,
&indio_dev
->channels[i]);
if (ret < 0)
goto error_clear_attrs;
attrcount += ret;
}
if (indio_dev->name)
attrcount++;
indio_dev->chan_attr_group.attrs = kcalloc(attrcount + 1,
sizeof(indio_dev->chan_attr_group.attrs[0]),
GFP_KERNEL);
if (indio_dev->chan_attr_group.attrs == NULL) {
ret = -ENOMEM;
goto error_clear_attrs;
}
/* Copy across original attributes */
if (indio_dev->info->attrs)
memcpy(indio_dev->chan_attr_group.attrs,
indio_dev->info->attrs->attrs,
sizeof(indio_dev->chan_attr_group.attrs[0])
*attrcount_orig);
attrn = attrcount_orig;
/* Add all elements from the list. */
list_for_each_entry(p, &indio_dev->channel_attr_list, l)
indio_dev->chan_attr_group.attrs[attrn++] = &p->dev_attr.attr;
if (indio_dev->name)
indio_dev->chan_attr_group.attrs[attrn++] = &dev_attr_name.attr;
indio_dev->groups[indio_dev->groupcounter++] =
&indio_dev->chan_attr_group;
return 0;
error_clear_attrs:
iio_free_chan_devattr_list(&indio_dev->channel_attr_list);
return ret;
}
static void iio_device_unregister_sysfs(struct iio_dev *indio_dev)
{
iio_free_chan_devattr_list(&indio_dev->channel_attr_list);
kfree(indio_dev->chan_attr_group.attrs);
indio_dev->chan_attr_group.attrs = NULL;
}
static void iio_dev_release(struct device *device)
{
struct iio_dev *indio_dev = dev_to_iio_dev(device);
if (indio_dev->modes & (INDIO_BUFFER_TRIGGERED | INDIO_EVENT_TRIGGERED))
iio_device_unregister_trigger_consumer(indio_dev);
iio_device_unregister_eventset(indio_dev);
iio_device_unregister_sysfs(indio_dev);
iio: Fix potential use after free There is no guarantee that the last reference to the iio device has already been dropped when iio_device_free is called. This means that we can up calling iio_dev_release after iio_device_free which will lead to a use after free. As the general rule the struct containing the device should always be freed in the release callback. This is what this patch does, it moves freeing the iio device struct as well as releasing the idr reference to the release callback. To ensure that the device is not freed before calling iio_device_free the device_unregister call in iio_device_unregister is broken apart. iio_device_unregister will now only call device_del to remove the device from the system and iio_device_free will call put_device to drop the reference we obtained in iio_devce_alloc. We also have to take care that calling iio_device_free without having called iio_device_register still works (i.e. this can happen if something failed during device initialization). For this to work properly two minor changes were necessary: channel_attr_list needs to be initialized in iio_device_alloc and we have to check whether the chrdev has been registered before releasing it in iio_device_release. This change also brings iio_device_unregister and iio_device_free more in sync with iio_device_register and iio_device_alloc which call device_add and device_initialize respectively. Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Acked-by: Jonathan Cameron <jic23@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-06-04 16:41:42 +08:00
iio_buffer_put(indio_dev->buffer);
iio: Fix potential use after free There is no guarantee that the last reference to the iio device has already been dropped when iio_device_free is called. This means that we can up calling iio_dev_release after iio_device_free which will lead to a use after free. As the general rule the struct containing the device should always be freed in the release callback. This is what this patch does, it moves freeing the iio device struct as well as releasing the idr reference to the release callback. To ensure that the device is not freed before calling iio_device_free the device_unregister call in iio_device_unregister is broken apart. iio_device_unregister will now only call device_del to remove the device from the system and iio_device_free will call put_device to drop the reference we obtained in iio_devce_alloc. We also have to take care that calling iio_device_free without having called iio_device_register still works (i.e. this can happen if something failed during device initialization). For this to work properly two minor changes were necessary: channel_attr_list needs to be initialized in iio_device_alloc and we have to check whether the chrdev has been registered before releasing it in iio_device_release. This change also brings iio_device_unregister and iio_device_free more in sync with iio_device_register and iio_device_alloc which call device_add and device_initialize respectively. Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Acked-by: Jonathan Cameron <jic23@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-06-04 16:41:42 +08:00
ida_simple_remove(&iio_ida, indio_dev->id);
kfree(indio_dev);
}
struct device_type iio_device_type = {
.name = "iio_device",
.release = iio_dev_release,
};
/**
* iio_device_alloc() - allocate an iio_dev from a driver
* @sizeof_priv: Space to allocate for private structure.
**/
struct iio_dev *iio_device_alloc(int sizeof_priv)
{
struct iio_dev *dev;
size_t alloc_size;
alloc_size = sizeof(struct iio_dev);
if (sizeof_priv) {
alloc_size = ALIGN(alloc_size, IIO_ALIGN);
alloc_size += sizeof_priv;
}
/* ensure 32-byte alignment of whole construct ? */
alloc_size += IIO_ALIGN - 1;
dev = kzalloc(alloc_size, GFP_KERNEL);
if (dev) {
dev->dev.groups = dev->groups;
dev->dev.type = &iio_device_type;
dev->dev.bus = &iio_bus_type;
device_initialize(&dev->dev);
dev_set_drvdata(&dev->dev, (void *)dev);
mutex_init(&dev->mlock);
mutex_init(&dev->info_exist_lock);
iio: Fix potential use after free There is no guarantee that the last reference to the iio device has already been dropped when iio_device_free is called. This means that we can up calling iio_dev_release after iio_device_free which will lead to a use after free. As the general rule the struct containing the device should always be freed in the release callback. This is what this patch does, it moves freeing the iio device struct as well as releasing the idr reference to the release callback. To ensure that the device is not freed before calling iio_device_free the device_unregister call in iio_device_unregister is broken apart. iio_device_unregister will now only call device_del to remove the device from the system and iio_device_free will call put_device to drop the reference we obtained in iio_devce_alloc. We also have to take care that calling iio_device_free without having called iio_device_register still works (i.e. this can happen if something failed during device initialization). For this to work properly two minor changes were necessary: channel_attr_list needs to be initialized in iio_device_alloc and we have to check whether the chrdev has been registered before releasing it in iio_device_release. This change also brings iio_device_unregister and iio_device_free more in sync with iio_device_register and iio_device_alloc which call device_add and device_initialize respectively. Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Acked-by: Jonathan Cameron <jic23@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-06-04 16:41:42 +08:00
INIT_LIST_HEAD(&dev->channel_attr_list);
dev->id = ida_simple_get(&iio_ida, 0, 0, GFP_KERNEL);
if (dev->id < 0) {
/* cannot use a dev_err as the name isn't available */
pr_err("failed to get device id\n");
kfree(dev);
return NULL;
}
dev_set_name(&dev->dev, "iio:device%d", dev->id);
INIT_LIST_HEAD(&dev->buffer_list);
}
return dev;
}
EXPORT_SYMBOL(iio_device_alloc);
/**
* iio_device_free() - free an iio_dev from a driver
* @dev: the iio_dev associated with the device
**/
void iio_device_free(struct iio_dev *dev)
{
iio: Fix potential use after free There is no guarantee that the last reference to the iio device has already been dropped when iio_device_free is called. This means that we can up calling iio_dev_release after iio_device_free which will lead to a use after free. As the general rule the struct containing the device should always be freed in the release callback. This is what this patch does, it moves freeing the iio device struct as well as releasing the idr reference to the release callback. To ensure that the device is not freed before calling iio_device_free the device_unregister call in iio_device_unregister is broken apart. iio_device_unregister will now only call device_del to remove the device from the system and iio_device_free will call put_device to drop the reference we obtained in iio_devce_alloc. We also have to take care that calling iio_device_free without having called iio_device_register still works (i.e. this can happen if something failed during device initialization). For this to work properly two minor changes were necessary: channel_attr_list needs to be initialized in iio_device_alloc and we have to check whether the chrdev has been registered before releasing it in iio_device_release. This change also brings iio_device_unregister and iio_device_free more in sync with iio_device_register and iio_device_alloc which call device_add and device_initialize respectively. Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Acked-by: Jonathan Cameron <jic23@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-06-04 16:41:42 +08:00
if (dev)
put_device(&dev->dev);
}
EXPORT_SYMBOL(iio_device_free);
static void devm_iio_device_release(struct device *dev, void *res)
{
iio_device_free(*(struct iio_dev **)res);
}
static int devm_iio_device_match(struct device *dev, void *res, void *data)
{
struct iio_dev **r = res;
if (!r || !*r) {
WARN_ON(!r || !*r);
return 0;
}
return *r == data;
}
/**
* devm_iio_device_alloc - Resource-managed iio_device_alloc()
* @dev: Device to allocate iio_dev for
* @sizeof_priv: Space to allocate for private structure.
*
* Managed iio_device_alloc. iio_dev allocated with this function is
* automatically freed on driver detach.
*
* If an iio_dev allocated with this function needs to be freed separately,
* devm_iio_device_free() must be used.
*
* RETURNS:
* Pointer to allocated iio_dev on success, NULL on failure.
*/
struct iio_dev *devm_iio_device_alloc(struct device *dev, int sizeof_priv)
{
struct iio_dev **ptr, *iio_dev;
ptr = devres_alloc(devm_iio_device_release, sizeof(*ptr),
GFP_KERNEL);
if (!ptr)
return NULL;
iio_dev = iio_device_alloc(sizeof_priv);
if (iio_dev) {
*ptr = iio_dev;
devres_add(dev, ptr);
} else {
devres_free(ptr);
}
return iio_dev;
}
EXPORT_SYMBOL_GPL(devm_iio_device_alloc);
/**
* devm_iio_device_free - Resource-managed iio_device_free()
* @dev: Device this iio_dev belongs to
* @iio_dev: the iio_dev associated with the device
*
* Free iio_dev allocated with devm_iio_device_alloc().
*/
void devm_iio_device_free(struct device *dev, struct iio_dev *iio_dev)
{
int rc;
rc = devres_release(dev, devm_iio_device_release,
devm_iio_device_match, iio_dev);
WARN_ON(rc);
}
EXPORT_SYMBOL_GPL(devm_iio_device_free);
/**
* iio_chrdev_open() - chrdev file open for buffer access and ioctls
* @inode: Inode structure for identifying the device in the file system
* @filp: File structure for iio device used to keep and later access
* private data
*
* Return: 0 on success or -EBUSY if the device is already opened
**/
static int iio_chrdev_open(struct inode *inode, struct file *filp)
{
struct iio_dev *indio_dev = container_of(inode->i_cdev,
struct iio_dev, chrdev);
if (test_and_set_bit(IIO_BUSY_BIT_POS, &indio_dev->flags))
return -EBUSY;
iio_device_get(indio_dev);
filp->private_data = indio_dev;
return 0;
}
/**
* iio_chrdev_release() - chrdev file close buffer access and ioctls
* @inode: Inode structure pointer for the char device
* @filp: File structure pointer for the char device
*
* Return: 0 for successful release
*/
static int iio_chrdev_release(struct inode *inode, struct file *filp)
{
struct iio_dev *indio_dev = container_of(inode->i_cdev,
struct iio_dev, chrdev);
clear_bit(IIO_BUSY_BIT_POS, &indio_dev->flags);
iio_device_put(indio_dev);
return 0;
}
/* Somewhat of a cross file organization violation - ioctls here are actually
* event related */
static long iio_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct iio_dev *indio_dev = filp->private_data;
int __user *ip = (int __user *)arg;
int fd;
if (!indio_dev->info)
return -ENODEV;
if (cmd == IIO_GET_EVENT_FD_IOCTL) {
fd = iio_event_getfd(indio_dev);
if (fd < 0)
return fd;
if (copy_to_user(ip, &fd, sizeof(fd)))
return -EFAULT;
return 0;
}
return -EINVAL;
}
static const struct file_operations iio_buffer_fileops = {
.read = iio_buffer_read_first_n_outer_addr,
.release = iio_chrdev_release,
.open = iio_chrdev_open,
.poll = iio_buffer_poll_addr,
.owner = THIS_MODULE,
.llseek = noop_llseek,
.unlocked_ioctl = iio_ioctl,
.compat_ioctl = iio_ioctl,
};
static int iio_check_unique_scan_index(struct iio_dev *indio_dev)
{
int i, j;
const struct iio_chan_spec *channels = indio_dev->channels;
if (!(indio_dev->modes & INDIO_ALL_BUFFER_MODES))
return 0;
for (i = 0; i < indio_dev->num_channels - 1; i++) {
if (channels[i].scan_index < 0)
continue;
for (j = i + 1; j < indio_dev->num_channels; j++)
if (channels[i].scan_index == channels[j].scan_index) {
dev_err(&indio_dev->dev,
"Duplicate scan index %d\n",
channels[i].scan_index);
return -EINVAL;
}
}
return 0;
}
static const struct iio_buffer_setup_ops noop_ring_setup_ops;
/**
* iio_device_register() - register a device with the IIO subsystem
* @indio_dev: Device structure filled by the device driver
**/
int iio_device_register(struct iio_dev *indio_dev)
{
int ret;
/* If the calling driver did not initialize of_node, do it here */
if (!indio_dev->dev.of_node && indio_dev->dev.parent)
indio_dev->dev.of_node = indio_dev->dev.parent->of_node;
ret = iio_check_unique_scan_index(indio_dev);
if (ret < 0)
return ret;
/* configure elements for the chrdev */
indio_dev->dev.devt = MKDEV(MAJOR(iio_devt), indio_dev->id);
ret = iio_device_register_debugfs(indio_dev);
if (ret) {
dev_err(indio_dev->dev.parent,
"Failed to register debugfs interfaces\n");
return ret;
}
ret = iio_buffer_alloc_sysfs_and_mask(indio_dev);
if (ret) {
dev_err(indio_dev->dev.parent,
"Failed to create buffer sysfs interfaces\n");
goto error_unreg_debugfs;
}
ret = iio_device_register_sysfs(indio_dev);
if (ret) {
dev_err(indio_dev->dev.parent,
"Failed to register sysfs interfaces\n");
goto error_buffer_free_sysfs;
}
ret = iio_device_register_eventset(indio_dev);
if (ret) {
dev_err(indio_dev->dev.parent,
"Failed to register event set\n");
goto error_free_sysfs;
}
if (indio_dev->modes & (INDIO_BUFFER_TRIGGERED | INDIO_EVENT_TRIGGERED))
iio_device_register_trigger_consumer(indio_dev);
if ((indio_dev->modes & INDIO_ALL_BUFFER_MODES) &&
indio_dev->setup_ops == NULL)
indio_dev->setup_ops = &noop_ring_setup_ops;
cdev_init(&indio_dev->chrdev, &iio_buffer_fileops);
indio_dev->chrdev.owner = indio_dev->info->driver_module;
indio_dev->chrdev.kobj.parent = &indio_dev->dev.kobj;
ret = cdev_add(&indio_dev->chrdev, indio_dev->dev.devt, 1);
if (ret < 0)
goto error_unreg_eventset;
ret = device_add(&indio_dev->dev);
if (ret < 0)
goto error_cdev_del;
return 0;
error_cdev_del:
cdev_del(&indio_dev->chrdev);
error_unreg_eventset:
iio_device_unregister_eventset(indio_dev);
error_free_sysfs:
iio_device_unregister_sysfs(indio_dev);
error_buffer_free_sysfs:
iio_buffer_free_sysfs_and_mask(indio_dev);
error_unreg_debugfs:
iio_device_unregister_debugfs(indio_dev);
return ret;
}
EXPORT_SYMBOL(iio_device_register);
/**
* iio_device_unregister() - unregister a device from the IIO subsystem
* @indio_dev: Device structure representing the device.
**/
void iio_device_unregister(struct iio_dev *indio_dev)
{
mutex_lock(&indio_dev->info_exist_lock);
device_del(&indio_dev->dev);
if (indio_dev->chrdev.dev)
cdev_del(&indio_dev->chrdev);
iio_device_unregister_debugfs(indio_dev);
iio_disable_all_buffers(indio_dev);
indio_dev->info = NULL;
iio_device_wakeup_eventset(indio_dev);
iio_buffer_wakeup_poll(indio_dev);
mutex_unlock(&indio_dev->info_exist_lock);
iio_buffer_free_sysfs_and_mask(indio_dev);
}
EXPORT_SYMBOL(iio_device_unregister);
static void devm_iio_device_unreg(struct device *dev, void *res)
{
iio_device_unregister(*(struct iio_dev **)res);
}
/**
* devm_iio_device_register - Resource-managed iio_device_register()
* @dev: Device to allocate iio_dev for
* @indio_dev: Device structure filled by the device driver
*
* Managed iio_device_register. The IIO device registered with this
* function is automatically unregistered on driver detach. This function
* calls iio_device_register() internally. Refer to that function for more
* information.
*
* If an iio_dev registered with this function needs to be unregistered
* separately, devm_iio_device_unregister() must be used.
*
* RETURNS:
* 0 on success, negative error number on failure.
*/
int devm_iio_device_register(struct device *dev, struct iio_dev *indio_dev)
{
struct iio_dev **ptr;
int ret;
ptr = devres_alloc(devm_iio_device_unreg, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return -ENOMEM;
*ptr = indio_dev;
ret = iio_device_register(indio_dev);
if (!ret)
devres_add(dev, ptr);
else
devres_free(ptr);
return ret;
}
EXPORT_SYMBOL_GPL(devm_iio_device_register);
/**
* devm_iio_device_unregister - Resource-managed iio_device_unregister()
* @dev: Device this iio_dev belongs to
* @indio_dev: the iio_dev associated with the device
*
* Unregister iio_dev registered with devm_iio_device_register().
*/
void devm_iio_device_unregister(struct device *dev, struct iio_dev *indio_dev)
{
int rc;
rc = devres_release(dev, devm_iio_device_unreg,
devm_iio_device_match, indio_dev);
WARN_ON(rc);
}
EXPORT_SYMBOL_GPL(devm_iio_device_unregister);
subsys_initcall(iio_init);
module_exit(iio_exit);
MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
MODULE_DESCRIPTION("Industrial I/O core");
MODULE_LICENSE("GPL");