linux/drivers/infiniband/hw/ipath/ipath_verbs.c

2343 lines
62 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006, 2007, 2008 QLogic Corporation. All rights reserved.
* Copyright (c) 2005, 2006 PathScale, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <rdma/ib_mad.h>
#include <rdma/ib_user_verbs.h>
#include <linux/io.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/utsname.h>
#include <linux/rculist.h>
#include "ipath_kernel.h"
#include "ipath_verbs.h"
#include "ipath_common.h"
static unsigned int ib_ipath_qp_table_size = 251;
module_param_named(qp_table_size, ib_ipath_qp_table_size, uint, S_IRUGO);
MODULE_PARM_DESC(qp_table_size, "QP table size");
unsigned int ib_ipath_lkey_table_size = 12;
module_param_named(lkey_table_size, ib_ipath_lkey_table_size, uint,
S_IRUGO);
MODULE_PARM_DESC(lkey_table_size,
"LKEY table size in bits (2^n, 1 <= n <= 23)");
static unsigned int ib_ipath_max_pds = 0xFFFF;
module_param_named(max_pds, ib_ipath_max_pds, uint, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(max_pds,
"Maximum number of protection domains to support");
static unsigned int ib_ipath_max_ahs = 0xFFFF;
module_param_named(max_ahs, ib_ipath_max_ahs, uint, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
unsigned int ib_ipath_max_cqes = 0x2FFFF;
module_param_named(max_cqes, ib_ipath_max_cqes, uint, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(max_cqes,
"Maximum number of completion queue entries to support");
unsigned int ib_ipath_max_cqs = 0x1FFFF;
module_param_named(max_cqs, ib_ipath_max_cqs, uint, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
unsigned int ib_ipath_max_qp_wrs = 0x3FFF;
module_param_named(max_qp_wrs, ib_ipath_max_qp_wrs, uint,
S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
unsigned int ib_ipath_max_qps = 16384;
module_param_named(max_qps, ib_ipath_max_qps, uint, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
unsigned int ib_ipath_max_sges = 0x60;
module_param_named(max_sges, ib_ipath_max_sges, uint, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
unsigned int ib_ipath_max_mcast_grps = 16384;
module_param_named(max_mcast_grps, ib_ipath_max_mcast_grps, uint,
S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(max_mcast_grps,
"Maximum number of multicast groups to support");
unsigned int ib_ipath_max_mcast_qp_attached = 16;
module_param_named(max_mcast_qp_attached, ib_ipath_max_mcast_qp_attached,
uint, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(max_mcast_qp_attached,
"Maximum number of attached QPs to support");
unsigned int ib_ipath_max_srqs = 1024;
module_param_named(max_srqs, ib_ipath_max_srqs, uint, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
unsigned int ib_ipath_max_srq_sges = 128;
module_param_named(max_srq_sges, ib_ipath_max_srq_sges,
uint, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
unsigned int ib_ipath_max_srq_wrs = 0x1FFFF;
module_param_named(max_srq_wrs, ib_ipath_max_srq_wrs,
uint, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
static unsigned int ib_ipath_disable_sma;
module_param_named(disable_sma, ib_ipath_disable_sma, uint, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(disable_sma, "Disable the SMA");
/*
* Note that it is OK to post send work requests in the SQE and ERR
* states; ipath_do_send() will process them and generate error
* completions as per IB 1.2 C10-96.
*/
const int ib_ipath_state_ops[IB_QPS_ERR + 1] = {
[IB_QPS_RESET] = 0,
[IB_QPS_INIT] = IPATH_POST_RECV_OK,
[IB_QPS_RTR] = IPATH_POST_RECV_OK | IPATH_PROCESS_RECV_OK,
[IB_QPS_RTS] = IPATH_POST_RECV_OK | IPATH_PROCESS_RECV_OK |
IPATH_POST_SEND_OK | IPATH_PROCESS_SEND_OK |
IPATH_PROCESS_NEXT_SEND_OK,
[IB_QPS_SQD] = IPATH_POST_RECV_OK | IPATH_PROCESS_RECV_OK |
IPATH_POST_SEND_OK | IPATH_PROCESS_SEND_OK,
[IB_QPS_SQE] = IPATH_POST_RECV_OK | IPATH_PROCESS_RECV_OK |
IPATH_POST_SEND_OK | IPATH_FLUSH_SEND,
[IB_QPS_ERR] = IPATH_POST_RECV_OK | IPATH_FLUSH_RECV |
IPATH_POST_SEND_OK | IPATH_FLUSH_SEND,
};
struct ipath_ucontext {
struct ib_ucontext ibucontext;
};
static inline struct ipath_ucontext *to_iucontext(struct ib_ucontext
*ibucontext)
{
return container_of(ibucontext, struct ipath_ucontext, ibucontext);
}
/*
* Translate ib_wr_opcode into ib_wc_opcode.
*/
const enum ib_wc_opcode ib_ipath_wc_opcode[] = {
[IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
[IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
[IB_WR_SEND] = IB_WC_SEND,
[IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
[IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
[IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
[IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD
};
/*
* System image GUID.
*/
static __be64 sys_image_guid;
/**
* ipath_copy_sge - copy data to SGE memory
* @ss: the SGE state
* @data: the data to copy
* @length: the length of the data
*/
void ipath_copy_sge(struct ipath_sge_state *ss, void *data, u32 length)
{
struct ipath_sge *sge = &ss->sge;
while (length) {
u32 len = sge->length;
if (len > length)
len = length;
if (len > sge->sge_length)
len = sge->sge_length;
BUG_ON(len == 0);
memcpy(sge->vaddr, data, len);
sge->vaddr += len;
sge->length -= len;
sge->sge_length -= len;
if (sge->sge_length == 0) {
if (--ss->num_sge)
*sge = *ss->sg_list++;
} else if (sge->length == 0 && sge->mr != NULL) {
if (++sge->n >= IPATH_SEGSZ) {
if (++sge->m >= sge->mr->mapsz)
break;
sge->n = 0;
}
sge->vaddr =
sge->mr->map[sge->m]->segs[sge->n].vaddr;
sge->length =
sge->mr->map[sge->m]->segs[sge->n].length;
}
data += len;
length -= len;
}
}
/**
* ipath_skip_sge - skip over SGE memory - XXX almost dup of prev func
* @ss: the SGE state
* @length: the number of bytes to skip
*/
void ipath_skip_sge(struct ipath_sge_state *ss, u32 length)
{
struct ipath_sge *sge = &ss->sge;
while (length) {
u32 len = sge->length;
if (len > length)
len = length;
if (len > sge->sge_length)
len = sge->sge_length;
BUG_ON(len == 0);
sge->vaddr += len;
sge->length -= len;
sge->sge_length -= len;
if (sge->sge_length == 0) {
if (--ss->num_sge)
*sge = *ss->sg_list++;
} else if (sge->length == 0 && sge->mr != NULL) {
if (++sge->n >= IPATH_SEGSZ) {
if (++sge->m >= sge->mr->mapsz)
break;
sge->n = 0;
}
sge->vaddr =
sge->mr->map[sge->m]->segs[sge->n].vaddr;
sge->length =
sge->mr->map[sge->m]->segs[sge->n].length;
}
length -= len;
}
}
/*
* Count the number of DMA descriptors needed to send length bytes of data.
* Don't modify the ipath_sge_state to get the count.
* Return zero if any of the segments is not aligned.
*/
static u32 ipath_count_sge(struct ipath_sge_state *ss, u32 length)
{
struct ipath_sge *sg_list = ss->sg_list;
struct ipath_sge sge = ss->sge;
u8 num_sge = ss->num_sge;
u32 ndesc = 1; /* count the header */
while (length) {
u32 len = sge.length;
if (len > length)
len = length;
if (len > sge.sge_length)
len = sge.sge_length;
BUG_ON(len == 0);
if (((long) sge.vaddr & (sizeof(u32) - 1)) ||
(len != length && (len & (sizeof(u32) - 1)))) {
ndesc = 0;
break;
}
ndesc++;
sge.vaddr += len;
sge.length -= len;
sge.sge_length -= len;
if (sge.sge_length == 0) {
if (--num_sge)
sge = *sg_list++;
} else if (sge.length == 0 && sge.mr != NULL) {
if (++sge.n >= IPATH_SEGSZ) {
if (++sge.m >= sge.mr->mapsz)
break;
sge.n = 0;
}
sge.vaddr =
sge.mr->map[sge.m]->segs[sge.n].vaddr;
sge.length =
sge.mr->map[sge.m]->segs[sge.n].length;
}
length -= len;
}
return ndesc;
}
/*
* Copy from the SGEs to the data buffer.
*/
static void ipath_copy_from_sge(void *data, struct ipath_sge_state *ss,
u32 length)
{
struct ipath_sge *sge = &ss->sge;
while (length) {
u32 len = sge->length;
if (len > length)
len = length;
if (len > sge->sge_length)
len = sge->sge_length;
BUG_ON(len == 0);
memcpy(data, sge->vaddr, len);
sge->vaddr += len;
sge->length -= len;
sge->sge_length -= len;
if (sge->sge_length == 0) {
if (--ss->num_sge)
*sge = *ss->sg_list++;
} else if (sge->length == 0 && sge->mr != NULL) {
if (++sge->n >= IPATH_SEGSZ) {
if (++sge->m >= sge->mr->mapsz)
break;
sge->n = 0;
}
sge->vaddr =
sge->mr->map[sge->m]->segs[sge->n].vaddr;
sge->length =
sge->mr->map[sge->m]->segs[sge->n].length;
}
data += len;
length -= len;
}
}
/**
* ipath_post_one_send - post one RC, UC, or UD send work request
* @qp: the QP to post on
* @wr: the work request to send
*/
static int ipath_post_one_send(struct ipath_qp *qp, struct ib_send_wr *wr)
{
struct ipath_swqe *wqe;
u32 next;
int i;
int j;
int acc;
int ret;
unsigned long flags;
struct ipath_devdata *dd = to_idev(qp->ibqp.device)->dd;
spin_lock_irqsave(&qp->s_lock, flags);
if (qp->ibqp.qp_type != IB_QPT_SMI &&
!(dd->ipath_flags & IPATH_LINKACTIVE)) {
ret = -ENETDOWN;
goto bail;
}
/* Check that state is OK to post send. */
if (unlikely(!(ib_ipath_state_ops[qp->state] & IPATH_POST_SEND_OK)))
goto bail_inval;
/* IB spec says that num_sge == 0 is OK. */
if (wr->num_sge > qp->s_max_sge)
goto bail_inval;
/*
* Don't allow RDMA reads or atomic operations on UC or
* undefined operations.
* Make sure buffer is large enough to hold the result for atomics.
*/
if (qp->ibqp.qp_type == IB_QPT_UC) {
if ((unsigned) wr->opcode >= IB_WR_RDMA_READ)
goto bail_inval;
} else if (qp->ibqp.qp_type == IB_QPT_UD) {
/* Check UD opcode */
if (wr->opcode != IB_WR_SEND &&
wr->opcode != IB_WR_SEND_WITH_IMM)
goto bail_inval;
/* Check UD destination address PD */
if (qp->ibqp.pd != wr->wr.ud.ah->pd)
goto bail_inval;
} else if ((unsigned) wr->opcode > IB_WR_ATOMIC_FETCH_AND_ADD)
goto bail_inval;
else if (wr->opcode >= IB_WR_ATOMIC_CMP_AND_SWP &&
(wr->num_sge == 0 ||
wr->sg_list[0].length < sizeof(u64) ||
wr->sg_list[0].addr & (sizeof(u64) - 1)))
goto bail_inval;
else if (wr->opcode >= IB_WR_RDMA_READ && !qp->s_max_rd_atomic)
goto bail_inval;
next = qp->s_head + 1;
if (next >= qp->s_size)
next = 0;
if (next == qp->s_last) {
ret = -ENOMEM;
goto bail;
}
wqe = get_swqe_ptr(qp, qp->s_head);
wqe->wr = *wr;
wqe->length = 0;
if (wr->num_sge) {
acc = wr->opcode >= IB_WR_RDMA_READ ?
IB_ACCESS_LOCAL_WRITE : 0;
for (i = 0, j = 0; i < wr->num_sge; i++) {
u32 length = wr->sg_list[i].length;
int ok;
if (length == 0)
continue;
ok = ipath_lkey_ok(qp, &wqe->sg_list[j],
&wr->sg_list[i], acc);
if (!ok)
goto bail_inval;
wqe->length += length;
j++;
}
wqe->wr.num_sge = j;
}
if (qp->ibqp.qp_type == IB_QPT_UC ||
qp->ibqp.qp_type == IB_QPT_RC) {
if (wqe->length > 0x80000000U)
goto bail_inval;
} else if (wqe->length > to_idev(qp->ibqp.device)->dd->ipath_ibmtu)
goto bail_inval;
wqe->ssn = qp->s_ssn++;
qp->s_head = next;
ret = 0;
goto bail;
bail_inval:
ret = -EINVAL;
bail:
spin_unlock_irqrestore(&qp->s_lock, flags);
return ret;
}
/**
* ipath_post_send - post a send on a QP
* @ibqp: the QP to post the send on
* @wr: the list of work requests to post
* @bad_wr: the first bad WR is put here
*
* This may be called from interrupt context.
*/
static int ipath_post_send(struct ib_qp *ibqp, struct ib_send_wr *wr,
struct ib_send_wr **bad_wr)
{
struct ipath_qp *qp = to_iqp(ibqp);
int err = 0;
for (; wr; wr = wr->next) {
err = ipath_post_one_send(qp, wr);
if (err) {
*bad_wr = wr;
goto bail;
}
}
/* Try to do the send work in the caller's context. */
ipath_do_send((unsigned long) qp);
bail:
return err;
}
/**
* ipath_post_receive - post a receive on a QP
* @ibqp: the QP to post the receive on
* @wr: the WR to post
* @bad_wr: the first bad WR is put here
*
* This may be called from interrupt context.
*/
static int ipath_post_receive(struct ib_qp *ibqp, struct ib_recv_wr *wr,
struct ib_recv_wr **bad_wr)
{
struct ipath_qp *qp = to_iqp(ibqp);
struct ipath_rwq *wq = qp->r_rq.wq;
unsigned long flags;
int ret;
/* Check that state is OK to post receive. */
if (!(ib_ipath_state_ops[qp->state] & IPATH_POST_RECV_OK) || !wq) {
*bad_wr = wr;
ret = -EINVAL;
goto bail;
}
for (; wr; wr = wr->next) {
struct ipath_rwqe *wqe;
u32 next;
int i;
if ((unsigned) wr->num_sge > qp->r_rq.max_sge) {
*bad_wr = wr;
ret = -EINVAL;
goto bail;
}
spin_lock_irqsave(&qp->r_rq.lock, flags);
next = wq->head + 1;
if (next >= qp->r_rq.size)
next = 0;
if (next == wq->tail) {
spin_unlock_irqrestore(&qp->r_rq.lock, flags);
*bad_wr = wr;
ret = -ENOMEM;
goto bail;
}
wqe = get_rwqe_ptr(&qp->r_rq, wq->head);
wqe->wr_id = wr->wr_id;
wqe->num_sge = wr->num_sge;
for (i = 0; i < wr->num_sge; i++)
wqe->sg_list[i] = wr->sg_list[i];
/* Make sure queue entry is written before the head index. */
smp_wmb();
wq->head = next;
spin_unlock_irqrestore(&qp->r_rq.lock, flags);
}
ret = 0;
bail:
return ret;
}
/**
* ipath_qp_rcv - processing an incoming packet on a QP
* @dev: the device the packet came on
* @hdr: the packet header
* @has_grh: true if the packet has a GRH
* @data: the packet data
* @tlen: the packet length
* @qp: the QP the packet came on
*
* This is called from ipath_ib_rcv() to process an incoming packet
* for the given QP.
* Called at interrupt level.
*/
static void ipath_qp_rcv(struct ipath_ibdev *dev,
struct ipath_ib_header *hdr, int has_grh,
void *data, u32 tlen, struct ipath_qp *qp)
{
/* Check for valid receive state. */
if (!(ib_ipath_state_ops[qp->state] & IPATH_PROCESS_RECV_OK)) {
dev->n_pkt_drops++;
return;
}
switch (qp->ibqp.qp_type) {
case IB_QPT_SMI:
case IB_QPT_GSI:
if (ib_ipath_disable_sma)
break;
/* FALLTHROUGH */
case IB_QPT_UD:
ipath_ud_rcv(dev, hdr, has_grh, data, tlen, qp);
break;
case IB_QPT_RC:
ipath_rc_rcv(dev, hdr, has_grh, data, tlen, qp);
break;
case IB_QPT_UC:
ipath_uc_rcv(dev, hdr, has_grh, data, tlen, qp);
break;
default:
break;
}
}
/**
* ipath_ib_rcv - process an incoming packet
* @arg: the device pointer
* @rhdr: the header of the packet
* @data: the packet data
* @tlen: the packet length
*
* This is called from ipath_kreceive() to process an incoming packet at
* interrupt level. Tlen is the length of the header + data + CRC in bytes.
*/
void ipath_ib_rcv(struct ipath_ibdev *dev, void *rhdr, void *data,
u32 tlen)
{
struct ipath_ib_header *hdr = rhdr;
struct ipath_other_headers *ohdr;
struct ipath_qp *qp;
u32 qp_num;
int lnh;
u8 opcode;
u16 lid;
if (unlikely(dev == NULL))
goto bail;
if (unlikely(tlen < 24)) { /* LRH+BTH+CRC */
dev->rcv_errors++;
goto bail;
}
/* Check for a valid destination LID (see ch. 7.11.1). */
lid = be16_to_cpu(hdr->lrh[1]);
if (lid < IPATH_MULTICAST_LID_BASE) {
lid &= ~((1 << dev->dd->ipath_lmc) - 1);
if (unlikely(lid != dev->dd->ipath_lid)) {
dev->rcv_errors++;
goto bail;
}
}
/* Check for GRH */
lnh = be16_to_cpu(hdr->lrh[0]) & 3;
if (lnh == IPATH_LRH_BTH)
ohdr = &hdr->u.oth;
else if (lnh == IPATH_LRH_GRH)
ohdr = &hdr->u.l.oth;
else {
dev->rcv_errors++;
goto bail;
}
opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0x7f;
dev->opstats[opcode].n_bytes += tlen;
dev->opstats[opcode].n_packets++;
/* Get the destination QP number. */
qp_num = be32_to_cpu(ohdr->bth[1]) & IPATH_QPN_MASK;
if (qp_num == IPATH_MULTICAST_QPN) {
struct ipath_mcast *mcast;
struct ipath_mcast_qp *p;
if (lnh != IPATH_LRH_GRH) {
dev->n_pkt_drops++;
goto bail;
}
mcast = ipath_mcast_find(&hdr->u.l.grh.dgid);
if (mcast == NULL) {
dev->n_pkt_drops++;
goto bail;
}
dev->n_multicast_rcv++;
list_for_each_entry_rcu(p, &mcast->qp_list, list)
ipath_qp_rcv(dev, hdr, 1, data, tlen, p->qp);
/*
* Notify ipath_multicast_detach() if it is waiting for us
* to finish.
*/
if (atomic_dec_return(&mcast->refcount) <= 1)
wake_up(&mcast->wait);
} else {
qp = ipath_lookup_qpn(&dev->qp_table, qp_num);
if (qp) {
dev->n_unicast_rcv++;
ipath_qp_rcv(dev, hdr, lnh == IPATH_LRH_GRH, data,
tlen, qp);
/*
* Notify ipath_destroy_qp() if it is waiting
* for us to finish.
*/
if (atomic_dec_and_test(&qp->refcount))
wake_up(&qp->wait);
} else
dev->n_pkt_drops++;
}
bail:;
}
/**
* ipath_ib_timer - verbs timer
* @arg: the device pointer
*
* This is called from ipath_do_rcv_timer() at interrupt level to check for
* QPs which need retransmits and to collect performance numbers.
*/
static void ipath_ib_timer(struct ipath_ibdev *dev)
{
struct ipath_qp *resend = NULL;
struct ipath_qp *rnr = NULL;
struct list_head *last;
struct ipath_qp *qp;
unsigned long flags;
if (dev == NULL)
return;
spin_lock_irqsave(&dev->pending_lock, flags);
/* Start filling the next pending queue. */
if (++dev->pending_index >= ARRAY_SIZE(dev->pending))
dev->pending_index = 0;
/* Save any requests still in the new queue, they have timed out. */
last = &dev->pending[dev->pending_index];
while (!list_empty(last)) {
qp = list_entry(last->next, struct ipath_qp, timerwait);
list_del_init(&qp->timerwait);
qp->timer_next = resend;
resend = qp;
atomic_inc(&qp->refcount);
}
last = &dev->rnrwait;
if (!list_empty(last)) {
qp = list_entry(last->next, struct ipath_qp, timerwait);
if (--qp->s_rnr_timeout == 0) {
do {
list_del_init(&qp->timerwait);
qp->timer_next = rnr;
rnr = qp;
atomic_inc(&qp->refcount);
if (list_empty(last))
break;
qp = list_entry(last->next, struct ipath_qp,
timerwait);
} while (qp->s_rnr_timeout == 0);
}
}
/*
* We should only be in the started state if pma_sample_start != 0
*/
if (dev->pma_sample_status == IB_PMA_SAMPLE_STATUS_STARTED &&
--dev->pma_sample_start == 0) {
dev->pma_sample_status = IB_PMA_SAMPLE_STATUS_RUNNING;
ipath_snapshot_counters(dev->dd, &dev->ipath_sword,
&dev->ipath_rword,
&dev->ipath_spkts,
&dev->ipath_rpkts,
&dev->ipath_xmit_wait);
}
if (dev->pma_sample_status == IB_PMA_SAMPLE_STATUS_RUNNING) {
if (dev->pma_sample_interval == 0) {
u64 ta, tb, tc, td, te;
dev->pma_sample_status = IB_PMA_SAMPLE_STATUS_DONE;
ipath_snapshot_counters(dev->dd, &ta, &tb,
&tc, &td, &te);
dev->ipath_sword = ta - dev->ipath_sword;
dev->ipath_rword = tb - dev->ipath_rword;
dev->ipath_spkts = tc - dev->ipath_spkts;
dev->ipath_rpkts = td - dev->ipath_rpkts;
dev->ipath_xmit_wait = te - dev->ipath_xmit_wait;
}
else
dev->pma_sample_interval--;
}
spin_unlock_irqrestore(&dev->pending_lock, flags);
/* XXX What if timer fires again while this is running? */
while (resend != NULL) {
qp = resend;
resend = qp->timer_next;
spin_lock_irqsave(&qp->s_lock, flags);
if (qp->s_last != qp->s_tail &&
ib_ipath_state_ops[qp->state] & IPATH_PROCESS_SEND_OK) {
dev->n_timeouts++;
ipath_restart_rc(qp, qp->s_last_psn + 1);
}
spin_unlock_irqrestore(&qp->s_lock, flags);
/* Notify ipath_destroy_qp() if it is waiting. */
if (atomic_dec_and_test(&qp->refcount))
wake_up(&qp->wait);
}
while (rnr != NULL) {
qp = rnr;
rnr = qp->timer_next;
spin_lock_irqsave(&qp->s_lock, flags);
if (ib_ipath_state_ops[qp->state] & IPATH_PROCESS_SEND_OK)
ipath_schedule_send(qp);
spin_unlock_irqrestore(&qp->s_lock, flags);
/* Notify ipath_destroy_qp() if it is waiting. */
if (atomic_dec_and_test(&qp->refcount))
wake_up(&qp->wait);
}
}
static void update_sge(struct ipath_sge_state *ss, u32 length)
{
struct ipath_sge *sge = &ss->sge;
sge->vaddr += length;
sge->length -= length;
sge->sge_length -= length;
if (sge->sge_length == 0) {
if (--ss->num_sge)
*sge = *ss->sg_list++;
} else if (sge->length == 0 && sge->mr != NULL) {
if (++sge->n >= IPATH_SEGSZ) {
if (++sge->m >= sge->mr->mapsz)
return;
sge->n = 0;
}
sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
}
}
#ifdef __LITTLE_ENDIAN
static inline u32 get_upper_bits(u32 data, u32 shift)
{
return data >> shift;
}
static inline u32 set_upper_bits(u32 data, u32 shift)
{
return data << shift;
}
static inline u32 clear_upper_bytes(u32 data, u32 n, u32 off)
{
data <<= ((sizeof(u32) - n) * BITS_PER_BYTE);
data >>= ((sizeof(u32) - n - off) * BITS_PER_BYTE);
return data;
}
#else
static inline u32 get_upper_bits(u32 data, u32 shift)
{
return data << shift;
}
static inline u32 set_upper_bits(u32 data, u32 shift)
{
return data >> shift;
}
static inline u32 clear_upper_bytes(u32 data, u32 n, u32 off)
{
data >>= ((sizeof(u32) - n) * BITS_PER_BYTE);
data <<= ((sizeof(u32) - n - off) * BITS_PER_BYTE);
return data;
}
#endif
static void copy_io(u32 __iomem *piobuf, struct ipath_sge_state *ss,
u32 length, unsigned flush_wc)
{
u32 extra = 0;
u32 data = 0;
u32 last;
while (1) {
u32 len = ss->sge.length;
u32 off;
if (len > length)
len = length;
if (len > ss->sge.sge_length)
len = ss->sge.sge_length;
BUG_ON(len == 0);
/* If the source address is not aligned, try to align it. */
off = (unsigned long)ss->sge.vaddr & (sizeof(u32) - 1);
if (off) {
u32 *addr = (u32 *)((unsigned long)ss->sge.vaddr &
~(sizeof(u32) - 1));
u32 v = get_upper_bits(*addr, off * BITS_PER_BYTE);
u32 y;
y = sizeof(u32) - off;
if (len > y)
len = y;
if (len + extra >= sizeof(u32)) {
data |= set_upper_bits(v, extra *
BITS_PER_BYTE);
len = sizeof(u32) - extra;
if (len == length) {
last = data;
break;
}
__raw_writel(data, piobuf);
piobuf++;
extra = 0;
data = 0;
} else {
/* Clear unused upper bytes */
data |= clear_upper_bytes(v, len, extra);
if (len == length) {
last = data;
break;
}
extra += len;
}
} else if (extra) {
/* Source address is aligned. */
u32 *addr = (u32 *) ss->sge.vaddr;
int shift = extra * BITS_PER_BYTE;
int ushift = 32 - shift;
u32 l = len;
while (l >= sizeof(u32)) {
u32 v = *addr;
data |= set_upper_bits(v, shift);
__raw_writel(data, piobuf);
data = get_upper_bits(v, ushift);
piobuf++;
addr++;
l -= sizeof(u32);
}
/*
* We still have 'extra' number of bytes leftover.
*/
if (l) {
u32 v = *addr;
if (l + extra >= sizeof(u32)) {
data |= set_upper_bits(v, shift);
len -= l + extra - sizeof(u32);
if (len == length) {
last = data;
break;
}
__raw_writel(data, piobuf);
piobuf++;
extra = 0;
data = 0;
} else {
/* Clear unused upper bytes */
data |= clear_upper_bytes(v, l,
extra);
if (len == length) {
last = data;
break;
}
extra += l;
}
} else if (len == length) {
last = data;
break;
}
} else if (len == length) {
u32 w;
/*
* Need to round up for the last dword in the
* packet.
*/
w = (len + 3) >> 2;
__iowrite32_copy(piobuf, ss->sge.vaddr, w - 1);
piobuf += w - 1;
last = ((u32 *) ss->sge.vaddr)[w - 1];
break;
} else {
u32 w = len >> 2;
__iowrite32_copy(piobuf, ss->sge.vaddr, w);
piobuf += w;
extra = len & (sizeof(u32) - 1);
if (extra) {
u32 v = ((u32 *) ss->sge.vaddr)[w];
/* Clear unused upper bytes */
data = clear_upper_bytes(v, extra, 0);
}
}
update_sge(ss, len);
length -= len;
}
/* Update address before sending packet. */
update_sge(ss, length);
if (flush_wc) {
/* must flush early everything before trigger word */
ipath_flush_wc();
__raw_writel(last, piobuf);
/* be sure trigger word is written */
ipath_flush_wc();
} else
__raw_writel(last, piobuf);
}
/*
* Convert IB rate to delay multiplier.
*/
unsigned ipath_ib_rate_to_mult(enum ib_rate rate)
{
switch (rate) {
case IB_RATE_2_5_GBPS: return 8;
case IB_RATE_5_GBPS: return 4;
case IB_RATE_10_GBPS: return 2;
case IB_RATE_20_GBPS: return 1;
default: return 0;
}
}
/*
* Convert delay multiplier to IB rate
*/
static enum ib_rate ipath_mult_to_ib_rate(unsigned mult)
{
switch (mult) {
case 8: return IB_RATE_2_5_GBPS;
case 4: return IB_RATE_5_GBPS;
case 2: return IB_RATE_10_GBPS;
case 1: return IB_RATE_20_GBPS;
default: return IB_RATE_PORT_CURRENT;
}
}
static inline struct ipath_verbs_txreq *get_txreq(struct ipath_ibdev *dev)
{
struct ipath_verbs_txreq *tx = NULL;
unsigned long flags;
spin_lock_irqsave(&dev->pending_lock, flags);
if (!list_empty(&dev->txreq_free)) {
struct list_head *l = dev->txreq_free.next;
list_del(l);
tx = list_entry(l, struct ipath_verbs_txreq, txreq.list);
}
spin_unlock_irqrestore(&dev->pending_lock, flags);
return tx;
}
static inline void put_txreq(struct ipath_ibdev *dev,
struct ipath_verbs_txreq *tx)
{
unsigned long flags;
spin_lock_irqsave(&dev->pending_lock, flags);
list_add(&tx->txreq.list, &dev->txreq_free);
spin_unlock_irqrestore(&dev->pending_lock, flags);
}
static void sdma_complete(void *cookie, int status)
{
struct ipath_verbs_txreq *tx = cookie;
struct ipath_qp *qp = tx->qp;
struct ipath_ibdev *dev = to_idev(qp->ibqp.device);
unsigned long flags;
enum ib_wc_status ibs = status == IPATH_SDMA_TXREQ_S_OK ?
IB_WC_SUCCESS : IB_WC_WR_FLUSH_ERR;
if (atomic_dec_and_test(&qp->s_dma_busy)) {
spin_lock_irqsave(&qp->s_lock, flags);
if (tx->wqe)
ipath_send_complete(qp, tx->wqe, ibs);
if ((ib_ipath_state_ops[qp->state] & IPATH_FLUSH_SEND &&
qp->s_last != qp->s_head) ||
(qp->s_flags & IPATH_S_WAIT_DMA))
ipath_schedule_send(qp);
spin_unlock_irqrestore(&qp->s_lock, flags);
wake_up(&qp->wait_dma);
} else if (tx->wqe) {
spin_lock_irqsave(&qp->s_lock, flags);
ipath_send_complete(qp, tx->wqe, ibs);
spin_unlock_irqrestore(&qp->s_lock, flags);
}
if (tx->txreq.flags & IPATH_SDMA_TXREQ_F_FREEBUF)
kfree(tx->txreq.map_addr);
put_txreq(dev, tx);
if (atomic_dec_and_test(&qp->refcount))
wake_up(&qp->wait);
}
static void decrement_dma_busy(struct ipath_qp *qp)
{
unsigned long flags;
if (atomic_dec_and_test(&qp->s_dma_busy)) {
spin_lock_irqsave(&qp->s_lock, flags);
if ((ib_ipath_state_ops[qp->state] & IPATH_FLUSH_SEND &&
qp->s_last != qp->s_head) ||
(qp->s_flags & IPATH_S_WAIT_DMA))
ipath_schedule_send(qp);
spin_unlock_irqrestore(&qp->s_lock, flags);
wake_up(&qp->wait_dma);
}
}
/*
* Compute the number of clock cycles of delay before sending the next packet.
* The multipliers reflect the number of clocks for the fastest rate so
* one tick at 4xDDR is 8 ticks at 1xSDR.
* If the destination port will take longer to receive a packet than
* the outgoing link can send it, we need to delay sending the next packet
* by the difference in time it takes the receiver to receive and the sender
* to send this packet.
* Note that this delay is always correct for UC and RC but not always
* optimal for UD. For UD, the destination HCA can be different for each
* packet, in which case, we could send packets to a different destination
* while "waiting" for the delay. The overhead for doing this without
* HW support is more than just paying the cost of delaying some packets
* unnecessarily.
*/
static inline unsigned ipath_pkt_delay(u32 plen, u8 snd_mult, u8 rcv_mult)
{
return (rcv_mult > snd_mult) ?
(plen * (rcv_mult - snd_mult) + 1) >> 1 : 0;
}
static int ipath_verbs_send_dma(struct ipath_qp *qp,
struct ipath_ib_header *hdr, u32 hdrwords,
struct ipath_sge_state *ss, u32 len,
u32 plen, u32 dwords)
{
struct ipath_ibdev *dev = to_idev(qp->ibqp.device);
struct ipath_devdata *dd = dev->dd;
struct ipath_verbs_txreq *tx;
u32 *piobuf;
u32 control;
u32 ndesc;
int ret;
tx = qp->s_tx;
if (tx) {
qp->s_tx = NULL;
/* resend previously constructed packet */
atomic_inc(&qp->s_dma_busy);
ret = ipath_sdma_verbs_send(dd, tx->ss, tx->len, tx);
if (ret) {
qp->s_tx = tx;
decrement_dma_busy(qp);
}
goto bail;
}
tx = get_txreq(dev);
if (!tx) {
ret = -EBUSY;
goto bail;
}
/*
* Get the saved delay count we computed for the previous packet
* and save the delay count for this packet to be used next time
* we get here.
*/
control = qp->s_pkt_delay;
qp->s_pkt_delay = ipath_pkt_delay(plen, dd->delay_mult, qp->s_dmult);
tx->qp = qp;
atomic_inc(&qp->refcount);
tx->wqe = qp->s_wqe;
tx->txreq.callback = sdma_complete;
tx->txreq.callback_cookie = tx;
tx->txreq.flags = IPATH_SDMA_TXREQ_F_HEADTOHOST |
IPATH_SDMA_TXREQ_F_INTREQ | IPATH_SDMA_TXREQ_F_FREEDESC;
if (plen + 1 >= IPATH_SMALLBUF_DWORDS)
tx->txreq.flags |= IPATH_SDMA_TXREQ_F_USELARGEBUF;
/* VL15 packets bypass credit check */
if ((be16_to_cpu(hdr->lrh[0]) >> 12) == 15) {
control |= 1ULL << 31;
tx->txreq.flags |= IPATH_SDMA_TXREQ_F_VL15;
}
if (len) {
/*
* Don't try to DMA if it takes more descriptors than
* the queue holds.
*/
ndesc = ipath_count_sge(ss, len);
if (ndesc >= dd->ipath_sdma_descq_cnt)
ndesc = 0;
} else
ndesc = 1;
if (ndesc) {
tx->hdr.pbc[0] = cpu_to_le32(plen);
tx->hdr.pbc[1] = cpu_to_le32(control);
memcpy(&tx->hdr.hdr, hdr, hdrwords << 2);
tx->txreq.sg_count = ndesc;
tx->map_len = (hdrwords + 2) << 2;
tx->txreq.map_addr = &tx->hdr;
atomic_inc(&qp->s_dma_busy);
ret = ipath_sdma_verbs_send(dd, ss, dwords, tx);
if (ret) {
/* save ss and length in dwords */
tx->ss = ss;
tx->len = dwords;
qp->s_tx = tx;
decrement_dma_busy(qp);
}
goto bail;
}
/* Allocate a buffer and copy the header and payload to it. */
tx->map_len = (plen + 1) << 2;
piobuf = kmalloc(tx->map_len, GFP_ATOMIC);
if (unlikely(piobuf == NULL)) {
ret = -EBUSY;
goto err_tx;
}
tx->txreq.map_addr = piobuf;
tx->txreq.flags |= IPATH_SDMA_TXREQ_F_FREEBUF;
tx->txreq.sg_count = 1;
*piobuf++ = (__force u32) cpu_to_le32(plen);
*piobuf++ = (__force u32) cpu_to_le32(control);
memcpy(piobuf, hdr, hdrwords << 2);
ipath_copy_from_sge(piobuf + hdrwords, ss, len);
atomic_inc(&qp->s_dma_busy);
ret = ipath_sdma_verbs_send(dd, NULL, 0, tx);
/*
* If we couldn't queue the DMA request, save the info
* and try again later rather than destroying the
* buffer and undoing the side effects of the copy.
*/
if (ret) {
tx->ss = NULL;
tx->len = 0;
qp->s_tx = tx;
decrement_dma_busy(qp);
}
dev->n_unaligned++;
goto bail;
err_tx:
if (atomic_dec_and_test(&qp->refcount))
wake_up(&qp->wait);
put_txreq(dev, tx);
bail:
return ret;
}
static int ipath_verbs_send_pio(struct ipath_qp *qp,
struct ipath_ib_header *ibhdr, u32 hdrwords,
struct ipath_sge_state *ss, u32 len,
u32 plen, u32 dwords)
{
struct ipath_devdata *dd = to_idev(qp->ibqp.device)->dd;
u32 *hdr = (u32 *) ibhdr;
u32 __iomem *piobuf;
unsigned flush_wc;
u32 control;
int ret;
unsigned long flags;
piobuf = ipath_getpiobuf(dd, plen, NULL);
if (unlikely(piobuf == NULL)) {
ret = -EBUSY;
goto bail;
}
/*
* Get the saved delay count we computed for the previous packet
* and save the delay count for this packet to be used next time
* we get here.
*/
control = qp->s_pkt_delay;
qp->s_pkt_delay = ipath_pkt_delay(plen, dd->delay_mult, qp->s_dmult);
/* VL15 packets bypass credit check */
if ((be16_to_cpu(ibhdr->lrh[0]) >> 12) == 15)
control |= 1ULL << 31;
/*
* Write the length to the control qword plus any needed flags.
* We have to flush after the PBC for correctness on some cpus
* or WC buffer can be written out of order.
*/
writeq(((u64) control << 32) | plen, piobuf);
piobuf += 2;
flush_wc = dd->ipath_flags & IPATH_PIO_FLUSH_WC;
if (len == 0) {
/*
* If there is just the header portion, must flush before
* writing last word of header for correctness, and after
* the last header word (trigger word).
*/
if (flush_wc) {
ipath_flush_wc();
__iowrite32_copy(piobuf, hdr, hdrwords - 1);
ipath_flush_wc();
__raw_writel(hdr[hdrwords - 1], piobuf + hdrwords - 1);
ipath_flush_wc();
} else
__iowrite32_copy(piobuf, hdr, hdrwords);
goto done;
}
if (flush_wc)
ipath_flush_wc();
__iowrite32_copy(piobuf, hdr, hdrwords);
piobuf += hdrwords;
/* The common case is aligned and contained in one segment. */
if (likely(ss->num_sge == 1 && len <= ss->sge.length &&
!((unsigned long)ss->sge.vaddr & (sizeof(u32) - 1)))) {
u32 *addr = (u32 *) ss->sge.vaddr;
/* Update address before sending packet. */
update_sge(ss, len);
if (flush_wc) {
__iowrite32_copy(piobuf, addr, dwords - 1);
/* must flush early everything before trigger word */
ipath_flush_wc();
__raw_writel(addr[dwords - 1], piobuf + dwords - 1);
/* be sure trigger word is written */
ipath_flush_wc();
} else
__iowrite32_copy(piobuf, addr, dwords);
goto done;
}
copy_io(piobuf, ss, len, flush_wc);
done:
if (qp->s_wqe) {
spin_lock_irqsave(&qp->s_lock, flags);
ipath_send_complete(qp, qp->s_wqe, IB_WC_SUCCESS);
spin_unlock_irqrestore(&qp->s_lock, flags);
}
ret = 0;
bail:
return ret;
}
/**
* ipath_verbs_send - send a packet
* @qp: the QP to send on
* @hdr: the packet header
* @hdrwords: the number of 32-bit words in the header
* @ss: the SGE to send
* @len: the length of the packet in bytes
*/
int ipath_verbs_send(struct ipath_qp *qp, struct ipath_ib_header *hdr,
u32 hdrwords, struct ipath_sge_state *ss, u32 len)
{
struct ipath_devdata *dd = to_idev(qp->ibqp.device)->dd;
u32 plen;
int ret;
u32 dwords = (len + 3) >> 2;
/*
* Calculate the send buffer trigger address.
* The +1 counts for the pbc control dword following the pbc length.
*/
plen = hdrwords + dwords + 1;
/*
* VL15 packets (IB_QPT_SMI) will always use PIO, so we
* can defer SDMA restart until link goes ACTIVE without
* worrying about just how we got there.
*/
if (qp->ibqp.qp_type == IB_QPT_SMI ||
!(dd->ipath_flags & IPATH_HAS_SEND_DMA))
ret = ipath_verbs_send_pio(qp, hdr, hdrwords, ss, len,
plen, dwords);
else
ret = ipath_verbs_send_dma(qp, hdr, hdrwords, ss, len,
plen, dwords);
return ret;
}
int ipath_snapshot_counters(struct ipath_devdata *dd, u64 *swords,
u64 *rwords, u64 *spkts, u64 *rpkts,
u64 *xmit_wait)
{
int ret;
if (!(dd->ipath_flags & IPATH_INITTED)) {
/* no hardware, freeze, etc. */
ret = -EINVAL;
goto bail;
}
*swords = ipath_snap_cntr(dd, dd->ipath_cregs->cr_wordsendcnt);
*rwords = ipath_snap_cntr(dd, dd->ipath_cregs->cr_wordrcvcnt);
*spkts = ipath_snap_cntr(dd, dd->ipath_cregs->cr_pktsendcnt);
*rpkts = ipath_snap_cntr(dd, dd->ipath_cregs->cr_pktrcvcnt);
*xmit_wait = ipath_snap_cntr(dd, dd->ipath_cregs->cr_sendstallcnt);
ret = 0;
bail:
return ret;
}
/**
* ipath_get_counters - get various chip counters
* @dd: the infinipath device
* @cntrs: counters are placed here
*
* Return the counters needed by recv_pma_get_portcounters().
*/
int ipath_get_counters(struct ipath_devdata *dd,
struct ipath_verbs_counters *cntrs)
{
struct ipath_cregs const *crp = dd->ipath_cregs;
int ret;
if (!(dd->ipath_flags & IPATH_INITTED)) {
/* no hardware, freeze, etc. */
ret = -EINVAL;
goto bail;
}
cntrs->symbol_error_counter =
ipath_snap_cntr(dd, crp->cr_ibsymbolerrcnt);
cntrs->link_error_recovery_counter =
ipath_snap_cntr(dd, crp->cr_iblinkerrrecovcnt);
/*
* The link downed counter counts when the other side downs the
* connection. We add in the number of times we downed the link
* due to local link integrity errors to compensate.
*/
cntrs->link_downed_counter =
ipath_snap_cntr(dd, crp->cr_iblinkdowncnt);
cntrs->port_rcv_errors =
ipath_snap_cntr(dd, crp->cr_rxdroppktcnt) +
ipath_snap_cntr(dd, crp->cr_rcvovflcnt) +
ipath_snap_cntr(dd, crp->cr_portovflcnt) +
ipath_snap_cntr(dd, crp->cr_err_rlencnt) +
ipath_snap_cntr(dd, crp->cr_invalidrlencnt) +
ipath_snap_cntr(dd, crp->cr_errlinkcnt) +
ipath_snap_cntr(dd, crp->cr_erricrccnt) +
ipath_snap_cntr(dd, crp->cr_errvcrccnt) +
ipath_snap_cntr(dd, crp->cr_errlpcrccnt) +
ipath_snap_cntr(dd, crp->cr_badformatcnt) +
dd->ipath_rxfc_unsupvl_errs;
if (crp->cr_rxotherlocalphyerrcnt)
cntrs->port_rcv_errors +=
ipath_snap_cntr(dd, crp->cr_rxotherlocalphyerrcnt);
if (crp->cr_rxvlerrcnt)
cntrs->port_rcv_errors +=
ipath_snap_cntr(dd, crp->cr_rxvlerrcnt);
cntrs->port_rcv_remphys_errors =
ipath_snap_cntr(dd, crp->cr_rcvebpcnt);
cntrs->port_xmit_discards = ipath_snap_cntr(dd, crp->cr_unsupvlcnt);
cntrs->port_xmit_data = ipath_snap_cntr(dd, crp->cr_wordsendcnt);
cntrs->port_rcv_data = ipath_snap_cntr(dd, crp->cr_wordrcvcnt);
cntrs->port_xmit_packets = ipath_snap_cntr(dd, crp->cr_pktsendcnt);
cntrs->port_rcv_packets = ipath_snap_cntr(dd, crp->cr_pktrcvcnt);
cntrs->local_link_integrity_errors =
crp->cr_locallinkintegrityerrcnt ?
ipath_snap_cntr(dd, crp->cr_locallinkintegrityerrcnt) :
((dd->ipath_flags & IPATH_GPIO_ERRINTRS) ?
dd->ipath_lli_errs : dd->ipath_lli_errors);
cntrs->excessive_buffer_overrun_errors =
crp->cr_excessbufferovflcnt ?
ipath_snap_cntr(dd, crp->cr_excessbufferovflcnt) :
dd->ipath_overrun_thresh_errs;
cntrs->vl15_dropped = crp->cr_vl15droppedpktcnt ?
ipath_snap_cntr(dd, crp->cr_vl15droppedpktcnt) : 0;
ret = 0;
bail:
return ret;
}
/**
* ipath_ib_piobufavail - callback when a PIO buffer is available
* @arg: the device pointer
*
* This is called from ipath_intr() at interrupt level when a PIO buffer is
* available after ipath_verbs_send() returned an error that no buffers were
* available. Return 1 if we consumed all the PIO buffers and we still have
* QPs waiting for buffers (for now, just restart the send tasklet and
* return zero).
*/
int ipath_ib_piobufavail(struct ipath_ibdev *dev)
{
struct list_head *list;
struct ipath_qp *qplist;
struct ipath_qp *qp;
unsigned long flags;
if (dev == NULL)
goto bail;
list = &dev->piowait;
qplist = NULL;
spin_lock_irqsave(&dev->pending_lock, flags);
while (!list_empty(list)) {
qp = list_entry(list->next, struct ipath_qp, piowait);
list_del_init(&qp->piowait);
qp->pio_next = qplist;
qplist = qp;
atomic_inc(&qp->refcount);
}
spin_unlock_irqrestore(&dev->pending_lock, flags);
while (qplist != NULL) {
qp = qplist;
qplist = qp->pio_next;
spin_lock_irqsave(&qp->s_lock, flags);
if (ib_ipath_state_ops[qp->state] & IPATH_PROCESS_SEND_OK)
ipath_schedule_send(qp);
spin_unlock_irqrestore(&qp->s_lock, flags);
/* Notify ipath_destroy_qp() if it is waiting. */
if (atomic_dec_and_test(&qp->refcount))
wake_up(&qp->wait);
}
bail:
return 0;
}
static int ipath_query_device(struct ib_device *ibdev,
struct ib_device_attr *props)
{
struct ipath_ibdev *dev = to_idev(ibdev);
memset(props, 0, sizeof(*props));
props->device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE;
props->page_size_cap = PAGE_SIZE;
props->vendor_id =
IPATH_SRC_OUI_1 << 16 | IPATH_SRC_OUI_2 << 8 | IPATH_SRC_OUI_3;
props->vendor_part_id = dev->dd->ipath_deviceid;
props->hw_ver = dev->dd->ipath_pcirev;
props->sys_image_guid = dev->sys_image_guid;
props->max_mr_size = ~0ull;
props->max_qp = ib_ipath_max_qps;
props->max_qp_wr = ib_ipath_max_qp_wrs;
props->max_sge = ib_ipath_max_sges;
props->max_cq = ib_ipath_max_cqs;
props->max_ah = ib_ipath_max_ahs;
props->max_cqe = ib_ipath_max_cqes;
props->max_mr = dev->lk_table.max;
props->max_fmr = dev->lk_table.max;
props->max_map_per_fmr = 32767;
props->max_pd = ib_ipath_max_pds;
props->max_qp_rd_atom = IPATH_MAX_RDMA_ATOMIC;
props->max_qp_init_rd_atom = 255;
/* props->max_res_rd_atom */
props->max_srq = ib_ipath_max_srqs;
props->max_srq_wr = ib_ipath_max_srq_wrs;
props->max_srq_sge = ib_ipath_max_srq_sges;
/* props->local_ca_ack_delay */
props->atomic_cap = IB_ATOMIC_GLOB;
props->max_pkeys = ipath_get_npkeys(dev->dd);
props->max_mcast_grp = ib_ipath_max_mcast_grps;
props->max_mcast_qp_attach = ib_ipath_max_mcast_qp_attached;
props->max_total_mcast_qp_attach = props->max_mcast_qp_attach *
props->max_mcast_grp;
return 0;
}
const u8 ipath_cvt_physportstate[32] = {
[INFINIPATH_IBCS_LT_STATE_DISABLED] = IB_PHYSPORTSTATE_DISABLED,
[INFINIPATH_IBCS_LT_STATE_LINKUP] = IB_PHYSPORTSTATE_LINKUP,
[INFINIPATH_IBCS_LT_STATE_POLLACTIVE] = IB_PHYSPORTSTATE_POLL,
[INFINIPATH_IBCS_LT_STATE_POLLQUIET] = IB_PHYSPORTSTATE_POLL,
[INFINIPATH_IBCS_LT_STATE_SLEEPDELAY] = IB_PHYSPORTSTATE_SLEEP,
[INFINIPATH_IBCS_LT_STATE_SLEEPQUIET] = IB_PHYSPORTSTATE_SLEEP,
[INFINIPATH_IBCS_LT_STATE_CFGDEBOUNCE] =
IB_PHYSPORTSTATE_CFG_TRAIN,
[INFINIPATH_IBCS_LT_STATE_CFGRCVFCFG] =
IB_PHYSPORTSTATE_CFG_TRAIN,
[INFINIPATH_IBCS_LT_STATE_CFGWAITRMT] =
IB_PHYSPORTSTATE_CFG_TRAIN,
[INFINIPATH_IBCS_LT_STATE_CFGIDLE] = IB_PHYSPORTSTATE_CFG_TRAIN,
[INFINIPATH_IBCS_LT_STATE_RECOVERRETRAIN] =
IB_PHYSPORTSTATE_LINK_ERR_RECOVER,
[INFINIPATH_IBCS_LT_STATE_RECOVERWAITRMT] =
IB_PHYSPORTSTATE_LINK_ERR_RECOVER,
[INFINIPATH_IBCS_LT_STATE_RECOVERIDLE] =
IB_PHYSPORTSTATE_LINK_ERR_RECOVER,
[0x10] = IB_PHYSPORTSTATE_CFG_TRAIN,
[0x11] = IB_PHYSPORTSTATE_CFG_TRAIN,
[0x12] = IB_PHYSPORTSTATE_CFG_TRAIN,
[0x13] = IB_PHYSPORTSTATE_CFG_TRAIN,
[0x14] = IB_PHYSPORTSTATE_CFG_TRAIN,
[0x15] = IB_PHYSPORTSTATE_CFG_TRAIN,
[0x16] = IB_PHYSPORTSTATE_CFG_TRAIN,
[0x17] = IB_PHYSPORTSTATE_CFG_TRAIN
};
u32 ipath_get_cr_errpkey(struct ipath_devdata *dd)
{
return ipath_read_creg32(dd, dd->ipath_cregs->cr_errpkey);
}
static int ipath_query_port(struct ib_device *ibdev,
u8 port, struct ib_port_attr *props)
{
struct ipath_ibdev *dev = to_idev(ibdev);
struct ipath_devdata *dd = dev->dd;
enum ib_mtu mtu;
u16 lid = dd->ipath_lid;
u64 ibcstat;
memset(props, 0, sizeof(*props));
props->lid = lid ? lid : be16_to_cpu(IB_LID_PERMISSIVE);
props->lmc = dd->ipath_lmc;
props->sm_lid = dev->sm_lid;
props->sm_sl = dev->sm_sl;
ibcstat = dd->ipath_lastibcstat;
/* map LinkState to IB portinfo values. */
props->state = ipath_ib_linkstate(dd, ibcstat) + 1;
/* See phys_state_show() */
props->phys_state = /* MEA: assumes shift == 0 */
ipath_cvt_physportstate[dd->ipath_lastibcstat &
dd->ibcs_lts_mask];
props->port_cap_flags = dev->port_cap_flags;
props->gid_tbl_len = 1;
props->max_msg_sz = 0x80000000;
props->pkey_tbl_len = ipath_get_npkeys(dd);
props->bad_pkey_cntr = ipath_get_cr_errpkey(dd) -
dev->z_pkey_violations;
props->qkey_viol_cntr = dev->qkey_violations;
props->active_width = dd->ipath_link_width_active;
/* See rate_show() */
props->active_speed = dd->ipath_link_speed_active;
props->max_vl_num = 1; /* VLCap = VL0 */
props->init_type_reply = 0;
props->max_mtu = ipath_mtu4096 ? IB_MTU_4096 : IB_MTU_2048;
switch (dd->ipath_ibmtu) {
case 4096:
mtu = IB_MTU_4096;
break;
case 2048:
mtu = IB_MTU_2048;
break;
case 1024:
mtu = IB_MTU_1024;
break;
case 512:
mtu = IB_MTU_512;
break;
case 256:
mtu = IB_MTU_256;
break;
default:
mtu = IB_MTU_2048;
}
props->active_mtu = mtu;
props->subnet_timeout = dev->subnet_timeout;
return 0;
}
static int ipath_modify_device(struct ib_device *device,
int device_modify_mask,
struct ib_device_modify *device_modify)
{
int ret;
if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
IB_DEVICE_MODIFY_NODE_DESC)) {
ret = -EOPNOTSUPP;
goto bail;
}
if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC)
memcpy(device->node_desc, device_modify->node_desc, 64);
if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID)
to_idev(device)->sys_image_guid =
cpu_to_be64(device_modify->sys_image_guid);
ret = 0;
bail:
return ret;
}
static int ipath_modify_port(struct ib_device *ibdev,
u8 port, int port_modify_mask,
struct ib_port_modify *props)
{
struct ipath_ibdev *dev = to_idev(ibdev);
dev->port_cap_flags |= props->set_port_cap_mask;
dev->port_cap_flags &= ~props->clr_port_cap_mask;
if (port_modify_mask & IB_PORT_SHUTDOWN)
ipath_set_linkstate(dev->dd, IPATH_IB_LINKDOWN);
if (port_modify_mask & IB_PORT_RESET_QKEY_CNTR)
dev->qkey_violations = 0;
return 0;
}
static int ipath_query_gid(struct ib_device *ibdev, u8 port,
int index, union ib_gid *gid)
{
struct ipath_ibdev *dev = to_idev(ibdev);
int ret;
if (index >= 1) {
ret = -EINVAL;
goto bail;
}
gid->global.subnet_prefix = dev->gid_prefix;
gid->global.interface_id = dev->dd->ipath_guid;
ret = 0;
bail:
return ret;
}
static struct ib_pd *ipath_alloc_pd(struct ib_device *ibdev,
struct ib_ucontext *context,
struct ib_udata *udata)
{
struct ipath_ibdev *dev = to_idev(ibdev);
struct ipath_pd *pd;
struct ib_pd *ret;
/*
* This is actually totally arbitrary. Some correctness tests
* assume there's a maximum number of PDs that can be allocated.
* We don't actually have this limit, but we fail the test if
* we allow allocations of more than we report for this value.
*/
pd = kmalloc(sizeof *pd, GFP_KERNEL);
if (!pd) {
ret = ERR_PTR(-ENOMEM);
goto bail;
}
spin_lock(&dev->n_pds_lock);
if (dev->n_pds_allocated == ib_ipath_max_pds) {
spin_unlock(&dev->n_pds_lock);
kfree(pd);
ret = ERR_PTR(-ENOMEM);
goto bail;
}
dev->n_pds_allocated++;
spin_unlock(&dev->n_pds_lock);
/* ib_alloc_pd() will initialize pd->ibpd. */
pd->user = udata != NULL;
ret = &pd->ibpd;
bail:
return ret;
}
static int ipath_dealloc_pd(struct ib_pd *ibpd)
{
struct ipath_pd *pd = to_ipd(ibpd);
struct ipath_ibdev *dev = to_idev(ibpd->device);
spin_lock(&dev->n_pds_lock);
dev->n_pds_allocated--;
spin_unlock(&dev->n_pds_lock);
kfree(pd);
return 0;
}
/**
* ipath_create_ah - create an address handle
* @pd: the protection domain
* @ah_attr: the attributes of the AH
*
* This may be called from interrupt context.
*/
static struct ib_ah *ipath_create_ah(struct ib_pd *pd,
struct ib_ah_attr *ah_attr)
{
struct ipath_ah *ah;
struct ib_ah *ret;
struct ipath_ibdev *dev = to_idev(pd->device);
unsigned long flags;
/* A multicast address requires a GRH (see ch. 8.4.1). */
if (ah_attr->dlid >= IPATH_MULTICAST_LID_BASE &&
ah_attr->dlid != IPATH_PERMISSIVE_LID &&
!(ah_attr->ah_flags & IB_AH_GRH)) {
ret = ERR_PTR(-EINVAL);
goto bail;
}
if (ah_attr->dlid == 0) {
ret = ERR_PTR(-EINVAL);
goto bail;
}
if (ah_attr->port_num < 1 ||
ah_attr->port_num > pd->device->phys_port_cnt) {
ret = ERR_PTR(-EINVAL);
goto bail;
}
ah = kmalloc(sizeof *ah, GFP_ATOMIC);
if (!ah) {
ret = ERR_PTR(-ENOMEM);
goto bail;
}
spin_lock_irqsave(&dev->n_ahs_lock, flags);
if (dev->n_ahs_allocated == ib_ipath_max_ahs) {
spin_unlock_irqrestore(&dev->n_ahs_lock, flags);
kfree(ah);
ret = ERR_PTR(-ENOMEM);
goto bail;
}
dev->n_ahs_allocated++;
spin_unlock_irqrestore(&dev->n_ahs_lock, flags);
/* ib_create_ah() will initialize ah->ibah. */
ah->attr = *ah_attr;
ah->attr.static_rate = ipath_ib_rate_to_mult(ah_attr->static_rate);
ret = &ah->ibah;
bail:
return ret;
}
/**
* ipath_destroy_ah - destroy an address handle
* @ibah: the AH to destroy
*
* This may be called from interrupt context.
*/
static int ipath_destroy_ah(struct ib_ah *ibah)
{
struct ipath_ibdev *dev = to_idev(ibah->device);
struct ipath_ah *ah = to_iah(ibah);
unsigned long flags;
spin_lock_irqsave(&dev->n_ahs_lock, flags);
dev->n_ahs_allocated--;
spin_unlock_irqrestore(&dev->n_ahs_lock, flags);
kfree(ah);
return 0;
}
static int ipath_query_ah(struct ib_ah *ibah, struct ib_ah_attr *ah_attr)
{
struct ipath_ah *ah = to_iah(ibah);
*ah_attr = ah->attr;
ah_attr->static_rate = ipath_mult_to_ib_rate(ah->attr.static_rate);
return 0;
}
/**
* ipath_get_npkeys - return the size of the PKEY table for port 0
* @dd: the infinipath device
*/
unsigned ipath_get_npkeys(struct ipath_devdata *dd)
{
return ARRAY_SIZE(dd->ipath_pd[0]->port_pkeys);
}
/**
* ipath_get_pkey - return the indexed PKEY from the port PKEY table
* @dd: the infinipath device
* @index: the PKEY index
*/
unsigned ipath_get_pkey(struct ipath_devdata *dd, unsigned index)
{
unsigned ret;
/* always a kernel port, no locking needed */
if (index >= ARRAY_SIZE(dd->ipath_pd[0]->port_pkeys))
ret = 0;
else
ret = dd->ipath_pd[0]->port_pkeys[index];
return ret;
}
static int ipath_query_pkey(struct ib_device *ibdev, u8 port, u16 index,
u16 *pkey)
{
struct ipath_ibdev *dev = to_idev(ibdev);
int ret;
if (index >= ipath_get_npkeys(dev->dd)) {
ret = -EINVAL;
goto bail;
}
*pkey = ipath_get_pkey(dev->dd, index);
ret = 0;
bail:
return ret;
}
/**
* ipath_alloc_ucontext - allocate a ucontest
* @ibdev: the infiniband device
* @udata: not used by the InfiniPath driver
*/
static struct ib_ucontext *ipath_alloc_ucontext(struct ib_device *ibdev,
struct ib_udata *udata)
{
struct ipath_ucontext *context;
struct ib_ucontext *ret;
context = kmalloc(sizeof *context, GFP_KERNEL);
if (!context) {
ret = ERR_PTR(-ENOMEM);
goto bail;
}
ret = &context->ibucontext;
bail:
return ret;
}
static int ipath_dealloc_ucontext(struct ib_ucontext *context)
{
kfree(to_iucontext(context));
return 0;
}
static int ipath_verbs_register_sysfs(struct ib_device *dev);
static void __verbs_timer(unsigned long arg)
{
struct ipath_devdata *dd = (struct ipath_devdata *) arg;
/* Handle verbs layer timeouts. */
ipath_ib_timer(dd->verbs_dev);
mod_timer(&dd->verbs_timer, jiffies + 1);
}
static int enable_timer(struct ipath_devdata *dd)
{
/*
* Early chips had a design flaw where the chip and kernel idea
* of the tail register don't always agree, and therefore we won't
* get an interrupt on the next packet received.
* If the board supports per packet receive interrupts, use it.
* Otherwise, the timer function periodically checks for packets
* to cover this case.
* Either way, the timer is needed for verbs layer related
* processing.
*/
if (dd->ipath_flags & IPATH_GPIO_INTR) {
ipath_write_kreg(dd, dd->ipath_kregs->kr_debugportselect,
0x2074076542310ULL);
/* Enable GPIO bit 2 interrupt */
dd->ipath_gpio_mask |= (u64) (1 << IPATH_GPIO_PORT0_BIT);
ipath_write_kreg(dd, dd->ipath_kregs->kr_gpio_mask,
dd->ipath_gpio_mask);
}
init_timer(&dd->verbs_timer);
dd->verbs_timer.function = __verbs_timer;
dd->verbs_timer.data = (unsigned long)dd;
dd->verbs_timer.expires = jiffies + 1;
add_timer(&dd->verbs_timer);
return 0;
}
static int disable_timer(struct ipath_devdata *dd)
{
/* Disable GPIO bit 2 interrupt */
if (dd->ipath_flags & IPATH_GPIO_INTR) {
/* Disable GPIO bit 2 interrupt */
dd->ipath_gpio_mask &= ~((u64) (1 << IPATH_GPIO_PORT0_BIT));
ipath_write_kreg(dd, dd->ipath_kregs->kr_gpio_mask,
dd->ipath_gpio_mask);
/*
* We might want to undo changes to debugportselect,
* but how?
*/
}
del_timer_sync(&dd->verbs_timer);
return 0;
}
/**
* ipath_register_ib_device - register our device with the infiniband core
* @dd: the device data structure
* Return the allocated ipath_ibdev pointer or NULL on error.
*/
int ipath_register_ib_device(struct ipath_devdata *dd)
{
struct ipath_verbs_counters cntrs;
struct ipath_ibdev *idev;
struct ib_device *dev;
struct ipath_verbs_txreq *tx;
unsigned i;
int ret;
idev = (struct ipath_ibdev *)ib_alloc_device(sizeof *idev);
if (idev == NULL) {
ret = -ENOMEM;
goto bail;
}
dev = &idev->ibdev;
if (dd->ipath_sdma_descq_cnt) {
tx = kmalloc(dd->ipath_sdma_descq_cnt * sizeof *tx,
GFP_KERNEL);
if (tx == NULL) {
ret = -ENOMEM;
goto err_tx;
}
} else
tx = NULL;
idev->txreq_bufs = tx;
/* Only need to initialize non-zero fields. */
spin_lock_init(&idev->n_pds_lock);
spin_lock_init(&idev->n_ahs_lock);
spin_lock_init(&idev->n_cqs_lock);
spin_lock_init(&idev->n_qps_lock);
spin_lock_init(&idev->n_srqs_lock);
spin_lock_init(&idev->n_mcast_grps_lock);
spin_lock_init(&idev->qp_table.lock);
spin_lock_init(&idev->lk_table.lock);
idev->sm_lid = __constant_be16_to_cpu(IB_LID_PERMISSIVE);
/* Set the prefix to the default value (see ch. 4.1.1) */
idev->gid_prefix = __constant_cpu_to_be64(0xfe80000000000000ULL);
ret = ipath_init_qp_table(idev, ib_ipath_qp_table_size);
if (ret)
goto err_qp;
/*
* The top ib_ipath_lkey_table_size bits are used to index the
* table. The lower 8 bits can be owned by the user (copied from
* the LKEY). The remaining bits act as a generation number or tag.
*/
idev->lk_table.max = 1 << ib_ipath_lkey_table_size;
idev->lk_table.table = kzalloc(idev->lk_table.max *
sizeof(*idev->lk_table.table),
GFP_KERNEL);
if (idev->lk_table.table == NULL) {
ret = -ENOMEM;
goto err_lk;
}
INIT_LIST_HEAD(&idev->pending_mmaps);
spin_lock_init(&idev->pending_lock);
idev->mmap_offset = PAGE_SIZE;
spin_lock_init(&idev->mmap_offset_lock);
INIT_LIST_HEAD(&idev->pending[0]);
INIT_LIST_HEAD(&idev->pending[1]);
INIT_LIST_HEAD(&idev->pending[2]);
INIT_LIST_HEAD(&idev->piowait);
INIT_LIST_HEAD(&idev->rnrwait);
INIT_LIST_HEAD(&idev->txreq_free);
idev->pending_index = 0;
idev->port_cap_flags =
IB_PORT_SYS_IMAGE_GUID_SUP | IB_PORT_CLIENT_REG_SUP;
if (dd->ipath_flags & IPATH_HAS_LINK_LATENCY)
idev->port_cap_flags |= IB_PORT_LINK_LATENCY_SUP;
idev->pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
idev->pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
idev->pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
idev->pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
idev->pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
/* Snapshot current HW counters to "clear" them. */
ipath_get_counters(dd, &cntrs);
idev->z_symbol_error_counter = cntrs.symbol_error_counter;
idev->z_link_error_recovery_counter =
cntrs.link_error_recovery_counter;
idev->z_link_downed_counter = cntrs.link_downed_counter;
idev->z_port_rcv_errors = cntrs.port_rcv_errors;
idev->z_port_rcv_remphys_errors =
cntrs.port_rcv_remphys_errors;
idev->z_port_xmit_discards = cntrs.port_xmit_discards;
idev->z_port_xmit_data = cntrs.port_xmit_data;
idev->z_port_rcv_data = cntrs.port_rcv_data;
idev->z_port_xmit_packets = cntrs.port_xmit_packets;
idev->z_port_rcv_packets = cntrs.port_rcv_packets;
idev->z_local_link_integrity_errors =
cntrs.local_link_integrity_errors;
idev->z_excessive_buffer_overrun_errors =
cntrs.excessive_buffer_overrun_errors;
idev->z_vl15_dropped = cntrs.vl15_dropped;
for (i = 0; i < dd->ipath_sdma_descq_cnt; i++, tx++)
list_add(&tx->txreq.list, &idev->txreq_free);
/*
* The system image GUID is supposed to be the same for all
* IB HCAs in a single system but since there can be other
* device types in the system, we can't be sure this is unique.
*/
if (!sys_image_guid)
sys_image_guid = dd->ipath_guid;
idev->sys_image_guid = sys_image_guid;
idev->ib_unit = dd->ipath_unit;
idev->dd = dd;
strlcpy(dev->name, "ipath%d", IB_DEVICE_NAME_MAX);
dev->owner = THIS_MODULE;
dev->node_guid = dd->ipath_guid;
dev->uverbs_abi_ver = IPATH_UVERBS_ABI_VERSION;
dev->uverbs_cmd_mask =
(1ull << IB_USER_VERBS_CMD_GET_CONTEXT) |
(1ull << IB_USER_VERBS_CMD_QUERY_DEVICE) |
(1ull << IB_USER_VERBS_CMD_QUERY_PORT) |
(1ull << IB_USER_VERBS_CMD_ALLOC_PD) |
(1ull << IB_USER_VERBS_CMD_DEALLOC_PD) |
(1ull << IB_USER_VERBS_CMD_CREATE_AH) |
(1ull << IB_USER_VERBS_CMD_DESTROY_AH) |
(1ull << IB_USER_VERBS_CMD_QUERY_AH) |
(1ull << IB_USER_VERBS_CMD_REG_MR) |
(1ull << IB_USER_VERBS_CMD_DEREG_MR) |
(1ull << IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
(1ull << IB_USER_VERBS_CMD_CREATE_CQ) |
(1ull << IB_USER_VERBS_CMD_RESIZE_CQ) |
(1ull << IB_USER_VERBS_CMD_DESTROY_CQ) |
(1ull << IB_USER_VERBS_CMD_POLL_CQ) |
(1ull << IB_USER_VERBS_CMD_REQ_NOTIFY_CQ) |
(1ull << IB_USER_VERBS_CMD_CREATE_QP) |
(1ull << IB_USER_VERBS_CMD_QUERY_QP) |
(1ull << IB_USER_VERBS_CMD_MODIFY_QP) |
(1ull << IB_USER_VERBS_CMD_DESTROY_QP) |
(1ull << IB_USER_VERBS_CMD_POST_SEND) |
(1ull << IB_USER_VERBS_CMD_POST_RECV) |
(1ull << IB_USER_VERBS_CMD_ATTACH_MCAST) |
(1ull << IB_USER_VERBS_CMD_DETACH_MCAST) |
(1ull << IB_USER_VERBS_CMD_CREATE_SRQ) |
(1ull << IB_USER_VERBS_CMD_MODIFY_SRQ) |
(1ull << IB_USER_VERBS_CMD_QUERY_SRQ) |
(1ull << IB_USER_VERBS_CMD_DESTROY_SRQ) |
(1ull << IB_USER_VERBS_CMD_POST_SRQ_RECV);
dev->node_type = RDMA_NODE_IB_CA;
dev->phys_port_cnt = 1;
dev->num_comp_vectors = 1;
dev->dma_device = &dd->pcidev->dev;
dev->query_device = ipath_query_device;
dev->modify_device = ipath_modify_device;
dev->query_port = ipath_query_port;
dev->modify_port = ipath_modify_port;
dev->query_pkey = ipath_query_pkey;
dev->query_gid = ipath_query_gid;
dev->alloc_ucontext = ipath_alloc_ucontext;
dev->dealloc_ucontext = ipath_dealloc_ucontext;
dev->alloc_pd = ipath_alloc_pd;
dev->dealloc_pd = ipath_dealloc_pd;
dev->create_ah = ipath_create_ah;
dev->destroy_ah = ipath_destroy_ah;
dev->query_ah = ipath_query_ah;
dev->create_srq = ipath_create_srq;
dev->modify_srq = ipath_modify_srq;
dev->query_srq = ipath_query_srq;
dev->destroy_srq = ipath_destroy_srq;
dev->create_qp = ipath_create_qp;
dev->modify_qp = ipath_modify_qp;
dev->query_qp = ipath_query_qp;
dev->destroy_qp = ipath_destroy_qp;
dev->post_send = ipath_post_send;
dev->post_recv = ipath_post_receive;
dev->post_srq_recv = ipath_post_srq_receive;
dev->create_cq = ipath_create_cq;
dev->destroy_cq = ipath_destroy_cq;
dev->resize_cq = ipath_resize_cq;
dev->poll_cq = ipath_poll_cq;
dev->req_notify_cq = ipath_req_notify_cq;
dev->get_dma_mr = ipath_get_dma_mr;
dev->reg_phys_mr = ipath_reg_phys_mr;
dev->reg_user_mr = ipath_reg_user_mr;
dev->dereg_mr = ipath_dereg_mr;
dev->alloc_fmr = ipath_alloc_fmr;
dev->map_phys_fmr = ipath_map_phys_fmr;
dev->unmap_fmr = ipath_unmap_fmr;
dev->dealloc_fmr = ipath_dealloc_fmr;
dev->attach_mcast = ipath_multicast_attach;
dev->detach_mcast = ipath_multicast_detach;
dev->process_mad = ipath_process_mad;
dev->mmap = ipath_mmap;
dev->dma_ops = &ipath_dma_mapping_ops;
snprintf(dev->node_desc, sizeof(dev->node_desc),
IPATH_IDSTR " %s", init_utsname()->nodename);
ret = ib_register_device(dev, NULL);
if (ret)
goto err_reg;
ret = ipath_verbs_register_sysfs(dev);
if (ret)
goto err_class;
enable_timer(dd);
goto bail;
err_class:
ib_unregister_device(dev);
err_reg:
kfree(idev->lk_table.table);
err_lk:
kfree(idev->qp_table.table);
err_qp:
kfree(idev->txreq_bufs);
err_tx:
ib_dealloc_device(dev);
ipath_dev_err(dd, "cannot register verbs: %d!\n", -ret);
idev = NULL;
bail:
dd->verbs_dev = idev;
return ret;
}
void ipath_unregister_ib_device(struct ipath_ibdev *dev)
{
struct ib_device *ibdev = &dev->ibdev;
u32 qps_inuse;
ib_unregister_device(ibdev);
disable_timer(dev->dd);
if (!list_empty(&dev->pending[0]) ||
!list_empty(&dev->pending[1]) ||
!list_empty(&dev->pending[2]))
ipath_dev_err(dev->dd, "pending list not empty!\n");
if (!list_empty(&dev->piowait))
ipath_dev_err(dev->dd, "piowait list not empty!\n");
if (!list_empty(&dev->rnrwait))
ipath_dev_err(dev->dd, "rnrwait list not empty!\n");
if (!ipath_mcast_tree_empty())
ipath_dev_err(dev->dd, "multicast table memory leak!\n");
/*
* Note that ipath_unregister_ib_device() can be called before all
* the QPs are destroyed!
*/
qps_inuse = ipath_free_all_qps(&dev->qp_table);
if (qps_inuse)
ipath_dev_err(dev->dd, "QP memory leak! %u still in use\n",
qps_inuse);
kfree(dev->qp_table.table);
kfree(dev->lk_table.table);
kfree(dev->txreq_bufs);
ib_dealloc_device(ibdev);
}
static ssize_t show_rev(struct device *device, struct device_attribute *attr,
char *buf)
{
struct ipath_ibdev *dev =
container_of(device, struct ipath_ibdev, ibdev.dev);
return sprintf(buf, "%x\n", dev->dd->ipath_pcirev);
}
static ssize_t show_hca(struct device *device, struct device_attribute *attr,
char *buf)
{
struct ipath_ibdev *dev =
container_of(device, struct ipath_ibdev, ibdev.dev);
int ret;
ret = dev->dd->ipath_f_get_boardname(dev->dd, buf, 128);
if (ret < 0)
goto bail;
strcat(buf, "\n");
ret = strlen(buf);
bail:
return ret;
}
static ssize_t show_stats(struct device *device, struct device_attribute *attr,
char *buf)
{
struct ipath_ibdev *dev =
container_of(device, struct ipath_ibdev, ibdev.dev);
int i;
int len;
len = sprintf(buf,
"RC resends %d\n"
"RC no QACK %d\n"
"RC ACKs %d\n"
"RC SEQ NAKs %d\n"
"RC RDMA seq %d\n"
"RC RNR NAKs %d\n"
"RC OTH NAKs %d\n"
"RC timeouts %d\n"
"RC RDMA dup %d\n"
"piobuf wait %d\n"
"unaligned %d\n"
"PKT drops %d\n"
"WQE errs %d\n",
dev->n_rc_resends, dev->n_rc_qacks, dev->n_rc_acks,
dev->n_seq_naks, dev->n_rdma_seq, dev->n_rnr_naks,
dev->n_other_naks, dev->n_timeouts,
dev->n_rdma_dup_busy, dev->n_piowait, dev->n_unaligned,
dev->n_pkt_drops, dev->n_wqe_errs);
for (i = 0; i < ARRAY_SIZE(dev->opstats); i++) {
const struct ipath_opcode_stats *si = &dev->opstats[i];
if (!si->n_packets && !si->n_bytes)
continue;
len += sprintf(buf + len, "%02x %llu/%llu\n", i,
(unsigned long long) si->n_packets,
(unsigned long long) si->n_bytes);
}
return len;
}
static DEVICE_ATTR(hw_rev, S_IRUGO, show_rev, NULL);
static DEVICE_ATTR(hca_type, S_IRUGO, show_hca, NULL);
static DEVICE_ATTR(board_id, S_IRUGO, show_hca, NULL);
static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
static struct device_attribute *ipath_class_attributes[] = {
&dev_attr_hw_rev,
&dev_attr_hca_type,
&dev_attr_board_id,
&dev_attr_stats
};
static int ipath_verbs_register_sysfs(struct ib_device *dev)
{
int i;
int ret;
for (i = 0; i < ARRAY_SIZE(ipath_class_attributes); ++i) {
ret = device_create_file(&dev->dev,
ipath_class_attributes[i]);
if (ret)
goto bail;
}
return 0;
bail:
for (i = 0; i < ARRAY_SIZE(ipath_class_attributes); ++i)
device_remove_file(&dev->dev, ipath_class_attributes[i]);
return ret;
}