linux/drivers/vfio/pci/vfio_pci.c

1493 lines
37 KiB
C
Raw Normal View History

/*
* Copyright (C) 2012 Red Hat, Inc. All rights reserved.
* Author: Alex Williamson <alex.williamson@redhat.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Derived from original vfio:
* Copyright 2010 Cisco Systems, Inc. All rights reserved.
* Author: Tom Lyon, pugs@cisco.com
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/device.h>
#include <linux/eventfd.h>
#include <linux/file.h>
#include <linux/interrupt.h>
#include <linux/iommu.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/notifier.h>
#include <linux/pci.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/uaccess.h>
#include <linux/vfio.h>
#include <linux/vgaarb.h>
#include "vfio_pci_private.h"
#define DRIVER_VERSION "0.2"
#define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>"
#define DRIVER_DESC "VFIO PCI - User Level meta-driver"
static char ids[1024] __initdata;
module_param_string(ids, ids, sizeof(ids), 0);
MODULE_PARM_DESC(ids, "Initial PCI IDs to add to the vfio driver, format is \"vendor:device[:subvendor[:subdevice[:class[:class_mask]]]]\" and multiple comma separated entries can be specified");
static bool nointxmask;
module_param_named(nointxmask, nointxmask, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(nointxmask,
"Disable support for PCI 2.3 style INTx masking. If this resolves problems for specific devices, report lspci -vvvxxx to linux-pci@vger.kernel.org so the device can be fixed automatically via the broken_intx_masking flag.");
#ifdef CONFIG_VFIO_PCI_VGA
static bool disable_vga;
module_param(disable_vga, bool, S_IRUGO);
MODULE_PARM_DESC(disable_vga, "Disable VGA resource access through vfio-pci");
#endif
static bool disable_idle_d3;
module_param(disable_idle_d3, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(disable_idle_d3,
"Disable using the PCI D3 low power state for idle, unused devices");
static DEFINE_MUTEX(driver_lock);
static inline bool vfio_vga_disabled(void)
{
#ifdef CONFIG_VFIO_PCI_VGA
return disable_vga;
#else
return true;
#endif
}
/*
* Our VGA arbiter participation is limited since we don't know anything
* about the device itself. However, if the device is the only VGA device
* downstream of a bridge and VFIO VGA support is disabled, then we can
* safely return legacy VGA IO and memory as not decoded since the user
* has no way to get to it and routing can be disabled externally at the
* bridge.
*/
static unsigned int vfio_pci_set_vga_decode(void *opaque, bool single_vga)
{
struct vfio_pci_device *vdev = opaque;
struct pci_dev *tmp = NULL, *pdev = vdev->pdev;
unsigned char max_busnr;
unsigned int decodes;
if (single_vga || !vfio_vga_disabled() || pci_is_root_bus(pdev->bus))
return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM |
VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM;
max_busnr = pci_bus_max_busnr(pdev->bus);
decodes = VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
while ((tmp = pci_get_class(PCI_CLASS_DISPLAY_VGA << 8, tmp)) != NULL) {
if (tmp == pdev ||
pci_domain_nr(tmp->bus) != pci_domain_nr(pdev->bus) ||
pci_is_root_bus(tmp->bus))
continue;
if (tmp->bus->number >= pdev->bus->number &&
tmp->bus->number <= max_busnr) {
pci_dev_put(tmp);
decodes |= VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM;
break;
}
}
return decodes;
}
static inline bool vfio_pci_is_vga(struct pci_dev *pdev)
{
return (pdev->class >> 8) == PCI_CLASS_DISPLAY_VGA;
}
static void vfio_pci_probe_mmaps(struct vfio_pci_device *vdev)
{
struct resource *res;
int bar;
struct vfio_pci_dummy_resource *dummy_res;
INIT_LIST_HEAD(&vdev->dummy_resources_list);
for (bar = PCI_STD_RESOURCES; bar <= PCI_STD_RESOURCE_END; bar++) {
res = vdev->pdev->resource + bar;
if (!IS_ENABLED(CONFIG_VFIO_PCI_MMAP))
goto no_mmap;
if (!(res->flags & IORESOURCE_MEM))
goto no_mmap;
/*
* The PCI core shouldn't set up a resource with a
* type but zero size. But there may be bugs that
* cause us to do that.
*/
if (!resource_size(res))
goto no_mmap;
if (resource_size(res) >= PAGE_SIZE) {
vdev->bar_mmap_supported[bar] = true;
continue;
}
if (!(res->start & ~PAGE_MASK)) {
/*
* Add a dummy resource to reserve the remainder
* of the exclusive page in case that hot-add
* device's bar is assigned into it.
*/
dummy_res = kzalloc(sizeof(*dummy_res), GFP_KERNEL);
if (dummy_res == NULL)
goto no_mmap;
dummy_res->resource.name = "vfio sub-page reserved";
dummy_res->resource.start = res->end + 1;
dummy_res->resource.end = res->start + PAGE_SIZE - 1;
dummy_res->resource.flags = res->flags;
if (request_resource(res->parent,
&dummy_res->resource)) {
kfree(dummy_res);
goto no_mmap;
}
dummy_res->index = bar;
list_add(&dummy_res->res_next,
&vdev->dummy_resources_list);
vdev->bar_mmap_supported[bar] = true;
continue;
}
/*
* Here we don't handle the case when the BAR is not page
* aligned because we can't expect the BAR will be
* assigned into the same location in a page in guest
* when we passthrough the BAR. And it's hard to access
* this BAR in userspace because we have no way to get
* the BAR's location in a page.
*/
no_mmap:
vdev->bar_mmap_supported[bar] = false;
}
}
static void vfio_pci_try_bus_reset(struct vfio_pci_device *vdev);
static void vfio_pci_disable(struct vfio_pci_device *vdev);
vfio/pci: Hide broken INTx support from user INTx masking has two components, the first is that we need the ability to prevent the device from continuing to assert INTx. This is provided via the DisINTx bit in the command register and is the only thing we can really probe for when testing if INTx masking is supported. The second component is that the device needs to indicate if INTx is asserted via the interrupt status bit in the device status register. With these two features we can generically determine if one of the devices we own is asserting INTx, signal the user, and mask the interrupt while the user services the device. Generally if one or both of these components is broken we resort to APIC level interrupt masking, which requires an exclusive interrupt since we have no way to determine the source of the interrupt in a shared configuration. This often makes it difficult or impossible to configure the system for userspace use of the device, for an interrupt mode that the user may not need. One possible configuration of broken INTx masking is that the DisINTx support is fully functional, but the interrupt status bit never signals interrupt assertion. In this case we do have the ability to prevent the device from asserting INTx, but lack the ability to identify the interrupt source. For this case we can simply pretend that the device lacks INTx support entirely, keeping DisINTx set on the physical device, virtualizing this bit for the user, and virtualizing the interrupt pin register to indicate no INTx support. We already support virtualization of the DisINTx bit and already virtualize the interrupt pin for platforms without INTx support. By tying these components together, setting DisINTx on open and reset, and identifying devices broken in this particular way, we can provide support for them w/o the handicap of APIC level INTx masking. Intel i40e (XL710/X710) 10/20/40GbE NICs have been identified as being broken in this specific way. We leave the vfio-pci.nointxmask option as a mechanism to bypass this support, enabling INTx on the device with all the requirements of APIC level masking. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Cc: John Ronciak <john.ronciak@intel.com> Cc: Jesse Brandeburg <jesse.brandeburg@intel.com>
2016-03-25 03:05:18 +08:00
/*
* INTx masking requires the ability to disable INTx signaling via PCI_COMMAND
* _and_ the ability detect when the device is asserting INTx via PCI_STATUS.
* If a device implements the former but not the latter we would typically
* expect broken_intx_masking be set and require an exclusive interrupt.
* However since we do have control of the device's ability to assert INTx,
* we can instead pretend that the device does not implement INTx, virtualizing
* the pin register to report zero and maintaining DisINTx set on the host.
*/
static bool vfio_pci_nointx(struct pci_dev *pdev)
{
switch (pdev->vendor) {
case PCI_VENDOR_ID_INTEL:
switch (pdev->device) {
/* All i40e (XL710/X710) 10/20/40GbE NICs */
case 0x1572:
case 0x1574:
case 0x1580 ... 0x1581:
case 0x1583 ... 0x1589:
case 0x37d0 ... 0x37d2:
return true;
default:
return false;
}
}
return false;
}
static int vfio_pci_enable(struct vfio_pci_device *vdev)
{
struct pci_dev *pdev = vdev->pdev;
int ret;
u16 cmd;
u8 msix_pos;
pci_set_power_state(pdev, PCI_D0);
/* Don't allow our initial saved state to include busmaster */
pci_clear_master(pdev);
ret = pci_enable_device(pdev);
if (ret)
return ret;
vdev->reset_works = (pci_reset_function(pdev) == 0);
pci_save_state(pdev);
vdev->pci_saved_state = pci_store_saved_state(pdev);
if (!vdev->pci_saved_state)
pr_debug("%s: Couldn't store %s saved state\n",
__func__, dev_name(&pdev->dev));
vfio/pci: Hide broken INTx support from user INTx masking has two components, the first is that we need the ability to prevent the device from continuing to assert INTx. This is provided via the DisINTx bit in the command register and is the only thing we can really probe for when testing if INTx masking is supported. The second component is that the device needs to indicate if INTx is asserted via the interrupt status bit in the device status register. With these two features we can generically determine if one of the devices we own is asserting INTx, signal the user, and mask the interrupt while the user services the device. Generally if one or both of these components is broken we resort to APIC level interrupt masking, which requires an exclusive interrupt since we have no way to determine the source of the interrupt in a shared configuration. This often makes it difficult or impossible to configure the system for userspace use of the device, for an interrupt mode that the user may not need. One possible configuration of broken INTx masking is that the DisINTx support is fully functional, but the interrupt status bit never signals interrupt assertion. In this case we do have the ability to prevent the device from asserting INTx, but lack the ability to identify the interrupt source. For this case we can simply pretend that the device lacks INTx support entirely, keeping DisINTx set on the physical device, virtualizing this bit for the user, and virtualizing the interrupt pin register to indicate no INTx support. We already support virtualization of the DisINTx bit and already virtualize the interrupt pin for platforms without INTx support. By tying these components together, setting DisINTx on open and reset, and identifying devices broken in this particular way, we can provide support for them w/o the handicap of APIC level INTx masking. Intel i40e (XL710/X710) 10/20/40GbE NICs have been identified as being broken in this specific way. We leave the vfio-pci.nointxmask option as a mechanism to bypass this support, enabling INTx on the device with all the requirements of APIC level masking. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Cc: John Ronciak <john.ronciak@intel.com> Cc: Jesse Brandeburg <jesse.brandeburg@intel.com>
2016-03-25 03:05:18 +08:00
if (likely(!nointxmask)) {
if (vfio_pci_nointx(pdev)) {
dev_info(&pdev->dev, "Masking broken INTx support\n");
vdev->nointx = true;
pci_intx(pdev, 0);
} else
vdev->pci_2_3 = pci_intx_mask_supported(pdev);
}
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
if (vdev->pci_2_3 && (cmd & PCI_COMMAND_INTX_DISABLE)) {
cmd &= ~PCI_COMMAND_INTX_DISABLE;
pci_write_config_word(pdev, PCI_COMMAND, cmd);
}
vfio/pci: Hide broken INTx support from user INTx masking has two components, the first is that we need the ability to prevent the device from continuing to assert INTx. This is provided via the DisINTx bit in the command register and is the only thing we can really probe for when testing if INTx masking is supported. The second component is that the device needs to indicate if INTx is asserted via the interrupt status bit in the device status register. With these two features we can generically determine if one of the devices we own is asserting INTx, signal the user, and mask the interrupt while the user services the device. Generally if one or both of these components is broken we resort to APIC level interrupt masking, which requires an exclusive interrupt since we have no way to determine the source of the interrupt in a shared configuration. This often makes it difficult or impossible to configure the system for userspace use of the device, for an interrupt mode that the user may not need. One possible configuration of broken INTx masking is that the DisINTx support is fully functional, but the interrupt status bit never signals interrupt assertion. In this case we do have the ability to prevent the device from asserting INTx, but lack the ability to identify the interrupt source. For this case we can simply pretend that the device lacks INTx support entirely, keeping DisINTx set on the physical device, virtualizing this bit for the user, and virtualizing the interrupt pin register to indicate no INTx support. We already support virtualization of the DisINTx bit and already virtualize the interrupt pin for platforms without INTx support. By tying these components together, setting DisINTx on open and reset, and identifying devices broken in this particular way, we can provide support for them w/o the handicap of APIC level INTx masking. Intel i40e (XL710/X710) 10/20/40GbE NICs have been identified as being broken in this specific way. We leave the vfio-pci.nointxmask option as a mechanism to bypass this support, enabling INTx on the device with all the requirements of APIC level masking. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Cc: John Ronciak <john.ronciak@intel.com> Cc: Jesse Brandeburg <jesse.brandeburg@intel.com>
2016-03-25 03:05:18 +08:00
ret = vfio_config_init(vdev);
if (ret) {
kfree(vdev->pci_saved_state);
vdev->pci_saved_state = NULL;
pci_disable_device(pdev);
return ret;
}
msix_pos = pdev->msix_cap;
if (msix_pos) {
u16 flags;
u32 table;
pci_read_config_word(pdev, msix_pos + PCI_MSIX_FLAGS, &flags);
pci_read_config_dword(pdev, msix_pos + PCI_MSIX_TABLE, &table);
vdev->msix_bar = table & PCI_MSIX_TABLE_BIR;
vdev->msix_offset = table & PCI_MSIX_TABLE_OFFSET;
vdev->msix_size = ((flags & PCI_MSIX_FLAGS_QSIZE) + 1) * 16;
} else
vdev->msix_bar = 0xFF;
if (!vfio_vga_disabled() && vfio_pci_is_vga(pdev))
vdev->has_vga = true;
if (vfio_pci_is_vga(pdev) &&
pdev->vendor == PCI_VENDOR_ID_INTEL &&
IS_ENABLED(CONFIG_VFIO_PCI_IGD)) {
ret = vfio_pci_igd_init(vdev);
if (ret) {
dev_warn(&vdev->pdev->dev,
"Failed to setup Intel IGD regions\n");
vfio_pci_disable(vdev);
return ret;
}
}
vfio_pci_probe_mmaps(vdev);
return 0;
}
static void vfio_pci_disable(struct vfio_pci_device *vdev)
{
struct pci_dev *pdev = vdev->pdev;
struct vfio_pci_dummy_resource *dummy_res, *tmp;
int i, bar;
/* Stop the device from further DMA */
pci_clear_master(pdev);
vfio_pci_set_irqs_ioctl(vdev, VFIO_IRQ_SET_DATA_NONE |
VFIO_IRQ_SET_ACTION_TRIGGER,
vdev->irq_type, 0, 0, NULL);
vdev->virq_disabled = false;
for (i = 0; i < vdev->num_regions; i++)
vdev->region[i].ops->release(vdev, &vdev->region[i]);
vdev->num_regions = 0;
kfree(vdev->region);
vdev->region = NULL; /* don't krealloc a freed pointer */
vfio_config_free(vdev);
for (bar = PCI_STD_RESOURCES; bar <= PCI_STD_RESOURCE_END; bar++) {
if (!vdev->barmap[bar])
continue;
pci_iounmap(pdev, vdev->barmap[bar]);
pci_release_selected_regions(pdev, 1 << bar);
vdev->barmap[bar] = NULL;
}
list_for_each_entry_safe(dummy_res, tmp,
&vdev->dummy_resources_list, res_next) {
list_del(&dummy_res->res_next);
release_resource(&dummy_res->resource);
kfree(dummy_res);
}
vdev->needs_reset = true;
/*
* If we have saved state, restore it. If we can reset the device,
* even better. Resetting with current state seems better than
* nothing, but saving and restoring current state without reset
* is just busy work.
*/
if (pci_load_and_free_saved_state(pdev, &vdev->pci_saved_state)) {
pr_info("%s: Couldn't reload %s saved state\n",
__func__, dev_name(&pdev->dev));
if (!vdev->reset_works)
goto out;
pci_save_state(pdev);
}
/*
* Disable INTx and MSI, presumably to avoid spurious interrupts
* during reset. Stolen from pci_reset_function()
*/
pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
/*
* Try to reset the device. The success of this is dependent on
* being able to lock the device, which is not always possible.
*/
if (vdev->reset_works && !pci_try_reset_function(pdev))
vdev->needs_reset = false;
pci_restore_state(pdev);
out:
pci_disable_device(pdev);
vfio_pci_try_bus_reset(vdev);
if (!disable_idle_d3)
pci_set_power_state(pdev, PCI_D3hot);
}
static void vfio_pci_release(void *device_data)
{
struct vfio_pci_device *vdev = device_data;
mutex_lock(&driver_lock);
if (!(--vdev->refcnt)) {
vfio_spapr_pci_eeh_release(vdev->pdev);
vfio_pci_disable(vdev);
}
mutex_unlock(&driver_lock);
module_put(THIS_MODULE);
}
static int vfio_pci_open(void *device_data)
{
struct vfio_pci_device *vdev = device_data;
int ret = 0;
if (!try_module_get(THIS_MODULE))
return -ENODEV;
mutex_lock(&driver_lock);
if (!vdev->refcnt) {
ret = vfio_pci_enable(vdev);
if (ret)
goto error;
vfio_spapr_pci_eeh_open(vdev->pdev);
}
vdev->refcnt++;
error:
mutex_unlock(&driver_lock);
if (ret)
module_put(THIS_MODULE);
return ret;
}
static int vfio_pci_get_irq_count(struct vfio_pci_device *vdev, int irq_type)
{
if (irq_type == VFIO_PCI_INTX_IRQ_INDEX) {
u8 pin;
pci_read_config_byte(vdev->pdev, PCI_INTERRUPT_PIN, &pin);
vfio/pci: Hide broken INTx support from user INTx masking has two components, the first is that we need the ability to prevent the device from continuing to assert INTx. This is provided via the DisINTx bit in the command register and is the only thing we can really probe for when testing if INTx masking is supported. The second component is that the device needs to indicate if INTx is asserted via the interrupt status bit in the device status register. With these two features we can generically determine if one of the devices we own is asserting INTx, signal the user, and mask the interrupt while the user services the device. Generally if one or both of these components is broken we resort to APIC level interrupt masking, which requires an exclusive interrupt since we have no way to determine the source of the interrupt in a shared configuration. This often makes it difficult or impossible to configure the system for userspace use of the device, for an interrupt mode that the user may not need. One possible configuration of broken INTx masking is that the DisINTx support is fully functional, but the interrupt status bit never signals interrupt assertion. In this case we do have the ability to prevent the device from asserting INTx, but lack the ability to identify the interrupt source. For this case we can simply pretend that the device lacks INTx support entirely, keeping DisINTx set on the physical device, virtualizing this bit for the user, and virtualizing the interrupt pin register to indicate no INTx support. We already support virtualization of the DisINTx bit and already virtualize the interrupt pin for platforms without INTx support. By tying these components together, setting DisINTx on open and reset, and identifying devices broken in this particular way, we can provide support for them w/o the handicap of APIC level INTx masking. Intel i40e (XL710/X710) 10/20/40GbE NICs have been identified as being broken in this specific way. We leave the vfio-pci.nointxmask option as a mechanism to bypass this support, enabling INTx on the device with all the requirements of APIC level masking. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Cc: John Ronciak <john.ronciak@intel.com> Cc: Jesse Brandeburg <jesse.brandeburg@intel.com>
2016-03-25 03:05:18 +08:00
if (IS_ENABLED(CONFIG_VFIO_PCI_INTX) && !vdev->nointx && pin)
return 1;
} else if (irq_type == VFIO_PCI_MSI_IRQ_INDEX) {
u8 pos;
u16 flags;
pos = vdev->pdev->msi_cap;
if (pos) {
pci_read_config_word(vdev->pdev,
pos + PCI_MSI_FLAGS, &flags);
return 1 << ((flags & PCI_MSI_FLAGS_QMASK) >> 1);
}
} else if (irq_type == VFIO_PCI_MSIX_IRQ_INDEX) {
u8 pos;
u16 flags;
pos = vdev->pdev->msix_cap;
if (pos) {
pci_read_config_word(vdev->pdev,
pos + PCI_MSIX_FLAGS, &flags);
return (flags & PCI_MSIX_FLAGS_QSIZE) + 1;
}
} else if (irq_type == VFIO_PCI_ERR_IRQ_INDEX) {
if (pci_is_pcie(vdev->pdev))
return 1;
} else if (irq_type == VFIO_PCI_REQ_IRQ_INDEX) {
return 1;
}
return 0;
}
static int vfio_pci_count_devs(struct pci_dev *pdev, void *data)
{
(*(int *)data)++;
return 0;
}
struct vfio_pci_fill_info {
int max;
int cur;
struct vfio_pci_dependent_device *devices;
};
static int vfio_pci_fill_devs(struct pci_dev *pdev, void *data)
{
struct vfio_pci_fill_info *fill = data;
struct iommu_group *iommu_group;
if (fill->cur == fill->max)
return -EAGAIN; /* Something changed, try again */
iommu_group = iommu_group_get(&pdev->dev);
if (!iommu_group)
return -EPERM; /* Cannot reset non-isolated devices */
fill->devices[fill->cur].group_id = iommu_group_id(iommu_group);
fill->devices[fill->cur].segment = pci_domain_nr(pdev->bus);
fill->devices[fill->cur].bus = pdev->bus->number;
fill->devices[fill->cur].devfn = pdev->devfn;
fill->cur++;
iommu_group_put(iommu_group);
return 0;
}
struct vfio_pci_group_entry {
struct vfio_group *group;
int id;
};
struct vfio_pci_group_info {
int count;
struct vfio_pci_group_entry *groups;
};
static int vfio_pci_validate_devs(struct pci_dev *pdev, void *data)
{
struct vfio_pci_group_info *info = data;
struct iommu_group *group;
int id, i;
group = iommu_group_get(&pdev->dev);
if (!group)
return -EPERM;
id = iommu_group_id(group);
for (i = 0; i < info->count; i++)
if (info->groups[i].id == id)
break;
iommu_group_put(group);
return (i == info->count) ? -EINVAL : 0;
}
static bool vfio_pci_dev_below_slot(struct pci_dev *pdev, struct pci_slot *slot)
{
for (; pdev; pdev = pdev->bus->self)
if (pdev->bus == slot->bus)
return (pdev->slot == slot);
return false;
}
struct vfio_pci_walk_info {
int (*fn)(struct pci_dev *, void *data);
void *data;
struct pci_dev *pdev;
bool slot;
int ret;
};
static int vfio_pci_walk_wrapper(struct pci_dev *pdev, void *data)
{
struct vfio_pci_walk_info *walk = data;
if (!walk->slot || vfio_pci_dev_below_slot(pdev, walk->pdev->slot))
walk->ret = walk->fn(pdev, walk->data);
return walk->ret;
}
static int vfio_pci_for_each_slot_or_bus(struct pci_dev *pdev,
int (*fn)(struct pci_dev *,
void *data), void *data,
bool slot)
{
struct vfio_pci_walk_info walk = {
.fn = fn, .data = data, .pdev = pdev, .slot = slot, .ret = 0,
};
pci_walk_bus(pdev->bus, vfio_pci_walk_wrapper, &walk);
return walk.ret;
}
static int msix_sparse_mmap_cap(struct vfio_pci_device *vdev,
struct vfio_info_cap *caps)
{
struct vfio_info_cap_header *header;
struct vfio_region_info_cap_sparse_mmap *sparse;
size_t end, size;
int nr_areas = 2, i = 0;
end = pci_resource_len(vdev->pdev, vdev->msix_bar);
/* If MSI-X table is aligned to the start or end, only one area */
if (((vdev->msix_offset & PAGE_MASK) == 0) ||
(PAGE_ALIGN(vdev->msix_offset + vdev->msix_size) >= end))
nr_areas = 1;
size = sizeof(*sparse) + (nr_areas * sizeof(*sparse->areas));
header = vfio_info_cap_add(caps, size,
VFIO_REGION_INFO_CAP_SPARSE_MMAP, 1);
if (IS_ERR(header))
return PTR_ERR(header);
sparse = container_of(header,
struct vfio_region_info_cap_sparse_mmap, header);
sparse->nr_areas = nr_areas;
if (vdev->msix_offset & PAGE_MASK) {
sparse->areas[i].offset = 0;
sparse->areas[i].size = vdev->msix_offset & PAGE_MASK;
i++;
}
if (PAGE_ALIGN(vdev->msix_offset + vdev->msix_size) < end) {
sparse->areas[i].offset = PAGE_ALIGN(vdev->msix_offset +
vdev->msix_size);
sparse->areas[i].size = end - sparse->areas[i].offset;
i++;
}
return 0;
}
static int region_type_cap(struct vfio_pci_device *vdev,
struct vfio_info_cap *caps,
unsigned int type, unsigned int subtype)
{
struct vfio_info_cap_header *header;
struct vfio_region_info_cap_type *cap;
header = vfio_info_cap_add(caps, sizeof(*cap),
VFIO_REGION_INFO_CAP_TYPE, 1);
if (IS_ERR(header))
return PTR_ERR(header);
cap = container_of(header, struct vfio_region_info_cap_type, header);
cap->type = type;
cap->subtype = subtype;
return 0;
}
int vfio_pci_register_dev_region(struct vfio_pci_device *vdev,
unsigned int type, unsigned int subtype,
const struct vfio_pci_regops *ops,
size_t size, u32 flags, void *data)
{
struct vfio_pci_region *region;
region = krealloc(vdev->region,
(vdev->num_regions + 1) * sizeof(*region),
GFP_KERNEL);
if (!region)
return -ENOMEM;
vdev->region = region;
vdev->region[vdev->num_regions].type = type;
vdev->region[vdev->num_regions].subtype = subtype;
vdev->region[vdev->num_regions].ops = ops;
vdev->region[vdev->num_regions].size = size;
vdev->region[vdev->num_regions].flags = flags;
vdev->region[vdev->num_regions].data = data;
vdev->num_regions++;
return 0;
}
static long vfio_pci_ioctl(void *device_data,
unsigned int cmd, unsigned long arg)
{
struct vfio_pci_device *vdev = device_data;
unsigned long minsz;
if (cmd == VFIO_DEVICE_GET_INFO) {
struct vfio_device_info info;
minsz = offsetofend(struct vfio_device_info, num_irqs);
if (copy_from_user(&info, (void __user *)arg, minsz))
return -EFAULT;
if (info.argsz < minsz)
return -EINVAL;
info.flags = VFIO_DEVICE_FLAGS_PCI;
if (vdev->reset_works)
info.flags |= VFIO_DEVICE_FLAGS_RESET;
info.num_regions = VFIO_PCI_NUM_REGIONS + vdev->num_regions;
info.num_irqs = VFIO_PCI_NUM_IRQS;
return copy_to_user((void __user *)arg, &info, minsz) ?
-EFAULT : 0;
} else if (cmd == VFIO_DEVICE_GET_REGION_INFO) {
struct pci_dev *pdev = vdev->pdev;
struct vfio_region_info info;
struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
int i, ret;
minsz = offsetofend(struct vfio_region_info, offset);
if (copy_from_user(&info, (void __user *)arg, minsz))
return -EFAULT;
if (info.argsz < minsz)
return -EINVAL;
switch (info.index) {
case VFIO_PCI_CONFIG_REGION_INDEX:
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
info.size = pdev->cfg_size;
info.flags = VFIO_REGION_INFO_FLAG_READ |
VFIO_REGION_INFO_FLAG_WRITE;
break;
case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
info.size = pci_resource_len(pdev, info.index);
if (!info.size) {
info.flags = 0;
break;
}
info.flags = VFIO_REGION_INFO_FLAG_READ |
VFIO_REGION_INFO_FLAG_WRITE;
if (vdev->bar_mmap_supported[info.index]) {
info.flags |= VFIO_REGION_INFO_FLAG_MMAP;
if (info.index == vdev->msix_bar) {
ret = msix_sparse_mmap_cap(vdev, &caps);
if (ret)
return ret;
}
}
break;
case VFIO_PCI_ROM_REGION_INDEX:
{
void __iomem *io;
size_t size;
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
info.flags = 0;
/* Report the BAR size, not the ROM size */
info.size = pci_resource_len(pdev, info.index);
if (!info.size) {
/* Shadow ROMs appear as PCI option ROMs */
if (pdev->resource[PCI_ROM_RESOURCE].flags &
IORESOURCE_ROM_SHADOW)
info.size = 0x20000;
else
break;
}
/* Is it really there? */
io = pci_map_rom(pdev, &size);
if (!io || !size) {
info.size = 0;
break;
}
pci_unmap_rom(pdev, io);
info.flags = VFIO_REGION_INFO_FLAG_READ;
break;
}
case VFIO_PCI_VGA_REGION_INDEX:
if (!vdev->has_vga)
return -EINVAL;
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
info.size = 0xc0000;
info.flags = VFIO_REGION_INFO_FLAG_READ |
VFIO_REGION_INFO_FLAG_WRITE;
break;
default:
if (info.index >=
VFIO_PCI_NUM_REGIONS + vdev->num_regions)
return -EINVAL;
i = info.index - VFIO_PCI_NUM_REGIONS;
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
info.size = vdev->region[i].size;
info.flags = vdev->region[i].flags;
ret = region_type_cap(vdev, &caps,
vdev->region[i].type,
vdev->region[i].subtype);
if (ret)
return ret;
}
if (caps.size) {
info.flags |= VFIO_REGION_INFO_FLAG_CAPS;
if (info.argsz < sizeof(info) + caps.size) {
info.argsz = sizeof(info) + caps.size;
info.cap_offset = 0;
} else {
vfio_info_cap_shift(&caps, sizeof(info));
if (copy_to_user((void __user *)arg +
sizeof(info), caps.buf,
caps.size)) {
kfree(caps.buf);
return -EFAULT;
}
info.cap_offset = sizeof(info);
}
kfree(caps.buf);
}
return copy_to_user((void __user *)arg, &info, minsz) ?
-EFAULT : 0;
} else if (cmd == VFIO_DEVICE_GET_IRQ_INFO) {
struct vfio_irq_info info;
minsz = offsetofend(struct vfio_irq_info, count);
if (copy_from_user(&info, (void __user *)arg, minsz))
return -EFAULT;
if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS)
return -EINVAL;
switch (info.index) {
case VFIO_PCI_INTX_IRQ_INDEX ... VFIO_PCI_MSIX_IRQ_INDEX:
case VFIO_PCI_REQ_IRQ_INDEX:
break;
case VFIO_PCI_ERR_IRQ_INDEX:
if (pci_is_pcie(vdev->pdev))
break;
/* pass thru to return error */
default:
return -EINVAL;
}
info.flags = VFIO_IRQ_INFO_EVENTFD;
info.count = vfio_pci_get_irq_count(vdev, info.index);
if (info.index == VFIO_PCI_INTX_IRQ_INDEX)
info.flags |= (VFIO_IRQ_INFO_MASKABLE |
VFIO_IRQ_INFO_AUTOMASKED);
else
info.flags |= VFIO_IRQ_INFO_NORESIZE;
return copy_to_user((void __user *)arg, &info, minsz) ?
-EFAULT : 0;
} else if (cmd == VFIO_DEVICE_SET_IRQS) {
struct vfio_irq_set hdr;
u8 *data = NULL;
int ret = 0;
minsz = offsetofend(struct vfio_irq_set, count);
if (copy_from_user(&hdr, (void __user *)arg, minsz))
return -EFAULT;
if (hdr.argsz < minsz || hdr.index >= VFIO_PCI_NUM_IRQS ||
hdr.flags & ~(VFIO_IRQ_SET_DATA_TYPE_MASK |
VFIO_IRQ_SET_ACTION_TYPE_MASK))
return -EINVAL;
if (!(hdr.flags & VFIO_IRQ_SET_DATA_NONE)) {
size_t size;
int max = vfio_pci_get_irq_count(vdev, hdr.index);
if (hdr.flags & VFIO_IRQ_SET_DATA_BOOL)
size = sizeof(uint8_t);
else if (hdr.flags & VFIO_IRQ_SET_DATA_EVENTFD)
size = sizeof(int32_t);
else
return -EINVAL;
if (hdr.argsz - minsz < hdr.count * size ||
hdr.start >= max || hdr.start + hdr.count > max)
return -EINVAL;
data = memdup_user((void __user *)(arg + minsz),
hdr.count * size);
if (IS_ERR(data))
return PTR_ERR(data);
}
mutex_lock(&vdev->igate);
ret = vfio_pci_set_irqs_ioctl(vdev, hdr.flags, hdr.index,
hdr.start, hdr.count, data);
mutex_unlock(&vdev->igate);
kfree(data);
return ret;
} else if (cmd == VFIO_DEVICE_RESET) {
return vdev->reset_works ?
pci_try_reset_function(vdev->pdev) : -EINVAL;
} else if (cmd == VFIO_DEVICE_GET_PCI_HOT_RESET_INFO) {
struct vfio_pci_hot_reset_info hdr;
struct vfio_pci_fill_info fill = { 0 };
struct vfio_pci_dependent_device *devices = NULL;
bool slot = false;
int ret = 0;
minsz = offsetofend(struct vfio_pci_hot_reset_info, count);
if (copy_from_user(&hdr, (void __user *)arg, minsz))
return -EFAULT;
if (hdr.argsz < minsz)
return -EINVAL;
hdr.flags = 0;
/* Can we do a slot or bus reset or neither? */
if (!pci_probe_reset_slot(vdev->pdev->slot))
slot = true;
else if (pci_probe_reset_bus(vdev->pdev->bus))
return -ENODEV;
/* How many devices are affected? */
ret = vfio_pci_for_each_slot_or_bus(vdev->pdev,
vfio_pci_count_devs,
&fill.max, slot);
if (ret)
return ret;
WARN_ON(!fill.max); /* Should always be at least one */
/*
* If there's enough space, fill it now, otherwise return
* -ENOSPC and the number of devices affected.
*/
if (hdr.argsz < sizeof(hdr) + (fill.max * sizeof(*devices))) {
ret = -ENOSPC;
hdr.count = fill.max;
goto reset_info_exit;
}
devices = kcalloc(fill.max, sizeof(*devices), GFP_KERNEL);
if (!devices)
return -ENOMEM;
fill.devices = devices;
ret = vfio_pci_for_each_slot_or_bus(vdev->pdev,
vfio_pci_fill_devs,
&fill, slot);
/*
* If a device was removed between counting and filling,
* we may come up short of fill.max. If a device was
* added, we'll have a return of -EAGAIN above.
*/
if (!ret)
hdr.count = fill.cur;
reset_info_exit:
if (copy_to_user((void __user *)arg, &hdr, minsz))
ret = -EFAULT;
if (!ret) {
if (copy_to_user((void __user *)(arg + minsz), devices,
hdr.count * sizeof(*devices)))
ret = -EFAULT;
}
kfree(devices);
return ret;
} else if (cmd == VFIO_DEVICE_PCI_HOT_RESET) {
struct vfio_pci_hot_reset hdr;
int32_t *group_fds;
struct vfio_pci_group_entry *groups;
struct vfio_pci_group_info info;
bool slot = false;
int i, count = 0, ret = 0;
minsz = offsetofend(struct vfio_pci_hot_reset, count);
if (copy_from_user(&hdr, (void __user *)arg, minsz))
return -EFAULT;
if (hdr.argsz < minsz || hdr.flags)
return -EINVAL;
/* Can we do a slot or bus reset or neither? */
if (!pci_probe_reset_slot(vdev->pdev->slot))
slot = true;
else if (pci_probe_reset_bus(vdev->pdev->bus))
return -ENODEV;
/*
* We can't let userspace give us an arbitrarily large
* buffer to copy, so verify how many we think there
* could be. Note groups can have multiple devices so
* one group per device is the max.
*/
ret = vfio_pci_for_each_slot_or_bus(vdev->pdev,
vfio_pci_count_devs,
&count, slot);
if (ret)
return ret;
/* Somewhere between 1 and count is OK */
if (!hdr.count || hdr.count > count)
return -EINVAL;
group_fds = kcalloc(hdr.count, sizeof(*group_fds), GFP_KERNEL);
groups = kcalloc(hdr.count, sizeof(*groups), GFP_KERNEL);
if (!group_fds || !groups) {
kfree(group_fds);
kfree(groups);
return -ENOMEM;
}
if (copy_from_user(group_fds, (void __user *)(arg + minsz),
hdr.count * sizeof(*group_fds))) {
kfree(group_fds);
kfree(groups);
return -EFAULT;
}
/*
* For each group_fd, get the group through the vfio external
* user interface and store the group and iommu ID. This
* ensures the group is held across the reset.
*/
for (i = 0; i < hdr.count; i++) {
struct vfio_group *group;
struct fd f = fdget(group_fds[i]);
if (!f.file) {
ret = -EBADF;
break;
}
group = vfio_group_get_external_user(f.file);
fdput(f);
if (IS_ERR(group)) {
ret = PTR_ERR(group);
break;
}
groups[i].group = group;
groups[i].id = vfio_external_user_iommu_id(group);
}
kfree(group_fds);
/* release reference to groups on error */
if (ret)
goto hot_reset_release;
info.count = hdr.count;
info.groups = groups;
/*
* Test whether all the affected devices are contained
* by the set of groups provided by the user.
*/
ret = vfio_pci_for_each_slot_or_bus(vdev->pdev,
vfio_pci_validate_devs,
&info, slot);
if (!ret)
/* User has access, do the reset */
ret = slot ? pci_try_reset_slot(vdev->pdev->slot) :
pci_try_reset_bus(vdev->pdev->bus);
hot_reset_release:
for (i--; i >= 0; i--)
vfio_group_put_external_user(groups[i].group);
kfree(groups);
return ret;
}
return -ENOTTY;
}
static ssize_t vfio_pci_rw(void *device_data, char __user *buf,
size_t count, loff_t *ppos, bool iswrite)
{
unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
struct vfio_pci_device *vdev = device_data;
if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
return -EINVAL;
switch (index) {
case VFIO_PCI_CONFIG_REGION_INDEX:
return vfio_pci_config_rw(vdev, buf, count, ppos, iswrite);
case VFIO_PCI_ROM_REGION_INDEX:
if (iswrite)
return -EINVAL;
return vfio_pci_bar_rw(vdev, buf, count, ppos, false);
case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
return vfio_pci_bar_rw(vdev, buf, count, ppos, iswrite);
case VFIO_PCI_VGA_REGION_INDEX:
return vfio_pci_vga_rw(vdev, buf, count, ppos, iswrite);
default:
index -= VFIO_PCI_NUM_REGIONS;
return vdev->region[index].ops->rw(vdev, buf,
count, ppos, iswrite);
}
return -EINVAL;
}
static ssize_t vfio_pci_read(void *device_data, char __user *buf,
size_t count, loff_t *ppos)
{
if (!count)
return 0;
return vfio_pci_rw(device_data, buf, count, ppos, false);
}
static ssize_t vfio_pci_write(void *device_data, const char __user *buf,
size_t count, loff_t *ppos)
{
if (!count)
return 0;
return vfio_pci_rw(device_data, (char __user *)buf, count, ppos, true);
}
static int vfio_pci_mmap(void *device_data, struct vm_area_struct *vma)
{
struct vfio_pci_device *vdev = device_data;
struct pci_dev *pdev = vdev->pdev;
unsigned int index;
u64 phys_len, req_len, pgoff, req_start;
int ret;
index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
if (vma->vm_end < vma->vm_start)
return -EINVAL;
if ((vma->vm_flags & VM_SHARED) == 0)
return -EINVAL;
if (index >= VFIO_PCI_ROM_REGION_INDEX)
return -EINVAL;
if (!vdev->bar_mmap_supported[index])
return -EINVAL;
phys_len = PAGE_ALIGN(pci_resource_len(pdev, index));
req_len = vma->vm_end - vma->vm_start;
pgoff = vma->vm_pgoff &
((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
req_start = pgoff << PAGE_SHIFT;
if (req_start + req_len > phys_len)
return -EINVAL;
if (index == vdev->msix_bar) {
/*
* Disallow mmaps overlapping the MSI-X table; users don't
* get to touch this directly. We could find somewhere
* else to map the overlap, but page granularity is only
* a recommendation, not a requirement, so the user needs
* to know which bits are real. Requiring them to mmap
* around the table makes that clear.
*/
/* If neither entirely above nor below, then it overlaps */
if (!(req_start >= vdev->msix_offset + vdev->msix_size ||
req_start + req_len <= vdev->msix_offset))
return -EINVAL;
}
/*
* Even though we don't make use of the barmap for the mmap,
* we need to request the region and the barmap tracks that.
*/
if (!vdev->barmap[index]) {
ret = pci_request_selected_regions(pdev,
1 << index, "vfio-pci");
if (ret)
return ret;
vdev->barmap[index] = pci_iomap(pdev, index, 0);
}
vma->vm_private_data = vdev;
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
vma->vm_pgoff = (pci_resource_start(pdev, index) >> PAGE_SHIFT) + pgoff;
return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
req_len, vma->vm_page_prot);
}
static void vfio_pci_request(void *device_data, unsigned int count)
{
struct vfio_pci_device *vdev = device_data;
mutex_lock(&vdev->igate);
if (vdev->req_trigger) {
if (!(count % 10))
dev_notice_ratelimited(&vdev->pdev->dev,
"Relaying device request to user (#%u)\n",
count);
eventfd_signal(vdev->req_trigger, 1);
} else if (count == 0) {
dev_warn(&vdev->pdev->dev,
"No device request channel registered, blocked until released by user\n");
}
mutex_unlock(&vdev->igate);
}
static const struct vfio_device_ops vfio_pci_ops = {
.name = "vfio-pci",
.open = vfio_pci_open,
.release = vfio_pci_release,
.ioctl = vfio_pci_ioctl,
.read = vfio_pci_read,
.write = vfio_pci_write,
.mmap = vfio_pci_mmap,
.request = vfio_pci_request,
};
static int vfio_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct vfio_pci_device *vdev;
struct iommu_group *group;
int ret;
if (pdev->hdr_type != PCI_HEADER_TYPE_NORMAL)
return -EINVAL;
group = vfio_iommu_group_get(&pdev->dev);
if (!group)
return -EINVAL;
vdev = kzalloc(sizeof(*vdev), GFP_KERNEL);
if (!vdev) {
vfio_iommu_group_put(group, &pdev->dev);
return -ENOMEM;
}
vdev->pdev = pdev;
vdev->irq_type = VFIO_PCI_NUM_IRQS;
mutex_init(&vdev->igate);
spin_lock_init(&vdev->irqlock);
ret = vfio_add_group_dev(&pdev->dev, &vfio_pci_ops, vdev);
if (ret) {
vfio_iommu_group_put(group, &pdev->dev);
kfree(vdev);
return ret;
}
if (vfio_pci_is_vga(pdev)) {
vga_client_register(pdev, vdev, NULL, vfio_pci_set_vga_decode);
vga_set_legacy_decoding(pdev,
vfio_pci_set_vga_decode(vdev, false));
}
if (!disable_idle_d3) {
/*
* pci-core sets the device power state to an unknown value at
* bootup and after being removed from a driver. The only
* transition it allows from this unknown state is to D0, which
* typically happens when a driver calls pci_enable_device().
* We're not ready to enable the device yet, but we do want to
* be able to get to D3. Therefore first do a D0 transition
* before going to D3.
*/
pci_set_power_state(pdev, PCI_D0);
pci_set_power_state(pdev, PCI_D3hot);
}
return ret;
}
static void vfio_pci_remove(struct pci_dev *pdev)
{
struct vfio_pci_device *vdev;
vdev = vfio_del_group_dev(&pdev->dev);
if (!vdev)
return;
vfio_iommu_group_put(pdev->dev.iommu_group, &pdev->dev);
kfree(vdev->region);
kfree(vdev);
if (vfio_pci_is_vga(pdev)) {
vga_client_register(pdev, NULL, NULL, NULL);
vga_set_legacy_decoding(pdev,
VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM |
VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM);
}
if (!disable_idle_d3)
pci_set_power_state(pdev, PCI_D0);
}
static pci_ers_result_t vfio_pci_aer_err_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct vfio_pci_device *vdev;
struct vfio_device *device;
device = vfio_device_get_from_dev(&pdev->dev);
if (device == NULL)
return PCI_ERS_RESULT_DISCONNECT;
vdev = vfio_device_data(device);
if (vdev == NULL) {
vfio_device_put(device);
return PCI_ERS_RESULT_DISCONNECT;
}
mutex_lock(&vdev->igate);
if (vdev->err_trigger)
eventfd_signal(vdev->err_trigger, 1);
mutex_unlock(&vdev->igate);
vfio_device_put(device);
return PCI_ERS_RESULT_CAN_RECOVER;
}
static const struct pci_error_handlers vfio_err_handlers = {
.error_detected = vfio_pci_aer_err_detected,
};
static struct pci_driver vfio_pci_driver = {
.name = "vfio-pci",
.id_table = NULL, /* only dynamic ids */
.probe = vfio_pci_probe,
.remove = vfio_pci_remove,
.err_handler = &vfio_err_handlers,
};
struct vfio_devices {
struct vfio_device **devices;
int cur_index;
int max_index;
};
static int vfio_pci_get_devs(struct pci_dev *pdev, void *data)
{
struct vfio_devices *devs = data;
struct vfio_device *device;
if (devs->cur_index == devs->max_index)
return -ENOSPC;
device = vfio_device_get_from_dev(&pdev->dev);
if (!device)
return -EINVAL;
if (pci_dev_driver(pdev) != &vfio_pci_driver) {
vfio_device_put(device);
return -EBUSY;
}
devs->devices[devs->cur_index++] = device;
return 0;
}
/*
* Attempt to do a bus/slot reset if there are devices affected by a reset for
* this device that are needs_reset and all of the affected devices are unused
* (!refcnt). Callers are required to hold driver_lock when calling this to
* prevent device opens and concurrent bus reset attempts. We prevent device
* unbinds by acquiring and holding a reference to the vfio_device.
*
* NB: vfio-core considers a group to be viable even if some devices are
* bound to drivers like pci-stub or pcieport. Here we require all devices
* to be bound to vfio_pci since that's the only way we can be sure they
* stay put.
*/
static void vfio_pci_try_bus_reset(struct vfio_pci_device *vdev)
{
struct vfio_devices devs = { .cur_index = 0 };
int i = 0, ret = -EINVAL;
bool needs_reset = false, slot = false;
struct vfio_pci_device *tmp;
if (!pci_probe_reset_slot(vdev->pdev->slot))
slot = true;
else if (pci_probe_reset_bus(vdev->pdev->bus))
return;
if (vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs,
&i, slot) || !i)
return;
devs.max_index = i;
devs.devices = kcalloc(i, sizeof(struct vfio_device *), GFP_KERNEL);
if (!devs.devices)
return;
if (vfio_pci_for_each_slot_or_bus(vdev->pdev,
vfio_pci_get_devs, &devs, slot))
goto put_devs;
for (i = 0; i < devs.cur_index; i++) {
tmp = vfio_device_data(devs.devices[i]);
if (tmp->needs_reset)
needs_reset = true;
if (tmp->refcnt)
goto put_devs;
}
if (needs_reset)
ret = slot ? pci_try_reset_slot(vdev->pdev->slot) :
pci_try_reset_bus(vdev->pdev->bus);
put_devs:
for (i = 0; i < devs.cur_index; i++) {
tmp = vfio_device_data(devs.devices[i]);
if (!ret)
tmp->needs_reset = false;
if (!tmp->refcnt && !disable_idle_d3)
pci_set_power_state(tmp->pdev, PCI_D3hot);
vfio_device_put(devs.devices[i]);
}
kfree(devs.devices);
}
static void __exit vfio_pci_cleanup(void)
{
pci_unregister_driver(&vfio_pci_driver);
vfio_pci_uninit_perm_bits();
}
static void __init vfio_pci_fill_ids(void)
{
char *p, *id;
int rc;
/* no ids passed actually */
if (ids[0] == '\0')
return;
/* add ids specified in the module parameter */
p = ids;
while ((id = strsep(&p, ","))) {
unsigned int vendor, device, subvendor = PCI_ANY_ID,
subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
int fields;
if (!strlen(id))
continue;
fields = sscanf(id, "%x:%x:%x:%x:%x:%x",
&vendor, &device, &subvendor, &subdevice,
&class, &class_mask);
if (fields < 2) {
pr_warn("invalid id string \"%s\"\n", id);
continue;
}
rc = pci_add_dynid(&vfio_pci_driver, vendor, device,
subvendor, subdevice, class, class_mask, 0);
if (rc)
pr_warn("failed to add dynamic id [%04hx:%04hx[%04hx:%04hx]] class %#08x/%08x (%d)\n",
vendor, device, subvendor, subdevice,
class, class_mask, rc);
else
pr_info("add [%04hx:%04hx[%04hx:%04hx]] class %#08x/%08x\n",
vendor, device, subvendor, subdevice,
class, class_mask);
}
}
static int __init vfio_pci_init(void)
{
int ret;
/* Allocate shared config space permision data used by all devices */
ret = vfio_pci_init_perm_bits();
if (ret)
return ret;
/* Register and scan for devices */
ret = pci_register_driver(&vfio_pci_driver);
if (ret)
goto out_driver;
vfio_pci_fill_ids();
return 0;
out_driver:
vfio_pci_uninit_perm_bits();
return ret;
}
module_init(vfio_pci_init);
module_exit(vfio_pci_cleanup);
MODULE_VERSION(DRIVER_VERSION);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);