linux/drivers/net/wireless/rtlwifi/rtl8192cu/mac.c

1119 lines
32 KiB
C
Raw Normal View History

/******************************************************************************
*
* Copyright(c) 2009-2012 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* wlanfae <wlanfae@realtek.com>
* Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
* Hsinchu 300, Taiwan.
*
* Larry Finger <Larry.Finger@lwfinger.net>
*
****************************************************************************/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include "../wifi.h"
#include "../pci.h"
#include "../usb.h"
#include "../ps.h"
#include "../cam.h"
#include "reg.h"
#include "def.h"
#include "phy.h"
#include "rf.h"
#include "dm.h"
#include "mac.h"
#include "trx.h"
/* macro to shorten lines */
#define LINK_Q ui_link_quality
#define RX_EVM rx_evm_percentage
#define RX_SIGQ rx_mimo_signalquality
void rtl92c_read_chip_version(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
enum version_8192c chip_version = VERSION_UNKNOWN;
const char *versionid;
u32 value32;
value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
if (value32 & TRP_VAUX_EN) {
chip_version = (value32 & TYPE_ID) ? VERSION_TEST_CHIP_92C :
VERSION_TEST_CHIP_88C;
} else {
/* Normal mass production chip. */
chip_version = NORMAL_CHIP;
chip_version |= ((value32 & TYPE_ID) ? CHIP_92C : 0);
chip_version |= ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : 0);
/* RTL8723 with BT function. */
chip_version |= ((value32 & BT_FUNC) ? CHIP_8723 : 0);
if (IS_VENDOR_UMC(chip_version))
chip_version |= ((value32 & CHIP_VER_RTL_MASK) ?
CHIP_VENDOR_UMC_B_CUT : 0);
if (IS_92C_SERIAL(chip_version)) {
value32 = rtl_read_dword(rtlpriv, REG_HPON_FSM);
chip_version |= ((CHIP_BONDING_IDENTIFIER(value32) ==
CHIP_BONDING_92C_1T2R) ? CHIP_92C_1T2R : 0);
} else if (IS_8723_SERIES(chip_version)) {
value32 = rtl_read_dword(rtlpriv, REG_GPIO_OUTSTS);
chip_version |= ((value32 & RF_RL_ID) ?
CHIP_8723_DRV_REV : 0);
}
}
rtlhal->version = (enum version_8192c)chip_version;
pr_info("Chip version 0x%x\n", chip_version);
switch (rtlhal->version) {
case VERSION_NORMAL_TSMC_CHIP_92C_1T2R:
versionid = "NORMAL_B_CHIP_92C";
break;
case VERSION_NORMAL_TSMC_CHIP_92C:
versionid = "NORMAL_TSMC_CHIP_92C";
break;
case VERSION_NORMAL_TSMC_CHIP_88C:
versionid = "NORMAL_TSMC_CHIP_88C";
break;
case VERSION_NORMAL_UMC_CHIP_92C_1T2R_A_CUT:
versionid = "NORMAL_UMC_CHIP_i92C_1T2R_A_CUT";
break;
case VERSION_NORMAL_UMC_CHIP_92C_A_CUT:
versionid = "NORMAL_UMC_CHIP_92C_A_CUT";
break;
case VERSION_NORMAL_UMC_CHIP_88C_A_CUT:
versionid = "NORMAL_UMC_CHIP_88C_A_CUT";
break;
case VERSION_NORMAL_UMC_CHIP_92C_1T2R_B_CUT:
versionid = "NORMAL_UMC_CHIP_92C_1T2R_B_CUT";
break;
case VERSION_NORMAL_UMC_CHIP_92C_B_CUT:
versionid = "NORMAL_UMC_CHIP_92C_B_CUT";
break;
case VERSION_NORMAL_UMC_CHIP_88C_B_CUT:
versionid = "NORMAL_UMC_CHIP_88C_B_CUT";
break;
case VERSION_NORMA_UMC_CHIP_8723_1T1R_A_CUT:
versionid = "NORMAL_UMC_CHIP_8723_1T1R_A_CUT";
break;
case VERSION_NORMA_UMC_CHIP_8723_1T1R_B_CUT:
versionid = "NORMAL_UMC_CHIP_8723_1T1R_B_CUT";
break;
case VERSION_TEST_CHIP_92C:
versionid = "TEST_CHIP_92C";
break;
case VERSION_TEST_CHIP_88C:
versionid = "TEST_CHIP_88C";
break;
default:
versionid = "UNKNOWN";
break;
}
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Chip Version ID: %s\n", versionid);
if (IS_92C_SERIAL(rtlhal->version))
rtlphy->rf_type =
(IS_92C_1T2R(rtlhal->version)) ? RF_1T2R : RF_2T2R;
else
rtlphy->rf_type = RF_1T1R;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"Chip RF Type: %s\n",
rtlphy->rf_type == RF_2T2R ? "RF_2T2R" : "RF_1T1R");
if (get_rf_type(rtlphy) == RF_1T1R)
rtlpriv->dm.rfpath_rxenable[0] = true;
else
rtlpriv->dm.rfpath_rxenable[0] =
rtlpriv->dm.rfpath_rxenable[1] = true;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "VersionID = 0x%4x\n",
rtlhal->version);
}
/**
* writeLLT - LLT table write access
* @io: io callback
* @address: LLT logical address.
* @data: LLT data content
*
* Realtek hardware access function.
*
*/
bool rtl92c_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
bool status = true;
long count = 0;
u32 value = _LLT_INIT_ADDR(address) |
_LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
do {
value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
break;
if (count > POLLING_LLT_THRESHOLD) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"Failed to polling write LLT done at address %d! _LLT_OP_VALUE(%x)\n",
address, _LLT_OP_VALUE(value));
status = false;
break;
}
} while (++count);
return status;
}
/**
* rtl92c_init_LLT_table - Init LLT table
* @io: io callback
* @boundary:
*
* Realtek hardware access function.
*
*/
bool rtl92c_init_llt_table(struct ieee80211_hw *hw, u32 boundary)
{
bool rst = true;
u32 i;
for (i = 0; i < (boundary - 1); i++) {
rst = rtl92c_llt_write(hw, i , i + 1);
if (true != rst) {
pr_err("===> %s #1 fail\n", __func__);
return rst;
}
}
/* end of list */
rst = rtl92c_llt_write(hw, (boundary - 1), 0xFF);
if (true != rst) {
pr_err("===> %s #2 fail\n", __func__);
return rst;
}
/* Make the other pages as ring buffer
* This ring buffer is used as beacon buffer if we config this MAC
* as two MAC transfer.
* Otherwise used as local loopback buffer.
*/
for (i = boundary; i < LLT_LAST_ENTRY_OF_TX_PKT_BUFFER; i++) {
rst = rtl92c_llt_write(hw, i, (i + 1));
if (true != rst) {
pr_err("===> %s #3 fail\n", __func__);
return rst;
}
}
/* Let last entry point to the start entry of ring buffer */
rst = rtl92c_llt_write(hw, LLT_LAST_ENTRY_OF_TX_PKT_BUFFER, boundary);
if (true != rst) {
pr_err("===> %s #4 fail\n", __func__);
return rst;
}
return rst;
}
void rtl92c_set_key(struct ieee80211_hw *hw, u32 key_index,
u8 *p_macaddr, bool is_group, u8 enc_algo,
bool is_wepkey, bool clear_all)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u8 *macaddr = p_macaddr;
u32 entry_id = 0;
bool is_pairwise = false;
static u8 cam_const_addr[4][6] = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
};
static u8 cam_const_broad[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
if (clear_all) {
u8 idx = 0;
u8 cam_offset = 0;
u8 clear_number = 5;
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
for (idx = 0; idx < clear_number; idx++) {
rtl_cam_mark_invalid(hw, cam_offset + idx);
rtl_cam_empty_entry(hw, cam_offset + idx);
if (idx < 5) {
memset(rtlpriv->sec.key_buf[idx], 0,
MAX_KEY_LEN);
rtlpriv->sec.key_len[idx] = 0;
}
}
} else {
switch (enc_algo) {
case WEP40_ENCRYPTION:
enc_algo = CAM_WEP40;
break;
case WEP104_ENCRYPTION:
enc_algo = CAM_WEP104;
break;
case TKIP_ENCRYPTION:
enc_algo = CAM_TKIP;
break;
case AESCCMP_ENCRYPTION:
enc_algo = CAM_AES;
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"illegal switch case\n");
enc_algo = CAM_TKIP;
break;
}
if (is_wepkey || rtlpriv->sec.use_defaultkey) {
macaddr = cam_const_addr[key_index];
entry_id = key_index;
} else {
if (is_group) {
macaddr = cam_const_broad;
entry_id = key_index;
} else {
key_index = PAIRWISE_KEYIDX;
entry_id = CAM_PAIRWISE_KEY_POSITION;
is_pairwise = true;
}
}
if (rtlpriv->sec.key_len[key_index] == 0) {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"delete one entry\n");
rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
} else {
RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
"The insert KEY length is %d\n",
rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
"The insert KEY is %x %x\n",
rtlpriv->sec.key_buf[0][0],
rtlpriv->sec.key_buf[0][1]);
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"add one entry\n");
if (is_pairwise) {
RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
"Pairwise Key content",
rtlpriv->sec.pairwise_key,
rtlpriv->sec.
key_len[PAIRWISE_KEYIDX]);
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"set Pairwise key\n");
rtl_cam_add_one_entry(hw, macaddr, key_index,
entry_id, enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.
key_buf[key_index]);
} else {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"set group key\n");
if (mac->opmode == NL80211_IFTYPE_ADHOC) {
rtl_cam_add_one_entry(hw,
rtlefuse->dev_addr,
PAIRWISE_KEYIDX,
CAM_PAIRWISE_KEY_POSITION,
enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf
[entry_id]);
}
rtl_cam_add_one_entry(hw, macaddr, key_index,
entry_id, enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf[entry_id]);
}
}
}
}
u32 rtl92c_get_txdma_status(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
return rtl_read_dword(rtlpriv, REG_TXDMA_STATUS);
}
void rtl92c_enable_interrupt(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));
if (IS_HARDWARE_TYPE_8192CE(rtlhal)) {
rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] &
0xFFFFFFFF);
rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] &
0xFFFFFFFF);
} else {
rtl_write_dword(rtlpriv, REG_HIMR, rtlusb->irq_mask[0] &
0xFFFFFFFF);
rtl_write_dword(rtlpriv, REG_HIMRE, rtlusb->irq_mask[1] &
0xFFFFFFFF);
}
}
void rtl92c_init_interrupt(struct ieee80211_hw *hw)
{
rtl92c_enable_interrupt(hw);
}
void rtl92c_disable_interrupt(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED);
rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED);
}
void rtl92c_set_qos(struct ieee80211_hw *hw, int aci)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u32 u4b_ac_param;
rtl92c_dm_init_edca_turbo(hw);
u4b_ac_param = (u32) mac->ac[aci].aifs;
u4b_ac_param |=
((u32) le16_to_cpu(mac->ac[aci].cw_min) & 0xF) <<
AC_PARAM_ECW_MIN_OFFSET;
u4b_ac_param |=
((u32) le16_to_cpu(mac->ac[aci].cw_max) & 0xF) <<
AC_PARAM_ECW_MAX_OFFSET;
u4b_ac_param |= (u32) le16_to_cpu(mac->ac[aci].tx_op) <<
AC_PARAM_TXOP_OFFSET;
RT_TRACE(rtlpriv, COMP_QOS, DBG_LOUD, "queue:%x, ac_param:%x\n",
aci, u4b_ac_param);
switch (aci) {
case AC1_BK:
rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, u4b_ac_param);
break;
case AC0_BE:
rtl_write_dword(rtlpriv, REG_EDCA_BE_PARAM, u4b_ac_param);
break;
case AC2_VI:
rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, u4b_ac_param);
break;
case AC3_VO:
rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, u4b_ac_param);
break;
default:
RT_ASSERT(false, "invalid aci: %d !\n", aci);
break;
}
}
/*-------------------------------------------------------------------------
* HW MAC Address
*-------------------------------------------------------------------------*/
void rtl92c_set_mac_addr(struct ieee80211_hw *hw, const u8 *addr)
{
u32 i;
struct rtl_priv *rtlpriv = rtl_priv(hw);
for (i = 0 ; i < ETH_ALEN ; i++)
rtl_write_byte(rtlpriv, (REG_MACID + i), *(addr+i));
RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG,
"MAC Address: %02X-%02X-%02X-%02X-%02X-%02X\n",
rtl_read_byte(rtlpriv, REG_MACID),
rtl_read_byte(rtlpriv, REG_MACID+1),
rtl_read_byte(rtlpriv, REG_MACID+2),
rtl_read_byte(rtlpriv, REG_MACID+3),
rtl_read_byte(rtlpriv, REG_MACID+4),
rtl_read_byte(rtlpriv, REG_MACID+5));
}
void rtl92c_init_driver_info_size(struct ieee80211_hw *hw, u8 size)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, size);
}
int rtl92c_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
{
u8 value;
struct rtl_priv *rtlpriv = rtl_priv(hw);
switch (type) {
case NL80211_IFTYPE_UNSPECIFIED:
value = NT_NO_LINK;
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
"Set Network type to NO LINK!\n");
break;
case NL80211_IFTYPE_ADHOC:
value = NT_LINK_AD_HOC;
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
"Set Network type to Ad Hoc!\n");
break;
case NL80211_IFTYPE_STATION:
value = NT_LINK_AP;
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
"Set Network type to STA!\n");
break;
case NL80211_IFTYPE_AP:
value = NT_AS_AP;
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
"Set Network type to AP!\n");
break;
default:
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
"Network type %d not supported!\n", type);
return -EOPNOTSUPP;
}
rtl_write_byte(rtlpriv, (REG_CR + 2), value);
return 0;
}
void rtl92c_init_network_type(struct ieee80211_hw *hw)
{
rtl92c_set_network_type(hw, NL80211_IFTYPE_UNSPECIFIED);
}
void rtl92c_init_adaptive_ctrl(struct ieee80211_hw *hw)
{
u16 value16;
u32 value32;
struct rtl_priv *rtlpriv = rtl_priv(hw);
/* Response Rate Set */
value32 = rtl_read_dword(rtlpriv, REG_RRSR);
value32 &= ~RATE_BITMAP_ALL;
value32 |= RATE_RRSR_CCK_ONLY_1M;
rtl_write_dword(rtlpriv, REG_RRSR, value32);
/* SIFS (used in NAV) */
value16 = _SPEC_SIFS_CCK(0x10) | _SPEC_SIFS_OFDM(0x10);
rtl_write_word(rtlpriv, REG_SPEC_SIFS, value16);
/* Retry Limit */
value16 = _LRL(0x30) | _SRL(0x30);
rtl_write_dword(rtlpriv, REG_RL, value16);
}
void rtl92c_init_rate_fallback(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
/* Set Data Auto Rate Fallback Retry Count register. */
rtl_write_dword(rtlpriv, REG_DARFRC, 0x00000000);
rtl_write_dword(rtlpriv, REG_DARFRC+4, 0x10080404);
rtl_write_dword(rtlpriv, REG_RARFRC, 0x04030201);
rtl_write_dword(rtlpriv, REG_RARFRC+4, 0x08070605);
}
static void rtl92c_set_cck_sifs(struct ieee80211_hw *hw, u8 trx_sifs,
u8 ctx_sifs)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl_write_byte(rtlpriv, REG_SIFS_CCK, trx_sifs);
rtl_write_byte(rtlpriv, (REG_SIFS_CCK + 1), ctx_sifs);
}
static void rtl92c_set_ofdm_sifs(struct ieee80211_hw *hw, u8 trx_sifs,
u8 ctx_sifs)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl_write_byte(rtlpriv, REG_SIFS_OFDM, trx_sifs);
rtl_write_byte(rtlpriv, (REG_SIFS_OFDM + 1), ctx_sifs);
}
void rtl92c_init_edca_param(struct ieee80211_hw *hw,
u16 queue, u16 txop, u8 cw_min, u8 cw_max, u8 aifs)
{
/* sequence: VO, VI, BE, BK ==> the same as 92C hardware design.
* referenc : enum nl80211_txq_q or ieee80211_set_wmm_default function.
*/
u32 value;
struct rtl_priv *rtlpriv = rtl_priv(hw);
value = (u32)aifs;
value |= ((u32)cw_min & 0xF) << 8;
value |= ((u32)cw_max & 0xF) << 12;
value |= (u32)txop << 16;
/* 92C hardware register sequence is the same as queue number. */
rtl_write_dword(rtlpriv, (REG_EDCA_VO_PARAM + (queue * 4)), value);
}
void rtl92c_init_edca(struct ieee80211_hw *hw)
{
u16 value16;
struct rtl_priv *rtlpriv = rtl_priv(hw);
/* disable EDCCA count down, to reduce collison and retry */
value16 = rtl_read_word(rtlpriv, REG_RD_CTRL);
value16 |= DIS_EDCA_CNT_DWN;
rtl_write_word(rtlpriv, REG_RD_CTRL, value16);
/* Update SIFS timing. ??????????
* pHalData->SifsTime = 0x0e0e0a0a; */
rtl92c_set_cck_sifs(hw, 0xa, 0xa);
rtl92c_set_ofdm_sifs(hw, 0xe, 0xe);
/* Set CCK/OFDM SIFS to be 10us. */
rtl_write_word(rtlpriv, REG_SIFS_CCK, 0x0a0a);
rtl_write_word(rtlpriv, REG_SIFS_OFDM, 0x1010);
rtl_write_word(rtlpriv, REG_PROT_MODE_CTRL, 0x0204);
rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x014004);
/* TXOP */
rtl_write_dword(rtlpriv, REG_EDCA_BE_PARAM, 0x005EA42B);
rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0x0000A44F);
rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x005EA324);
rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x002FA226);
/* PIFS */
rtl_write_byte(rtlpriv, REG_PIFS, 0x1C);
/* AGGR BREAK TIME Register */
rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16);
rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0040);
rtl_write_byte(rtlpriv, REG_BCNDMATIM, 0x02);
rtl_write_byte(rtlpriv, REG_ATIMWND, 0x02);
}
void rtl92c_init_ampdu_aggregation(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x99997631);
rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16);
/* init AMPDU aggregation number, tuning for Tx's TP, */
rtl_write_word(rtlpriv, 0x4CA, 0x0708);
}
void rtl92c_init_beacon_max_error(struct ieee80211_hw *hw, bool infra_mode)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xFF);
}
void rtl92c_init_rdg_setting(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl_write_byte(rtlpriv, REG_RD_CTRL, 0xFF);
rtl_write_word(rtlpriv, REG_RD_NAV_NXT, 0x200);
rtl_write_byte(rtlpriv, REG_RD_RESP_PKT_TH, 0x05);
}
void rtl92c_init_retry_function(struct ieee80211_hw *hw)
{
u8 value8;
struct rtl_priv *rtlpriv = rtl_priv(hw);
value8 = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL);
value8 |= EN_AMPDU_RTY_NEW;
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL, value8);
/* Set ACK timeout */
rtl_write_byte(rtlpriv, REG_ACKTO, 0x40);
}
void rtl92c_init_beacon_parameters(struct ieee80211_hw *hw,
enum version_8192c version)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
rtl_write_word(rtlpriv, REG_TBTT_PROHIBIT, 0x6404);/* ms */
rtl_write_byte(rtlpriv, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME);/*ms*/
rtl_write_byte(rtlpriv, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME);
if (IS_NORMAL_CHIP(rtlhal->version))
rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660F);
else
rtl_write_word(rtlpriv, REG_BCNTCFG, 0x66FF);
}
void rtl92c_disable_fast_edca(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl_write_word(rtlpriv, REG_FAST_EDCA_CTRL, 0);
}
void rtl92c_set_min_space(struct ieee80211_hw *hw, bool is2T)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 value = is2T ? MAX_MSS_DENSITY_2T : MAX_MSS_DENSITY_1T;
rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, value);
}
u16 rtl92c_get_mgt_filter(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
return rtl_read_word(rtlpriv, REG_RXFLTMAP0);
}
void rtl92c_set_mgt_filter(struct ieee80211_hw *hw, u16 filter)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl_write_word(rtlpriv, REG_RXFLTMAP0, filter);
}
u16 rtl92c_get_ctrl_filter(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
return rtl_read_word(rtlpriv, REG_RXFLTMAP1);
}
void rtl92c_set_ctrl_filter(struct ieee80211_hw *hw, u16 filter)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl_write_word(rtlpriv, REG_RXFLTMAP1, filter);
}
u16 rtl92c_get_data_filter(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
return rtl_read_word(rtlpriv, REG_RXFLTMAP2);
}
void rtl92c_set_data_filter(struct ieee80211_hw *hw, u16 filter)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl_write_word(rtlpriv, REG_RXFLTMAP2, filter);
}
/*==============================================================*/
static u8 _rtl92c_query_rxpwrpercentage(char antpower)
{
if ((antpower <= -100) || (antpower >= 20))
return 0;
else if (antpower >= 0)
return 100;
else
return 100 + antpower;
}
static u8 _rtl92c_evm_db_to_percentage(char value)
{
char ret_val;
ret_val = value;
if (ret_val >= 0)
ret_val = 0;
if (ret_val <= -33)
ret_val = -33;
ret_val = 0 - ret_val;
ret_val *= 3;
if (ret_val == 99)
ret_val = 100;
return ret_val;
}
static long _rtl92c_translate_todbm(struct ieee80211_hw *hw,
u8 signal_strength_index)
{
long signal_power;
signal_power = (long)((signal_strength_index + 1) >> 1);
signal_power -= 95;
return signal_power;
}
static long _rtl92c_signal_scale_mapping(struct ieee80211_hw *hw,
long currsig)
{
long retsig;
if (currsig >= 61 && currsig <= 100)
retsig = 90 + ((currsig - 60) / 4);
else if (currsig >= 41 && currsig <= 60)
retsig = 78 + ((currsig - 40) / 2);
else if (currsig >= 31 && currsig <= 40)
retsig = 66 + (currsig - 30);
else if (currsig >= 21 && currsig <= 30)
retsig = 54 + (currsig - 20);
else if (currsig >= 5 && currsig <= 20)
retsig = 42 + (((currsig - 5) * 2) / 3);
else if (currsig == 4)
retsig = 36;
else if (currsig == 3)
retsig = 27;
else if (currsig == 2)
retsig = 18;
else if (currsig == 1)
retsig = 9;
else
retsig = currsig;
return retsig;
}
static void _rtl92c_query_rxphystatus(struct ieee80211_hw *hw,
struct rtl_stats *pstats,
struct rx_desc_92c *pdesc,
struct rx_fwinfo_92c *p_drvinfo,
bool packet_match_bssid,
bool packet_toself,
bool packet_beacon)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct phy_sts_cck_8192s_t *cck_buf;
s8 rx_pwr_all = 0, rx_pwr[4];
u8 rf_rx_num = 0, evm, pwdb_all;
u8 i, max_spatial_stream;
u32 rssi, total_rssi = 0;
bool in_powersavemode = false;
bool is_cck_rate;
is_cck_rate = RX_HAL_IS_CCK_RATE(pdesc);
pstats->packet_matchbssid = packet_match_bssid;
pstats->packet_toself = packet_toself;
pstats->is_cck = is_cck_rate;
pstats->packet_beacon = packet_beacon;
pstats->is_cck = is_cck_rate;
pstats->RX_SIGQ[0] = -1;
pstats->RX_SIGQ[1] = -1;
if (is_cck_rate) {
u8 report, cck_highpwr;
cck_buf = (struct phy_sts_cck_8192s_t *)p_drvinfo;
if (!in_powersavemode)
cck_highpwr = rtlphy->cck_high_power;
else
cck_highpwr = false;
if (!cck_highpwr) {
u8 cck_agc_rpt = cck_buf->cck_agc_rpt;
report = cck_buf->cck_agc_rpt & 0xc0;
report = report >> 6;
switch (report) {
case 0x3:
rx_pwr_all = -46 - (cck_agc_rpt & 0x3e);
break;
case 0x2:
rx_pwr_all = -26 - (cck_agc_rpt & 0x3e);
break;
case 0x1:
rx_pwr_all = -12 - (cck_agc_rpt & 0x3e);
break;
case 0x0:
rx_pwr_all = 16 - (cck_agc_rpt & 0x3e);
break;
}
} else {
u8 cck_agc_rpt = cck_buf->cck_agc_rpt;
report = p_drvinfo->cfosho[0] & 0x60;
report = report >> 5;
switch (report) {
case 0x3:
rx_pwr_all = -46 - ((cck_agc_rpt & 0x1f) << 1);
break;
case 0x2:
rx_pwr_all = -26 - ((cck_agc_rpt & 0x1f) << 1);
break;
case 0x1:
rx_pwr_all = -12 - ((cck_agc_rpt & 0x1f) << 1);
break;
case 0x0:
rx_pwr_all = 16 - ((cck_agc_rpt & 0x1f) << 1);
break;
}
}
pwdb_all = _rtl92c_query_rxpwrpercentage(rx_pwr_all);
pstats->rx_pwdb_all = pwdb_all;
pstats->recvsignalpower = rx_pwr_all;
if (packet_match_bssid) {
u8 sq;
if (pstats->rx_pwdb_all > 40)
sq = 100;
else {
sq = cck_buf->sq_rpt;
if (sq > 64)
sq = 0;
else if (sq < 20)
sq = 100;
else
sq = ((64 - sq) * 100) / 44;
}
pstats->signalquality = sq;
pstats->RX_SIGQ[0] = sq;
pstats->RX_SIGQ[1] = -1;
}
} else {
rtlpriv->dm.rfpath_rxenable[0] =
rtlpriv->dm.rfpath_rxenable[1] = true;
for (i = RF90_PATH_A; i < RF90_PATH_MAX; i++) {
if (rtlpriv->dm.rfpath_rxenable[i])
rf_rx_num++;
rx_pwr[i] =
((p_drvinfo->gain_trsw[i] & 0x3f) * 2) - 110;
rssi = _rtl92c_query_rxpwrpercentage(rx_pwr[i]);
total_rssi += rssi;
rtlpriv->stats.rx_snr_db[i] =
(long)(p_drvinfo->rxsnr[i] / 2);
if (packet_match_bssid)
pstats->rx_mimo_signalstrength[i] = (u8) rssi;
}
rx_pwr_all = ((p_drvinfo->pwdb_all >> 1) & 0x7f) - 110;
pwdb_all = _rtl92c_query_rxpwrpercentage(rx_pwr_all);
pstats->rx_pwdb_all = pwdb_all;
pstats->rxpower = rx_pwr_all;
pstats->recvsignalpower = rx_pwr_all;
if (GET_RX_DESC_RX_MCS(pdesc) &&
GET_RX_DESC_RX_MCS(pdesc) >= DESC92_RATEMCS8 &&
GET_RX_DESC_RX_MCS(pdesc) <= DESC92_RATEMCS15)
max_spatial_stream = 2;
else
max_spatial_stream = 1;
for (i = 0; i < max_spatial_stream; i++) {
evm = _rtl92c_evm_db_to_percentage(p_drvinfo->rxevm[i]);
if (packet_match_bssid) {
if (i == 0)
pstats->signalquality =
(u8) (evm & 0xff);
pstats->RX_SIGQ[i] =
(u8) (evm & 0xff);
}
}
}
if (is_cck_rate)
pstats->signalstrength =
(u8) (_rtl92c_signal_scale_mapping(hw, pwdb_all));
else if (rf_rx_num != 0)
pstats->signalstrength =
(u8) (_rtl92c_signal_scale_mapping
(hw, total_rssi /= rf_rx_num));
}
static void _rtl92c_process_ui_rssi(struct ieee80211_hw *hw,
struct rtl_stats *pstats)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
u8 rfpath;
u32 last_rssi, tmpval;
if (pstats->packet_toself || pstats->packet_beacon) {
rtlpriv->stats.rssi_calculate_cnt++;
if (rtlpriv->stats.ui_rssi.total_num++ >=
PHY_RSSI_SLID_WIN_MAX) {
rtlpriv->stats.ui_rssi.total_num =
PHY_RSSI_SLID_WIN_MAX;
last_rssi =
rtlpriv->stats.ui_rssi.elements[rtlpriv->
stats.ui_rssi.index];
rtlpriv->stats.ui_rssi.total_val -= last_rssi;
}
rtlpriv->stats.ui_rssi.total_val += pstats->signalstrength;
rtlpriv->stats.ui_rssi.elements[rtlpriv->stats.ui_rssi.
index++] = pstats->signalstrength;
if (rtlpriv->stats.ui_rssi.index >= PHY_RSSI_SLID_WIN_MAX)
rtlpriv->stats.ui_rssi.index = 0;
tmpval = rtlpriv->stats.ui_rssi.total_val /
rtlpriv->stats.ui_rssi.total_num;
rtlpriv->stats.signal_strength =
_rtl92c_translate_todbm(hw, (u8) tmpval);
pstats->rssi = rtlpriv->stats.signal_strength;
}
if (!pstats->is_cck && pstats->packet_toself) {
for (rfpath = RF90_PATH_A; rfpath < rtlphy->num_total_rfpath;
rfpath++) {
if (!rtl8192_phy_check_is_legal_rfpath(hw, rfpath))
continue;
if (rtlpriv->stats.rx_rssi_percentage[rfpath] == 0) {
rtlpriv->stats.rx_rssi_percentage[rfpath] =
pstats->rx_mimo_signalstrength[rfpath];
}
if (pstats->rx_mimo_signalstrength[rfpath] >
rtlpriv->stats.rx_rssi_percentage[rfpath]) {
rtlpriv->stats.rx_rssi_percentage[rfpath] =
((rtlpriv->stats.
rx_rssi_percentage[rfpath] *
(RX_SMOOTH_FACTOR - 1)) +
(pstats->rx_mimo_signalstrength[rfpath])) /
(RX_SMOOTH_FACTOR);
rtlpriv->stats.rx_rssi_percentage[rfpath] =
rtlpriv->stats.rx_rssi_percentage[rfpath] +
1;
} else {
rtlpriv->stats.rx_rssi_percentage[rfpath] =
((rtlpriv->stats.
rx_rssi_percentage[rfpath] *
(RX_SMOOTH_FACTOR - 1)) +
(pstats->rx_mimo_signalstrength[rfpath])) /
(RX_SMOOTH_FACTOR);
}
}
}
}
static void _rtl92c_update_rxsignalstatistics(struct ieee80211_hw *hw,
struct rtl_stats *pstats)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
int weighting = 0;
if (rtlpriv->stats.recv_signal_power == 0)
rtlpriv->stats.recv_signal_power = pstats->recvsignalpower;
if (pstats->recvsignalpower > rtlpriv->stats.recv_signal_power)
weighting = 5;
else if (pstats->recvsignalpower < rtlpriv->stats.recv_signal_power)
weighting = (-5);
rtlpriv->stats.recv_signal_power =
(rtlpriv->stats.recv_signal_power * 5 +
pstats->recvsignalpower + weighting) / 6;
}
static void _rtl92c_process_pwdb(struct ieee80211_hw *hw,
struct rtl_stats *pstats)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
long undecorated_smoothed_pwdb = 0;
if (mac->opmode == NL80211_IFTYPE_ADHOC) {
return;
} else {
undecorated_smoothed_pwdb =
rtlpriv->dm.undecorated_smoothed_pwdb;
}
if (pstats->packet_toself || pstats->packet_beacon) {
if (undecorated_smoothed_pwdb < 0)
undecorated_smoothed_pwdb = pstats->rx_pwdb_all;
if (pstats->rx_pwdb_all > (u32) undecorated_smoothed_pwdb) {
undecorated_smoothed_pwdb =
(((undecorated_smoothed_pwdb) *
(RX_SMOOTH_FACTOR - 1)) +
(pstats->rx_pwdb_all)) / (RX_SMOOTH_FACTOR);
undecorated_smoothed_pwdb = undecorated_smoothed_pwdb
+ 1;
} else {
undecorated_smoothed_pwdb =
(((undecorated_smoothed_pwdb) *
(RX_SMOOTH_FACTOR - 1)) +
(pstats->rx_pwdb_all)) / (RX_SMOOTH_FACTOR);
}
rtlpriv->dm.undecorated_smoothed_pwdb =
undecorated_smoothed_pwdb;
_rtl92c_update_rxsignalstatistics(hw, pstats);
}
}
static void _rtl92c_process_LINK_Q(struct ieee80211_hw *hw,
struct rtl_stats *pstats)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 last_evm = 0, n_stream, tmpval;
if (pstats->signalquality != 0) {
if (pstats->packet_toself || pstats->packet_beacon) {
if (rtlpriv->stats.LINK_Q.total_num++ >=
PHY_LINKQUALITY_SLID_WIN_MAX) {
rtlpriv->stats.LINK_Q.total_num =
PHY_LINKQUALITY_SLID_WIN_MAX;
last_evm =
rtlpriv->stats.LINK_Q.elements
[rtlpriv->stats.LINK_Q.index];
rtlpriv->stats.LINK_Q.total_val -=
last_evm;
}
rtlpriv->stats.LINK_Q.total_val +=
pstats->signalquality;
rtlpriv->stats.LINK_Q.elements
[rtlpriv->stats.LINK_Q.index++] =
pstats->signalquality;
if (rtlpriv->stats.LINK_Q.index >=
PHY_LINKQUALITY_SLID_WIN_MAX)
rtlpriv->stats.LINK_Q.index = 0;
tmpval = rtlpriv->stats.LINK_Q.total_val /
rtlpriv->stats.LINK_Q.total_num;
rtlpriv->stats.signal_quality = tmpval;
rtlpriv->stats.last_sigstrength_inpercent = tmpval;
for (n_stream = 0; n_stream < 2;
n_stream++) {
if (pstats->RX_SIGQ[n_stream] != -1) {
if (!rtlpriv->stats.RX_EVM[n_stream]) {
rtlpriv->stats.RX_EVM[n_stream]
= pstats->RX_SIGQ[n_stream];
}
rtlpriv->stats.RX_EVM[n_stream] =
((rtlpriv->stats.RX_EVM
[n_stream] *
(RX_SMOOTH_FACTOR - 1)) +
(pstats->RX_SIGQ
[n_stream] * 1)) /
(RX_SMOOTH_FACTOR);
}
}
}
} else {
;
}
}
static void _rtl92c_process_phyinfo(struct ieee80211_hw *hw,
u8 *buffer,
struct rtl_stats *pcurrent_stats)
{
if (!pcurrent_stats->packet_matchbssid &&
!pcurrent_stats->packet_beacon)
return;
_rtl92c_process_ui_rssi(hw, pcurrent_stats);
_rtl92c_process_pwdb(hw, pcurrent_stats);
_rtl92c_process_LINK_Q(hw, pcurrent_stats);
}
void rtl92c_translate_rx_signal_stuff(struct ieee80211_hw *hw,
struct sk_buff *skb,
struct rtl_stats *pstats,
struct rx_desc_92c *pdesc,
struct rx_fwinfo_92c *p_drvinfo)
{
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct ieee80211_hdr *hdr;
u8 *tmp_buf;
u8 *praddr;
__le16 fc;
u16 type, cpu_fc;
bool packet_matchbssid, packet_toself, packet_beacon;
tmp_buf = skb->data + pstats->rx_drvinfo_size + pstats->rx_bufshift;
hdr = (struct ieee80211_hdr *)tmp_buf;
fc = hdr->frame_control;
cpu_fc = le16_to_cpu(fc);
type = WLAN_FC_GET_TYPE(fc);
praddr = hdr->addr1;
packet_matchbssid =
((IEEE80211_FTYPE_CTL != type) &&
(!compare_ether_addr(mac->bssid,
(cpu_fc & IEEE80211_FCTL_TODS) ?
hdr->addr1 : (cpu_fc & IEEE80211_FCTL_FROMDS) ?
hdr->addr2 : hdr->addr3)) &&
(!pstats->hwerror) && (!pstats->crc) && (!pstats->icv));
packet_toself = packet_matchbssid &&
(!compare_ether_addr(praddr, rtlefuse->dev_addr));
if (ieee80211_is_beacon(fc))
packet_beacon = true;
_rtl92c_query_rxphystatus(hw, pstats, pdesc, p_drvinfo,
packet_matchbssid, packet_toself,
packet_beacon);
_rtl92c_process_phyinfo(hw, tmp_buf, pstats);
}