linux/drivers/xen/xen-pciback/pciback_ops.c

437 lines
12 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
/*
* PCI Backend Operations - respond to PCI requests from Frontend
*
* Author: Ryan Wilson <hap9@epoch.ncsc.mil>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/moduleparam.h>
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
#include <linux/wait.h>
#include <linux/bitops.h>
#include <xen/events.h>
#include <linux/sched.h>
#include "pciback.h"
int verbose_request;
module_param(verbose_request, int, 0644);
static irqreturn_t xen_pcibk_guest_interrupt(int irq, void *dev_id);
/* Ensure a device is has the fake IRQ handler "turned on/off" and is
* ready to be exported. This MUST be run after xen_pcibk_reset_device
* which does the actual PCI device enable/disable.
*/
static void xen_pcibk_control_isr(struct pci_dev *dev, int reset)
{
struct xen_pcibk_dev_data *dev_data;
int rc;
int enable = 0;
dev_data = pci_get_drvdata(dev);
if (!dev_data)
return;
/* We don't deal with bridges */
if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
return;
if (reset) {
dev_data->enable_intx = 0;
dev_data->ack_intr = 0;
}
enable = dev_data->enable_intx;
/* Asked to disable, but ISR isn't runnig */
if (!enable && !dev_data->isr_on)
return;
/* Squirrel away the IRQs in the dev_data. We need this
* b/c when device transitions to MSI, the dev->irq is
* overwritten with the MSI vector.
*/
if (enable)
dev_data->irq = dev->irq;
/*
* SR-IOV devices in all use MSI-X and have no legacy
* interrupts, so inhibit creating a fake IRQ handler for them.
*/
if (dev_data->irq == 0)
goto out;
dev_dbg(&dev->dev, "%s: #%d %s %s%s %s-> %s\n",
dev_data->irq_name,
dev_data->irq,
pci_is_enabled(dev) ? "on" : "off",
dev->msi_enabled ? "MSI" : "",
dev->msix_enabled ? "MSI/X" : "",
dev_data->isr_on ? "enable" : "disable",
enable ? "enable" : "disable");
if (enable) {
xen/pciback: Do not install an IRQ handler for MSI interrupts. Otherwise an guest can subvert the generic MSI code to trigger an BUG_ON condition during MSI interrupt freeing: for (i = 0; i < entry->nvec_used; i++) BUG_ON(irq_has_action(entry->irq + i)); Xen PCI backed installs an IRQ handler (request_irq) for the dev->irq whenever the guest writes PCI_COMMAND_MEMORY (or PCI_COMMAND_IO) to the PCI_COMMAND register. This is done in case the device has legacy interrupts the GSI line is shared by the backend devices. To subvert the backend the guest needs to make the backend to change the dev->irq from the GSI to the MSI interrupt line, make the backend allocate an interrupt handler, and then command the backend to free the MSI interrupt and hit the BUG_ON. Since the backend only calls 'request_irq' when the guest writes to the PCI_COMMAND register the guest needs to call XEN_PCI_OP_enable_msi before any other operation. This will cause the generic MSI code to setup an MSI entry and populate dev->irq with the new PIRQ value. Then the guest can write to PCI_COMMAND PCI_COMMAND_MEMORY and cause the backend to setup an IRQ handler for dev->irq (which instead of the GSI value has the MSI pirq). See 'xen_pcibk_control_isr'. Then the guest disables the MSI: XEN_PCI_OP_disable_msi which ends up triggering the BUG_ON condition in 'free_msi_irqs' as there is an IRQ handler for the entry->irq (dev->irq). Note that this cannot be done using MSI-X as the generic code does not over-write dev->irq with the MSI-X PIRQ values. The patch inhibits setting up the IRQ handler if MSI or MSI-X (for symmetry reasons) code had been called successfully. P.S. Xen PCIBack when it sets up the device for the guest consumption ends up writting 0 to the PCI_COMMAND (see xen_pcibk_reset_device). XSA-120 addendum patch removed that - however when upstreaming said addendum we found that it caused issues with qemu upstream. That has now been fixed in qemu upstream. This is part of XSA-157 CC: stable@vger.kernel.org Reviewed-by: David Vrabel <david.vrabel@citrix.com> Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2015-11-03 06:24:08 +08:00
/*
* The MSI or MSI-X should not have an IRQ handler. Otherwise
* if the guest terminates we BUG_ON in free_msi_irqs.
*/
if (dev->msi_enabled || dev->msix_enabled)
goto out;
rc = request_irq(dev_data->irq,
xen_pcibk_guest_interrupt, IRQF_SHARED,
dev_data->irq_name, dev);
if (rc) {
dev_err(&dev->dev, "%s: failed to install fake IRQ " \
"handler for IRQ %d! (rc:%d)\n",
dev_data->irq_name, dev_data->irq, rc);
goto out;
}
} else {
free_irq(dev_data->irq, dev);
dev_data->irq = 0;
}
dev_data->isr_on = enable;
dev_data->ack_intr = enable;
out:
dev_dbg(&dev->dev, "%s: #%d %s %s%s %s\n",
dev_data->irq_name,
dev_data->irq,
pci_is_enabled(dev) ? "on" : "off",
dev->msi_enabled ? "MSI" : "",
dev->msix_enabled ? "MSI/X" : "",
enable ? (dev_data->isr_on ? "enabled" : "failed to enable") :
(dev_data->isr_on ? "failed to disable" : "disabled"));
}
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
/* Ensure a device is "turned off" and ready to be exported.
* (Also see xen_pcibk_config_reset to ensure virtual configuration space is
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
* ready to be re-exported)
*/
void xen_pcibk_reset_device(struct pci_dev *dev)
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
{
u16 cmd;
xen_pcibk_control_isr(dev, 1 /* reset device */);
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
/* Disable devices (but not bridges) */
if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
#ifdef CONFIG_PCI_MSI
/* The guest could have been abruptly killed without
* disabling MSI/MSI-X interrupts.*/
if (dev->msix_enabled)
pci_disable_msix(dev);
if (dev->msi_enabled)
pci_disable_msi(dev);
#endif
if (pci_is_enabled(dev))
pci_disable_device(dev);
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
dev->is_busmaster = 0;
} else {
pci_read_config_word(dev, PCI_COMMAND, &cmd);
if (cmd & (PCI_COMMAND_INVALIDATE)) {
cmd &= ~(PCI_COMMAND_INVALIDATE);
pci_write_config_word(dev, PCI_COMMAND, cmd);
dev->is_busmaster = 0;
}
}
}
#ifdef CONFIG_PCI_MSI
static
int xen_pcibk_enable_msi(struct xen_pcibk_device *pdev,
struct pci_dev *dev, struct xen_pci_op *op)
{
struct xen_pcibk_dev_data *dev_data;
int status;
if (unlikely(verbose_request))
printk(KERN_DEBUG DRV_NAME ": %s: enable MSI\n", pci_name(dev));
if (dev->msi_enabled)
status = -EALREADY;
else if (dev->msix_enabled)
status = -ENXIO;
else
status = pci_enable_msi(dev);
if (status) {
pr_warn_ratelimited("%s: error enabling MSI for guest %u: err %d\n",
pci_name(dev), pdev->xdev->otherend_id,
status);
op->value = 0;
return XEN_PCI_ERR_op_failed;
}
/* The value the guest needs is actually the IDT vector, not the
* the local domain's IRQ number. */
op->value = dev->irq ? xen_pirq_from_irq(dev->irq) : 0;
if (unlikely(verbose_request))
printk(KERN_DEBUG DRV_NAME ": %s: MSI: %d\n", pci_name(dev),
op->value);
dev_data = pci_get_drvdata(dev);
if (dev_data)
dev_data->ack_intr = 0;
return 0;
}
static
int xen_pcibk_disable_msi(struct xen_pcibk_device *pdev,
struct pci_dev *dev, struct xen_pci_op *op)
{
if (unlikely(verbose_request))
printk(KERN_DEBUG DRV_NAME ": %s: disable MSI\n",
pci_name(dev));
if (dev->msi_enabled) {
struct xen_pcibk_dev_data *dev_data;
pci_disable_msi(dev);
dev_data = pci_get_drvdata(dev);
if (dev_data)
dev_data->ack_intr = 1;
}
op->value = dev->irq ? xen_pirq_from_irq(dev->irq) : 0;
if (unlikely(verbose_request))
printk(KERN_DEBUG DRV_NAME ": %s: MSI: %d\n", pci_name(dev),
op->value);
return 0;
}
static
int xen_pcibk_enable_msix(struct xen_pcibk_device *pdev,
struct pci_dev *dev, struct xen_pci_op *op)
{
struct xen_pcibk_dev_data *dev_data;
int i, result;
struct msix_entry *entries;
u16 cmd;
if (unlikely(verbose_request))
printk(KERN_DEBUG DRV_NAME ": %s: enable MSI-X\n",
pci_name(dev));
if (op->value > SH_INFO_MAX_VEC)
return -EINVAL;
if (dev->msix_enabled)
return -EALREADY;
/*
* PCI_COMMAND_MEMORY must be enabled, otherwise we may not be able
* to access the BARs where the MSI-X entries reside.
* But VF devices are unique in which the PF needs to be checked.
*/
pci_read_config_word(pci_physfn(dev), PCI_COMMAND, &cmd);
if (dev->msi_enabled || !(cmd & PCI_COMMAND_MEMORY))
return -ENXIO;
treewide: kmalloc() -> kmalloc_array() The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 04:55:00 +08:00
entries = kmalloc_array(op->value, sizeof(*entries), GFP_KERNEL);
if (entries == NULL)
return -ENOMEM;
for (i = 0; i < op->value; i++) {
entries[i].entry = op->msix_entries[i].entry;
entries[i].vector = op->msix_entries[i].vector;
}
result = pci_enable_msix_exact(dev, entries, op->value);
if (result == 0) {
for (i = 0; i < op->value; i++) {
op->msix_entries[i].entry = entries[i].entry;
if (entries[i].vector) {
op->msix_entries[i].vector =
xen_pirq_from_irq(entries[i].vector);
if (unlikely(verbose_request))
printk(KERN_DEBUG DRV_NAME ": %s: " \
"MSI-X[%d]: %d\n",
pci_name(dev), i,
op->msix_entries[i].vector);
}
}
} else
pr_warn_ratelimited("%s: error enabling MSI-X for guest %u: err %d!\n",
pci_name(dev), pdev->xdev->otherend_id,
result);
kfree(entries);
op->value = result;
dev_data = pci_get_drvdata(dev);
if (dev_data)
dev_data->ack_intr = 0;
return result > 0 ? 0 : result;
}
static
int xen_pcibk_disable_msix(struct xen_pcibk_device *pdev,
struct pci_dev *dev, struct xen_pci_op *op)
{
if (unlikely(verbose_request))
printk(KERN_DEBUG DRV_NAME ": %s: disable MSI-X\n",
pci_name(dev));
if (dev->msix_enabled) {
struct xen_pcibk_dev_data *dev_data;
pci_disable_msix(dev);
dev_data = pci_get_drvdata(dev);
if (dev_data)
dev_data->ack_intr = 1;
}
/*
* SR-IOV devices (which don't have any legacy IRQ) have
* an undefined IRQ value of zero.
*/
op->value = dev->irq ? xen_pirq_from_irq(dev->irq) : 0;
if (unlikely(verbose_request))
printk(KERN_DEBUG DRV_NAME ": %s: MSI-X: %d\n",
pci_name(dev), op->value);
return 0;
}
#endif
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
/*
* Now the same evtchn is used for both pcifront conf_read_write request
* as well as pcie aer front end ack. We use a new work_queue to schedule
* xen_pcibk conf_read_write service for avoiding confict with aer_core
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
* do_recovery job which also use the system default work_queue
*/
void xen_pcibk_test_and_schedule_op(struct xen_pcibk_device *pdev)
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
{
/* Check that frontend is requesting an operation and that we are not
* already processing a request */
if (test_bit(_XEN_PCIF_active, (unsigned long *)&pdev->sh_info->flags)
&& !test_and_set_bit(_PDEVF_op_active, &pdev->flags)) {
schedule_work(&pdev->op_work);
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
}
/*_XEN_PCIB_active should have been cleared by pcifront. And also make
sure xen_pcibk is waiting for ack by checking _PCIB_op_pending*/
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
if (!test_bit(_XEN_PCIB_active, (unsigned long *)&pdev->sh_info->flags)
&& test_bit(_PCIB_op_pending, &pdev->flags)) {
wake_up(&xen_pcibk_aer_wait_queue);
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
}
}
/* Performing the configuration space reads/writes must not be done in atomic
* context because some of the pci_* functions can sleep (mostly due to ACPI
* use of semaphores). This function is intended to be called from a work
* queue in process context taking a struct xen_pcibk_device as a parameter */
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
void xen_pcibk_do_op(struct work_struct *data)
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
{
struct xen_pcibk_device *pdev =
container_of(data, struct xen_pcibk_device, op_work);
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
struct pci_dev *dev;
struct xen_pcibk_dev_data *dev_data = NULL;
struct xen_pci_op *op = &pdev->op;
int test_intx = 0;
#ifdef CONFIG_PCI_MSI
unsigned int nr = 0;
#endif
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
*op = pdev->sh_info->op;
barrier();
dev = xen_pcibk_get_pci_dev(pdev, op->domain, op->bus, op->devfn);
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
if (dev == NULL)
op->err = XEN_PCI_ERR_dev_not_found;
else {
dev_data = pci_get_drvdata(dev);
if (dev_data)
test_intx = dev_data->enable_intx;
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
switch (op->cmd) {
case XEN_PCI_OP_conf_read:
op->err = xen_pcibk_config_read(dev,
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
op->offset, op->size, &op->value);
break;
case XEN_PCI_OP_conf_write:
op->err = xen_pcibk_config_write(dev,
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
op->offset, op->size, op->value);
break;
#ifdef CONFIG_PCI_MSI
case XEN_PCI_OP_enable_msi:
op->err = xen_pcibk_enable_msi(pdev, dev, op);
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
break;
case XEN_PCI_OP_disable_msi:
op->err = xen_pcibk_disable_msi(pdev, dev, op);
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
break;
case XEN_PCI_OP_enable_msix:
nr = op->value;
op->err = xen_pcibk_enable_msix(pdev, dev, op);
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
break;
case XEN_PCI_OP_disable_msix:
op->err = xen_pcibk_disable_msix(pdev, dev, op);
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
break;
#endif
default:
op->err = XEN_PCI_ERR_not_implemented;
break;
}
}
if (!op->err && dev && dev_data) {
/* Transition detected */
if ((dev_data->enable_intx != test_intx))
xen_pcibk_control_isr(dev, 0 /* no reset */);
}
pdev->sh_info->op.err = op->err;
pdev->sh_info->op.value = op->value;
#ifdef CONFIG_PCI_MSI
if (op->cmd == XEN_PCI_OP_enable_msix && op->err == 0) {
unsigned int i;
for (i = 0; i < nr; i++)
pdev->sh_info->op.msix_entries[i].vector =
op->msix_entries[i].vector;
}
#endif
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
/* Tell the driver domain that we're done. */
wmb();
clear_bit(_XEN_PCIF_active, (unsigned long *)&pdev->sh_info->flags);
notify_remote_via_irq(pdev->evtchn_irq);
/* Mark that we're done. */
smp_mb__before_atomic(); /* /after/ clearing PCIF_active */
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
clear_bit(_PDEVF_op_active, &pdev->flags);
smp_mb__after_atomic(); /* /before/ final check for work */
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
/* Check to see if the driver domain tried to start another request in
* between clearing _XEN_PCIF_active and clearing _PDEVF_op_active.
*/
xen_pcibk_test_and_schedule_op(pdev);
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
}
irqreturn_t xen_pcibk_handle_event(int irq, void *dev_id)
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
{
struct xen_pcibk_device *pdev = dev_id;
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
xen_pcibk_test_and_schedule_op(pdev);
xen/pciback: xen pci backend driver. This is the host side counterpart to the frontend driver in drivers/pci/xen-pcifront.c. The PV protocol is also implemented by frontend drivers in other OSes too, such as the BSDs. The PV protocol is rather simple. There is page shared with the guest, which has the 'struct xen_pci_sharedinfo' embossed in it. The backend has a thread that is kicked every-time the structure is changed and based on the operation field it performs specific tasks: XEN_PCI_OP_conf_[read|write]: Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c) Based on which field is probed, we either enable/disable the PCI device, change power state, read VPD, etc. The major goal of this call is to provide a Physical IRQ (PIRQ) to the guest. The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ is tied in to the IO-APIC, or is a vector. For GSI type interrupts, the PIRQ==GSI holds. For MSI/MSI-X the PIRQ value != Linux IRQ number (thought PIRQ==vector). Please note, that with Xen, all interrupts (except those level shared ones) are injected directly to the guest - there is no host interaction. XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c) Enables/disables the MSI/MSI-X capability of the device. These operations setup the MSI/MSI-X vectors for the guest and pass them to the frontend. When the device is activated, the interrupts are directly injected in the guest without involving the host. XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure, perform the appropriate AER commands on the guest. Right now that is a cop-out - we just kill the guest. Besides implementing those commands, it can also - hide a PCI device from the host. When booting up, the user can specify xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the device. The driver was lifted from linux-2.6.18.hg tree and fixed up so that it could compile under v3.0. Per suggestion from Jesse Barnes moved the driver to drivers/xen/xen-pciback. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
2009-10-14 05:22:20 +08:00
return IRQ_HANDLED;
}
static irqreturn_t xen_pcibk_guest_interrupt(int irq, void *dev_id)
{
struct pci_dev *dev = (struct pci_dev *)dev_id;
struct xen_pcibk_dev_data *dev_data = pci_get_drvdata(dev);
if (dev_data->isr_on && dev_data->ack_intr) {
dev_data->handled++;
if ((dev_data->handled % 1000) == 0) {
if (xen_test_irq_shared(irq)) {
pr_info("%s IRQ line is not shared "
"with other domains. Turning ISR off\n",
dev_data->irq_name);
dev_data->ack_intr = 0;
}
}
return IRQ_HANDLED;
}
return IRQ_NONE;
}