linux/arch/x86/kernel/head.c

72 lines
2.2 KiB
C
Raw Normal View History

#include <linux/kernel.h>
#include <linux/init.h>
x86: Use memblock to replace early_res 1. replace find_e820_area with memblock_find_in_range 2. replace reserve_early with memblock_x86_reserve_range 3. replace free_early with memblock_x86_free_range. 4. NO_BOOTMEM will switch to use memblock too. 5. use _e820, _early wrap in the patch, in following patch, will replace them all 6. because memblock_x86_free_range support partial free, we can remove some special care 7. Need to make sure that memblock_find_in_range() is called after memblock_x86_fill() so adjust some calling later in setup.c::setup_arch() -- corruption_check and mptable_update -v2: Move reserve_brk() early Before fill_memblock_area, to avoid overlap between brk and memblock_find_in_range() that could happen We have more then 128 RAM entry in E820 tables, and memblock_x86_fill() could use memblock_find_in_range() to find a new place for memblock.memory.region array. and We don't need to use extend_brk() after fill_memblock_area() So move reserve_brk() early before fill_memblock_area(). -v3: Move find_smp_config early To make sure memblock_find_in_range not find wrong place, if BIOS doesn't put mptable in right place. -v4: Treat RESERVED_KERN as RAM in memblock.memory. and they are already in memblock.reserved already.. use __NOT_KEEP_MEMBLOCK to make sure memblock related code could be freed later. -v5: Generic version __memblock_find_in_range() is going from high to low, and for 32bit active_region for 32bit does include high pages need to replace the limit with memblock.default_alloc_limit, aka get_max_mapped() -v6: Use current_limit instead -v7: check with MEMBLOCK_ERROR instead of -1ULL or -1L -v8: Set memblock_can_resize early to handle EFI with more RAM entries -v9: update after kmemleak changes in mainline Suggested-by: David S. Miller <davem@davemloft.net> Suggested-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-08-26 04:39:17 +08:00
#include <linux/memblock.h>
#include <asm/setup.h>
#include <asm/bios_ebda.h>
/*
* The BIOS places the EBDA/XBDA at the top of conventional
* memory, and usually decreases the reported amount of
* conventional memory (int 0x12) too. This also contains a
* workaround for Dell systems that neglect to reserve EBDA.
* The same workaround also avoids a problem with the AMD768MPX
* chipset: reserve a page before VGA to prevent PCI prefetch
* into it (errata #56). Usually the page is reserved anyways,
* unless you have no PS/2 mouse plugged in.
*
* This functions is deliberately very conservative. Losing
* memory in the bottom megabyte is rarely a problem, as long
* as we have enough memory to install the trampoline. Using
* memory that is in use by the BIOS or by some DMA device
* the BIOS didn't shut down *is* a big problem.
*/
#define BIOS_LOWMEM_KILOBYTES 0x413
#define LOWMEM_CAP 0x9f000U /* Absolute maximum */
#define INSANE_CUTOFF 0x20000U /* Less than this = insane */
void __init reserve_ebda_region(void)
{
unsigned int lowmem, ebda_addr;
/*
* To determine the position of the EBDA and the
* end of conventional memory, we need to look at
* the BIOS data area. In a paravirtual environment
* that area is absent. We'll just have to assume
* that the paravirt case can handle memory setup
* correctly, without our help.
*/
if (paravirt_enabled())
return;
/* end of low (conventional) memory */
lowmem = *(unsigned short *)__va(BIOS_LOWMEM_KILOBYTES);
lowmem <<= 10;
/* start of EBDA area */
ebda_addr = get_bios_ebda();
/*
* Note: some old Dells seem to need 4k EBDA without
* reporting so, so just consider the memory above 0x9f000
* to be off limits (bugzilla 2990).
*/
/* If the EBDA address is below 128K, assume it is bogus */
if (ebda_addr < INSANE_CUTOFF)
ebda_addr = LOWMEM_CAP;
/* If lowmem is less than 128K, assume it is bogus */
if (lowmem < INSANE_CUTOFF)
lowmem = LOWMEM_CAP;
/* Use the lower of the lowmem and EBDA markers as the cutoff */
lowmem = min(lowmem, ebda_addr);
lowmem = min(lowmem, LOWMEM_CAP); /* Absolute cap */
/* reserve all memory between lowmem and the 1MB mark */
memblock_reserve(lowmem, 0x100000 - lowmem);
}