linux/drivers/video/fbdev/via/via-core.c

791 lines
20 KiB
C
Raw Normal View History

/*
* Copyright 1998-2009 VIA Technologies, Inc. All Rights Reserved.
* Copyright 2001-2008 S3 Graphics, Inc. All Rights Reserved.
* Copyright 2009 Jonathan Corbet <corbet@lwn.net>
*/
/*
* Core code for the Via multifunction framebuffer device.
*/
#include <linux/via-core.h>
#include <linux/via_i2c.h>
#include <linux/via-gpio.h>
#include "global.h"
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/list.h>
#include <linux/pm.h>
#include <asm/olpc.h>
/*
* The default port config.
*/
static struct via_port_cfg adap_configs[] = {
[VIA_PORT_26] = { VIA_PORT_I2C, VIA_MODE_I2C, VIASR, 0x26 },
[VIA_PORT_31] = { VIA_PORT_I2C, VIA_MODE_I2C, VIASR, 0x31 },
[VIA_PORT_25] = { VIA_PORT_GPIO, VIA_MODE_GPIO, VIASR, 0x25 },
[VIA_PORT_2C] = { VIA_PORT_GPIO, VIA_MODE_I2C, VIASR, 0x2c },
[VIA_PORT_3D] = { VIA_PORT_GPIO, VIA_MODE_GPIO, VIASR, 0x3d },
{ 0, 0, 0, 0 }
};
/*
* The OLPC XO-1.5 puts the camera power and reset lines onto
* GPIO 2C.
*/
static struct via_port_cfg olpc_adap_configs[] = {
[VIA_PORT_26] = { VIA_PORT_I2C, VIA_MODE_I2C, VIASR, 0x26 },
[VIA_PORT_31] = { VIA_PORT_I2C, VIA_MODE_I2C, VIASR, 0x31 },
[VIA_PORT_25] = { VIA_PORT_GPIO, VIA_MODE_GPIO, VIASR, 0x25 },
[VIA_PORT_2C] = { VIA_PORT_GPIO, VIA_MODE_GPIO, VIASR, 0x2c },
[VIA_PORT_3D] = { VIA_PORT_GPIO, VIA_MODE_GPIO, VIASR, 0x3d },
{ 0, 0, 0, 0 }
};
/*
* We currently only support one viafb device (will there ever be
* more than one?), so just declare it globally here.
*/
static struct viafb_dev global_dev;
/*
* Basic register access; spinlock required.
*/
static inline void viafb_mmio_write(int reg, u32 v)
{
iowrite32(v, global_dev.engine_mmio + reg);
}
static inline int viafb_mmio_read(int reg)
{
return ioread32(global_dev.engine_mmio + reg);
}
/* ---------------------------------------------------------------------- */
/*
* Interrupt management. We have a single IRQ line for a lot of
* different functions, so we need to share it. The design here
* is that we don't want to reimplement the shared IRQ code here;
* we also want to avoid having contention for a single handler thread.
* So each subdev driver which needs interrupts just requests
* them directly from the kernel. We just have what's needed for
* overall access to the interrupt control register.
*/
/*
* Which interrupts are enabled now?
*/
static u32 viafb_enabled_ints;
static void viafb_int_init(void)
{
viafb_enabled_ints = 0;
viafb_mmio_write(VDE_INTERRUPT, 0);
}
/*
* Allow subdevs to ask for specific interrupts to be enabled. These
* functions must be called with reg_lock held
*/
void viafb_irq_enable(u32 mask)
{
viafb_enabled_ints |= mask;
viafb_mmio_write(VDE_INTERRUPT, viafb_enabled_ints | VDE_I_ENABLE);
}
EXPORT_SYMBOL_GPL(viafb_irq_enable);
void viafb_irq_disable(u32 mask)
{
viafb_enabled_ints &= ~mask;
if (viafb_enabled_ints == 0)
viafb_mmio_write(VDE_INTERRUPT, 0); /* Disable entirely */
else
viafb_mmio_write(VDE_INTERRUPT,
viafb_enabled_ints | VDE_I_ENABLE);
}
EXPORT_SYMBOL_GPL(viafb_irq_disable);
/* ---------------------------------------------------------------------- */
/*
* Currently, the camera driver is the only user of the DMA code, so we
* only compile it in if the camera driver is being built. Chances are,
* most viafb systems will not need to have this extra code for a while.
* As soon as another user comes long, the ifdef can be removed.
*/
#if IS_ENABLED(CONFIG_VIDEO_VIA_CAMERA)
/*
* Access to the DMA engine. This currently provides what the camera
* driver needs (i.e. outgoing only) but is easily expandable if need
* be.
*/
/*
* There are four DMA channels in the vx855. For now, we only
* use one of them, though. Most of the time, the DMA channel
* will be idle, so we keep the IRQ handler unregistered except
* when some subsystem has indicated an interest.
*/
static int viafb_dma_users;
static DECLARE_COMPLETION(viafb_dma_completion);
/*
* This mutex protects viafb_dma_users and our global interrupt
* registration state; it also serializes access to the DMA
* engine.
*/
static DEFINE_MUTEX(viafb_dma_lock);
/*
* The VX855 DMA descriptor (used for s/g transfers) looks
* like this.
*/
struct viafb_vx855_dma_descr {
u32 addr_low; /* Low part of phys addr */
u32 addr_high; /* High 12 bits of addr */
u32 fb_offset; /* Offset into FB memory */
u32 seg_size; /* Size, 16-byte units */
u32 tile_mode; /* "tile mode" setting */
u32 next_desc_low; /* Next descriptor addr */
u32 next_desc_high;
u32 pad; /* Fill out to 64 bytes */
};
/*
* Flags added to the "next descriptor low" pointers
*/
#define VIAFB_DMA_MAGIC 0x01 /* ??? Just has to be there */
#define VIAFB_DMA_FINAL_SEGMENT 0x02 /* Final segment */
/*
* The completion IRQ handler.
*/
static irqreturn_t viafb_dma_irq(int irq, void *data)
{
int csr;
irqreturn_t ret = IRQ_NONE;
spin_lock(&global_dev.reg_lock);
csr = viafb_mmio_read(VDMA_CSR0);
if (csr & VDMA_C_DONE) {
viafb_mmio_write(VDMA_CSR0, VDMA_C_DONE);
complete(&viafb_dma_completion);
ret = IRQ_HANDLED;
}
spin_unlock(&global_dev.reg_lock);
return ret;
}
/*
* Indicate a need for DMA functionality.
*/
int viafb_request_dma(void)
{
int ret = 0;
/*
* Only VX855 is supported currently.
*/
if (global_dev.chip_type != UNICHROME_VX855)
return -ENODEV;
/*
* Note the new user and set up our interrupt handler
* if need be.
*/
mutex_lock(&viafb_dma_lock);
viafb_dma_users++;
if (viafb_dma_users == 1) {
ret = request_irq(global_dev.pdev->irq, viafb_dma_irq,
IRQF_SHARED, "via-dma", &viafb_dma_users);
if (ret)
viafb_dma_users--;
else
viafb_irq_enable(VDE_I_DMA0TDEN);
}
mutex_unlock(&viafb_dma_lock);
return ret;
}
EXPORT_SYMBOL_GPL(viafb_request_dma);
void viafb_release_dma(void)
{
mutex_lock(&viafb_dma_lock);
viafb_dma_users--;
if (viafb_dma_users == 0) {
viafb_irq_disable(VDE_I_DMA0TDEN);
free_irq(global_dev.pdev->irq, &viafb_dma_users);
}
mutex_unlock(&viafb_dma_lock);
}
EXPORT_SYMBOL_GPL(viafb_release_dma);
#if 0
/*
* Copy a single buffer from FB memory, synchronously. This code works
* but is not currently used.
*/
void viafb_dma_copy_out(unsigned int offset, dma_addr_t paddr, int len)
{
unsigned long flags;
int csr;
mutex_lock(&viafb_dma_lock);
init_completion(&viafb_dma_completion);
/*
* Program the controller.
*/
spin_lock_irqsave(&global_dev.reg_lock, flags);
viafb_mmio_write(VDMA_CSR0, VDMA_C_ENABLE|VDMA_C_DONE);
/* Enable ints; must happen after CSR0 write! */
viafb_mmio_write(VDMA_MR0, VDMA_MR_TDIE);
viafb_mmio_write(VDMA_MARL0, (int) (paddr & 0xfffffff0));
viafb_mmio_write(VDMA_MARH0, (int) ((paddr >> 28) & 0xfff));
/* Data sheet suggests DAR0 should be <<4, but it lies */
viafb_mmio_write(VDMA_DAR0, offset);
viafb_mmio_write(VDMA_DQWCR0, len >> 4);
viafb_mmio_write(VDMA_TMR0, 0);
viafb_mmio_write(VDMA_DPRL0, 0);
viafb_mmio_write(VDMA_DPRH0, 0);
viafb_mmio_write(VDMA_PMR0, 0);
csr = viafb_mmio_read(VDMA_CSR0);
viafb_mmio_write(VDMA_CSR0, VDMA_C_ENABLE|VDMA_C_START);
spin_unlock_irqrestore(&global_dev.reg_lock, flags);
/*
* Now we just wait until the interrupt handler says
* we're done.
*/
wait_for_completion_interruptible(&viafb_dma_completion);
viafb_mmio_write(VDMA_MR0, 0); /* Reset int enable */
mutex_unlock(&viafb_dma_lock);
}
EXPORT_SYMBOL_GPL(viafb_dma_copy_out);
#endif
/*
* Do a scatter/gather DMA copy from FB memory. You must have done
* a successful call to viafb_request_dma() first.
*/
int viafb_dma_copy_out_sg(unsigned int offset, struct scatterlist *sg, int nsg)
{
struct viafb_vx855_dma_descr *descr;
void *descrpages;
dma_addr_t descr_handle;
unsigned long flags;
int i;
struct scatterlist *sgentry;
dma_addr_t nextdesc;
/*
* Get a place to put the descriptors.
*/
descrpages = dma_alloc_coherent(&global_dev.pdev->dev,
nsg*sizeof(struct viafb_vx855_dma_descr),
&descr_handle, GFP_KERNEL);
if (descrpages == NULL) {
dev_err(&global_dev.pdev->dev, "Unable to get descr page.\n");
return -ENOMEM;
}
mutex_lock(&viafb_dma_lock);
/*
* Fill them in.
*/
descr = descrpages;
nextdesc = descr_handle + sizeof(struct viafb_vx855_dma_descr);
for_each_sg(sg, sgentry, nsg, i) {
dma_addr_t paddr = sg_dma_address(sgentry);
descr->addr_low = paddr & 0xfffffff0;
descr->addr_high = ((u64) paddr >> 32) & 0x0fff;
descr->fb_offset = offset;
descr->seg_size = sg_dma_len(sgentry) >> 4;
descr->tile_mode = 0;
descr->next_desc_low = (nextdesc&0xfffffff0) | VIAFB_DMA_MAGIC;
descr->next_desc_high = ((u64) nextdesc >> 32) & 0x0fff;
descr->pad = 0xffffffff; /* VIA driver does this */
offset += sg_dma_len(sgentry);
nextdesc += sizeof(struct viafb_vx855_dma_descr);
descr++;
}
descr[-1].next_desc_low = VIAFB_DMA_FINAL_SEGMENT|VIAFB_DMA_MAGIC;
/*
* Program the engine.
*/
spin_lock_irqsave(&global_dev.reg_lock, flags);
init_completion(&viafb_dma_completion);
viafb_mmio_write(VDMA_DQWCR0, 0);
viafb_mmio_write(VDMA_CSR0, VDMA_C_ENABLE|VDMA_C_DONE);
viafb_mmio_write(VDMA_MR0, VDMA_MR_TDIE | VDMA_MR_CHAIN);
viafb_mmio_write(VDMA_DPRL0, descr_handle | VIAFB_DMA_MAGIC);
viafb_mmio_write(VDMA_DPRH0,
(((u64)descr_handle >> 32) & 0x0fff) | 0xf0000);
(void) viafb_mmio_read(VDMA_CSR0);
viafb_mmio_write(VDMA_CSR0, VDMA_C_ENABLE|VDMA_C_START);
spin_unlock_irqrestore(&global_dev.reg_lock, flags);
/*
* Now we just wait until the interrupt handler says
* we're done. Except that, actually, we need to wait a little
* longer: the interrupts seem to jump the gun a little and we
* get corrupted frames sometimes.
*/
wait_for_completion_timeout(&viafb_dma_completion, 1);
msleep(1);
if ((viafb_mmio_read(VDMA_CSR0)&VDMA_C_DONE) == 0)
printk(KERN_ERR "VIA DMA timeout!\n");
/*
* Clean up and we're done.
*/
viafb_mmio_write(VDMA_CSR0, VDMA_C_DONE);
viafb_mmio_write(VDMA_MR0, 0); /* Reset int enable */
mutex_unlock(&viafb_dma_lock);
dma_free_coherent(&global_dev.pdev->dev,
nsg*sizeof(struct viafb_vx855_dma_descr), descrpages,
descr_handle);
return 0;
}
EXPORT_SYMBOL_GPL(viafb_dma_copy_out_sg);
#endif /* CONFIG_VIDEO_VIA_CAMERA */
/* ---------------------------------------------------------------------- */
/*
* Figure out how big our framebuffer memory is. Kind of ugly,
* but evidently we can't trust the information found in the
* fbdev configuration area.
*/
static u16 via_function3[] = {
CLE266_FUNCTION3, KM400_FUNCTION3, CN400_FUNCTION3, CN700_FUNCTION3,
CX700_FUNCTION3, KM800_FUNCTION3, KM890_FUNCTION3, P4M890_FUNCTION3,
P4M900_FUNCTION3, VX800_FUNCTION3, VX855_FUNCTION3, VX900_FUNCTION3,
};
/* Get the BIOS-configured framebuffer size from PCI configuration space
* of function 3 in the respective chipset */
static int viafb_get_fb_size_from_pci(int chip_type)
{
int i;
u8 offset = 0;
u32 FBSize;
u32 VideoMemSize;
/* search for the "FUNCTION3" device in this chipset */
for (i = 0; i < ARRAY_SIZE(via_function3); i++) {
struct pci_dev *pdev;
pdev = pci_get_device(PCI_VENDOR_ID_VIA, via_function3[i],
NULL);
if (!pdev)
continue;
DEBUG_MSG(KERN_INFO "Device ID = %x\n", pdev->device);
switch (pdev->device) {
case CLE266_FUNCTION3:
case KM400_FUNCTION3:
offset = 0xE0;
break;
case CN400_FUNCTION3:
case CN700_FUNCTION3:
case CX700_FUNCTION3:
case KM800_FUNCTION3:
case KM890_FUNCTION3:
case P4M890_FUNCTION3:
case P4M900_FUNCTION3:
case VX800_FUNCTION3:
case VX855_FUNCTION3:
case VX900_FUNCTION3:
/*case CN750_FUNCTION3: */
offset = 0xA0;
break;
}
if (!offset)
break;
pci_read_config_dword(pdev, offset, &FBSize);
pci_dev_put(pdev);
}
if (!offset) {
printk(KERN_ERR "cannot determine framebuffer size\n");
return -EIO;
}
FBSize = FBSize & 0x00007000;
DEBUG_MSG(KERN_INFO "FB Size = %x\n", FBSize);
if (chip_type < UNICHROME_CX700) {
switch (FBSize) {
case 0x00004000:
VideoMemSize = (16 << 20); /*16M */
break;
case 0x00005000:
VideoMemSize = (32 << 20); /*32M */
break;
case 0x00006000:
VideoMemSize = (64 << 20); /*64M */
break;
default:
VideoMemSize = (32 << 20); /*32M */
break;
}
} else {
switch (FBSize) {
case 0x00001000:
VideoMemSize = (8 << 20); /*8M */
break;
case 0x00002000:
VideoMemSize = (16 << 20); /*16M */
break;
case 0x00003000:
VideoMemSize = (32 << 20); /*32M */
break;
case 0x00004000:
VideoMemSize = (64 << 20); /*64M */
break;
case 0x00005000:
VideoMemSize = (128 << 20); /*128M */
break;
case 0x00006000:
VideoMemSize = (256 << 20); /*256M */
break;
case 0x00007000: /* Only on VX855/875 */
VideoMemSize = (512 << 20); /*512M */
break;
default:
VideoMemSize = (32 << 20); /*32M */
break;
}
}
return VideoMemSize;
}
/*
* Figure out and map our MMIO regions.
*/
static int via_pci_setup_mmio(struct viafb_dev *vdev)
{
int ret;
/*
* Hook up to the device registers. Note that we soldier
* on if it fails; the framebuffer can operate (without
* acceleration) without this region.
*/
vdev->engine_start = pci_resource_start(vdev->pdev, 1);
vdev->engine_len = pci_resource_len(vdev->pdev, 1);
vdev->engine_mmio = ioremap_nocache(vdev->engine_start,
vdev->engine_len);
if (vdev->engine_mmio == NULL)
dev_err(&vdev->pdev->dev,
"Unable to map engine MMIO; operation will be "
"slow and crippled.\n");
/*
* Map in framebuffer memory. For now, failure here is
* fatal. Unfortunately, in the absence of significant
* vmalloc space, failure here is also entirely plausible.
* Eventually we want to move away from mapping this
* entire region.
*/
if (vdev->chip_type == UNICHROME_VX900)
vdev->fbmem_start = pci_resource_start(vdev->pdev, 2);
else
vdev->fbmem_start = pci_resource_start(vdev->pdev, 0);
ret = vdev->fbmem_len = viafb_get_fb_size_from_pci(vdev->chip_type);
if (ret < 0)
goto out_unmap;
/* try to map less memory on failure, 8 MB should be still enough */
for (; vdev->fbmem_len >= 8 << 20; vdev->fbmem_len /= 2) {
vdev->fbmem = ioremap_wc(vdev->fbmem_start, vdev->fbmem_len);
if (vdev->fbmem)
break;
}
if (vdev->fbmem == NULL) {
ret = -ENOMEM;
goto out_unmap;
}
return 0;
out_unmap:
iounmap(vdev->engine_mmio);
return ret;
}
static void via_pci_teardown_mmio(struct viafb_dev *vdev)
{
iounmap(vdev->fbmem);
iounmap(vdev->engine_mmio);
}
/*
* Create our subsidiary devices.
*/
static struct viafb_subdev_info {
char *name;
struct platform_device *platdev;
} viafb_subdevs[] = {
{
.name = "viafb-gpio",
},
{
.name = "viafb-i2c",
},
#if IS_ENABLED(CONFIG_VIDEO_VIA_CAMERA)
{
.name = "viafb-camera",
},
#endif
};
#define N_SUBDEVS ARRAY_SIZE(viafb_subdevs)
static int via_create_subdev(struct viafb_dev *vdev,
struct viafb_subdev_info *info)
{
int ret;
info->platdev = platform_device_alloc(info->name, -1);
if (!info->platdev) {
dev_err(&vdev->pdev->dev, "Unable to allocate pdev %s\n",
info->name);
return -ENOMEM;
}
info->platdev->dev.parent = &vdev->pdev->dev;
info->platdev->dev.platform_data = vdev;
ret = platform_device_add(info->platdev);
if (ret) {
dev_err(&vdev->pdev->dev, "Unable to add pdev %s\n",
info->name);
platform_device_put(info->platdev);
info->platdev = NULL;
}
return ret;
}
static int via_setup_subdevs(struct viafb_dev *vdev)
{
int i;
/*
* Ignore return values. Even if some of the devices
* fail to be created, we'll still be able to use some
* of the rest.
*/
for (i = 0; i < N_SUBDEVS; i++)
via_create_subdev(vdev, viafb_subdevs + i);
return 0;
}
static void via_teardown_subdevs(void)
{
int i;
for (i = 0; i < N_SUBDEVS; i++)
if (viafb_subdevs[i].platdev) {
viafb_subdevs[i].platdev->dev.platform_data = NULL;
platform_device_unregister(viafb_subdevs[i].platdev);
}
}
/*
* Power management functions
*/
#ifdef CONFIG_PM
static LIST_HEAD(viafb_pm_hooks);
static DEFINE_MUTEX(viafb_pm_hooks_lock);
void viafb_pm_register(struct viafb_pm_hooks *hooks)
{
INIT_LIST_HEAD(&hooks->list);
mutex_lock(&viafb_pm_hooks_lock);
list_add_tail(&hooks->list, &viafb_pm_hooks);
mutex_unlock(&viafb_pm_hooks_lock);
}
EXPORT_SYMBOL_GPL(viafb_pm_register);
void viafb_pm_unregister(struct viafb_pm_hooks *hooks)
{
mutex_lock(&viafb_pm_hooks_lock);
list_del(&hooks->list);
mutex_unlock(&viafb_pm_hooks_lock);
}
EXPORT_SYMBOL_GPL(viafb_pm_unregister);
static int via_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct viafb_pm_hooks *hooks;
if (state.event != PM_EVENT_SUSPEND)
return 0;
/*
* "I've occasionally hit a few drivers that caused suspend
* failures, and each and every time it was a driver bug, and
* the right thing to do was to just ignore the error and suspend
* anyway - returning an error code and trying to undo the suspend
* is not what anybody ever really wants, even if our model
*_allows_ for it."
* -- Linus Torvalds, Dec. 7, 2009
*/
mutex_lock(&viafb_pm_hooks_lock);
list_for_each_entry_reverse(hooks, &viafb_pm_hooks, list)
hooks->suspend(hooks->private);
mutex_unlock(&viafb_pm_hooks_lock);
pci_save_state(pdev);
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
static int via_resume(struct pci_dev *pdev)
{
struct viafb_pm_hooks *hooks;
/* Get the bus side powered up */
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
if (pci_enable_device(pdev))
return 0;
pci_set_master(pdev);
/* Now bring back any subdevs */
mutex_lock(&viafb_pm_hooks_lock);
list_for_each_entry(hooks, &viafb_pm_hooks, list)
hooks->resume(hooks->private);
mutex_unlock(&viafb_pm_hooks_lock);
return 0;
}
#endif /* CONFIG_PM */
static int via_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int ret;
ret = pci_enable_device(pdev);
if (ret)
return ret;
/*
* Global device initialization.
*/
memset(&global_dev, 0, sizeof(global_dev));
global_dev.pdev = pdev;
global_dev.chip_type = ent->driver_data;
global_dev.port_cfg = adap_configs;
if (machine_is_olpc())
global_dev.port_cfg = olpc_adap_configs;
spin_lock_init(&global_dev.reg_lock);
ret = via_pci_setup_mmio(&global_dev);
if (ret)
goto out_disable;
/*
* Set up interrupts and create our subdevices. Continue even if
* some things fail.
*/
viafb_int_init();
via_setup_subdevs(&global_dev);
/*
* Set up the framebuffer device
*/
ret = via_fb_pci_probe(&global_dev);
if (ret)
goto out_subdevs;
return 0;
out_subdevs:
via_teardown_subdevs();
via_pci_teardown_mmio(&global_dev);
out_disable:
pci_disable_device(pdev);
return ret;
}
static void via_pci_remove(struct pci_dev *pdev)
{
via_teardown_subdevs();
via_fb_pci_remove(pdev);
via_pci_teardown_mmio(&global_dev);
pci_disable_device(pdev);
}
static struct pci_device_id via_pci_table[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_CLE266_DID),
.driver_data = UNICHROME_CLE266 },
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_K400_DID),
.driver_data = UNICHROME_K400 },
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_K800_DID),
.driver_data = UNICHROME_K800 },
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_PM800_DID),
.driver_data = UNICHROME_PM800 },
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_CN700_DID),
.driver_data = UNICHROME_CN700 },
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_CX700_DID),
.driver_data = UNICHROME_CX700 },
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_CN750_DID),
.driver_data = UNICHROME_CN750 },
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_K8M890_DID),
.driver_data = UNICHROME_K8M890 },
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_P4M890_DID),
.driver_data = UNICHROME_P4M890 },
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_P4M900_DID),
.driver_data = UNICHROME_P4M900 },
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_VX800_DID),
.driver_data = UNICHROME_VX800 },
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_VX855_DID),
.driver_data = UNICHROME_VX855 },
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_VX900_DID),
.driver_data = UNICHROME_VX900 },
{ }
};
MODULE_DEVICE_TABLE(pci, via_pci_table);
static struct pci_driver via_driver = {
.name = "viafb",
.id_table = via_pci_table,
.probe = via_pci_probe,
.remove = via_pci_remove,
#ifdef CONFIG_PM
.suspend = via_suspend,
.resume = via_resume,
#endif
};
static int __init via_core_init(void)
{
int ret;
ret = viafb_init();
if (ret)
return ret;
viafb_i2c_init();
viafb_gpio_init();
return pci_register_driver(&via_driver);
}
static void __exit via_core_exit(void)
{
pci_unregister_driver(&via_driver);
viafb_gpio_exit();
viafb_i2c_exit();
viafb_exit();
}
module_init(via_core_init);
module_exit(via_core_exit);