linux/arch/powerpc/platforms/powernv/pci.c

656 lines
18 KiB
C
Raw Normal View History

/*
* Support PCI/PCIe on PowerNV platforms
*
* Currently supports only P5IOC2
*
* Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/msi.h>
#include <linux/iommu.h>
#include <asm/sections.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/pci-bridge.h>
#include <asm/machdep.h>
#include <asm/msi_bitmap.h>
#include <asm/ppc-pci.h>
#include <asm/opal.h>
#include <asm/iommu.h>
#include <asm/tce.h>
#include <asm/firmware.h>
#include <asm/eeh_event.h>
#include <asm/eeh.h>
#include "powernv.h"
#include "pci.h"
/* Delay in usec */
#define PCI_RESET_DELAY_US 3000000
#define cfg_dbg(fmt...) do { } while(0)
//#define cfg_dbg(fmt...) printk(fmt)
#ifdef CONFIG_PCI_MSI
static int pnv_msi_check_device(struct pci_dev* pdev, int nvec, int type)
{
struct pci_controller *hose = pci_bus_to_host(pdev->bus);
struct pnv_phb *phb = hose->private_data;
struct pci_dn *pdn = pci_get_pdn(pdev);
if (pdn && pdn->force_32bit_msi && !phb->msi32_support)
return -ENODEV;
return (phb && phb->msi_bmp.bitmap) ? 0 : -ENODEV;
}
static int pnv_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type)
{
struct pci_controller *hose = pci_bus_to_host(pdev->bus);
struct pnv_phb *phb = hose->private_data;
struct msi_desc *entry;
struct msi_msg msg;
int hwirq;
unsigned int virq;
int rc;
if (WARN_ON(!phb))
return -ENODEV;
list_for_each_entry(entry, &pdev->msi_list, list) {
if (!entry->msi_attrib.is_64 && !phb->msi32_support) {
pr_warn("%s: Supports only 64-bit MSIs\n",
pci_name(pdev));
return -ENXIO;
}
hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, 1);
if (hwirq < 0) {
pr_warn("%s: Failed to find a free MSI\n",
pci_name(pdev));
return -ENOSPC;
}
virq = irq_create_mapping(NULL, phb->msi_base + hwirq);
if (virq == NO_IRQ) {
pr_warn("%s: Failed to map MSI to linux irq\n",
pci_name(pdev));
msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq, 1);
return -ENOMEM;
}
rc = phb->msi_setup(phb, pdev, phb->msi_base + hwirq,
virq, entry->msi_attrib.is_64, &msg);
if (rc) {
pr_warn("%s: Failed to setup MSI\n", pci_name(pdev));
irq_dispose_mapping(virq);
msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq, 1);
return rc;
}
irq_set_msi_desc(virq, entry);
write_msi_msg(virq, &msg);
}
return 0;
}
static void pnv_teardown_msi_irqs(struct pci_dev *pdev)
{
struct pci_controller *hose = pci_bus_to_host(pdev->bus);
struct pnv_phb *phb = hose->private_data;
struct msi_desc *entry;
if (WARN_ON(!phb))
return;
list_for_each_entry(entry, &pdev->msi_list, list) {
if (entry->irq == NO_IRQ)
continue;
irq_set_msi_desc(entry->irq, NULL);
msi_bitmap_free_hwirqs(&phb->msi_bmp,
virq_to_hw(entry->irq) - phb->msi_base, 1);
irq_dispose_mapping(entry->irq);
}
}
#endif /* CONFIG_PCI_MSI */
static void pnv_pci_dump_p7ioc_diag_data(struct pnv_phb *phb)
{
struct OpalIoP7IOCPhbErrorData *data = &phb->diag.p7ioc;
int i;
pr_info("PHB %d diagnostic data:\n", phb->hose->global_number);
pr_info(" brdgCtl = 0x%08x\n", data->brdgCtl);
pr_info(" portStatusReg = 0x%08x\n", data->portStatusReg);
pr_info(" rootCmplxStatus = 0x%08x\n", data->rootCmplxStatus);
pr_info(" busAgentStatus = 0x%08x\n", data->busAgentStatus);
pr_info(" deviceStatus = 0x%08x\n", data->deviceStatus);
pr_info(" slotStatus = 0x%08x\n", data->slotStatus);
pr_info(" linkStatus = 0x%08x\n", data->linkStatus);
pr_info(" devCmdStatus = 0x%08x\n", data->devCmdStatus);
pr_info(" devSecStatus = 0x%08x\n", data->devSecStatus);
pr_info(" rootErrorStatus = 0x%08x\n", data->rootErrorStatus);
pr_info(" uncorrErrorStatus = 0x%08x\n", data->uncorrErrorStatus);
pr_info(" corrErrorStatus = 0x%08x\n", data->corrErrorStatus);
pr_info(" tlpHdr1 = 0x%08x\n", data->tlpHdr1);
pr_info(" tlpHdr2 = 0x%08x\n", data->tlpHdr2);
pr_info(" tlpHdr3 = 0x%08x\n", data->tlpHdr3);
pr_info(" tlpHdr4 = 0x%08x\n", data->tlpHdr4);
pr_info(" sourceId = 0x%08x\n", data->sourceId);
pr_info(" errorClass = 0x%016llx\n", data->errorClass);
pr_info(" correlator = 0x%016llx\n", data->correlator);
pr_info(" p7iocPlssr = 0x%016llx\n", data->p7iocPlssr);
pr_info(" p7iocCsr = 0x%016llx\n", data->p7iocCsr);
pr_info(" lemFir = 0x%016llx\n", data->lemFir);
pr_info(" lemErrorMask = 0x%016llx\n", data->lemErrorMask);
pr_info(" lemWOF = 0x%016llx\n", data->lemWOF);
pr_info(" phbErrorStatus = 0x%016llx\n", data->phbErrorStatus);
pr_info(" phbFirstErrorStatus = 0x%016llx\n", data->phbFirstErrorStatus);
pr_info(" phbErrorLog0 = 0x%016llx\n", data->phbErrorLog0);
pr_info(" phbErrorLog1 = 0x%016llx\n", data->phbErrorLog1);
pr_info(" mmioErrorStatus = 0x%016llx\n", data->mmioErrorStatus);
pr_info(" mmioFirstErrorStatus = 0x%016llx\n", data->mmioFirstErrorStatus);
pr_info(" mmioErrorLog0 = 0x%016llx\n", data->mmioErrorLog0);
pr_info(" mmioErrorLog1 = 0x%016llx\n", data->mmioErrorLog1);
pr_info(" dma0ErrorStatus = 0x%016llx\n", data->dma0ErrorStatus);
pr_info(" dma0FirstErrorStatus = 0x%016llx\n", data->dma0FirstErrorStatus);
pr_info(" dma0ErrorLog0 = 0x%016llx\n", data->dma0ErrorLog0);
pr_info(" dma0ErrorLog1 = 0x%016llx\n", data->dma0ErrorLog1);
pr_info(" dma1ErrorStatus = 0x%016llx\n", data->dma1ErrorStatus);
pr_info(" dma1FirstErrorStatus = 0x%016llx\n", data->dma1FirstErrorStatus);
pr_info(" dma1ErrorLog0 = 0x%016llx\n", data->dma1ErrorLog0);
pr_info(" dma1ErrorLog1 = 0x%016llx\n", data->dma1ErrorLog1);
for (i = 0; i < OPAL_P7IOC_NUM_PEST_REGS; i++) {
if ((data->pestA[i] >> 63) == 0 &&
(data->pestB[i] >> 63) == 0)
continue;
pr_info(" PE[%3d] PESTA = 0x%016llx\n", i, data->pestA[i]);
pr_info(" PESTB = 0x%016llx\n", data->pestB[i]);
}
}
static void pnv_pci_dump_phb_diag_data(struct pnv_phb *phb)
{
switch(phb->model) {
case PNV_PHB_MODEL_P7IOC:
pnv_pci_dump_p7ioc_diag_data(phb);
break;
default:
pr_warning("PCI %d: Can't decode this PHB diag data\n",
phb->hose->global_number);
}
}
static void pnv_pci_handle_eeh_config(struct pnv_phb *phb, u32 pe_no)
{
unsigned long flags, rc;
int has_diag;
spin_lock_irqsave(&phb->lock, flags);
rc = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag.blob,
PNV_PCI_DIAG_BUF_SIZE);
has_diag = (rc == OPAL_SUCCESS);
rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
if (rc) {
pr_warning("PCI %d: Failed to clear EEH freeze state"
" for PE#%d, err %ld\n",
phb->hose->global_number, pe_no, rc);
/* For now, let's only display the diag buffer when we fail to clear
* the EEH status. We'll do more sensible things later when we have
* proper EEH support. We need to make sure we don't pollute ourselves
* with the normal errors generated when probing empty slots
*/
if (has_diag)
pnv_pci_dump_phb_diag_data(phb);
else
pr_warning("PCI %d: No diag data available\n",
phb->hose->global_number);
}
spin_unlock_irqrestore(&phb->lock, flags);
}
static void pnv_pci_config_check_eeh(struct pnv_phb *phb,
struct device_node *dn)
{
s64 rc;
u8 fstate;
__be16 pcierr;
u32 pe_no;
/*
* Get the PE#. During the PCI probe stage, we might not
* setup that yet. So all ER errors should be mapped to
* PE#0
*/
pe_no = PCI_DN(dn)->pe_number;
if (pe_no == IODA_INVALID_PE)
pe_no = 0;
/* Read freeze status */
rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no, &fstate, &pcierr,
NULL);
if (rc) {
pr_warning("%s: Can't read EEH status (PE#%d) for "
"%s, err %lld\n",
__func__, pe_no, dn->full_name, rc);
return;
}
cfg_dbg(" -> EEH check, bdfn=%04x PE#%d fstate=%x\n",
(PCI_DN(dn)->busno << 8) | (PCI_DN(dn)->devfn),
pe_no, fstate);
if (fstate != 0)
pnv_pci_handle_eeh_config(phb, pe_no);
}
int pnv_pci_cfg_read(struct device_node *dn,
int where, int size, u32 *val)
{
struct pci_dn *pdn = PCI_DN(dn);
struct pnv_phb *phb = pdn->phb->private_data;
u32 bdfn = (pdn->busno << 8) | pdn->devfn;
#ifdef CONFIG_EEH
struct eeh_pe *phb_pe = NULL;
#endif
s64 rc;
switch (size) {
case 1: {
u8 v8;
rc = opal_pci_config_read_byte(phb->opal_id, bdfn, where, &v8);
*val = (rc == OPAL_SUCCESS) ? v8 : 0xff;
break;
}
case 2: {
__be16 v16;
rc = opal_pci_config_read_half_word(phb->opal_id, bdfn, where,
&v16);
*val = (rc == OPAL_SUCCESS) ? be16_to_cpu(v16) : 0xffff;
break;
}
case 4: {
__be32 v32;
rc = opal_pci_config_read_word(phb->opal_id, bdfn, where, &v32);
*val = (rc == OPAL_SUCCESS) ? be32_to_cpu(v32) : 0xffffffff;
break;
}
default:
return PCIBIOS_FUNC_NOT_SUPPORTED;
}
cfg_dbg("%s: bus: %x devfn: %x +%x/%x -> %08x\n",
__func__, pdn->busno, pdn->devfn, where, size, *val);
/*
* Check if the specified PE has been put into frozen
* state. On the other hand, we needn't do that while
* the PHB has been put into frozen state because of
* PHB-fatal errors.
*/
#ifdef CONFIG_EEH
phb_pe = eeh_phb_pe_get(pdn->phb);
if (phb_pe && (phb_pe->state & EEH_PE_ISOLATED))
return PCIBIOS_SUCCESSFUL;
if (phb->eeh_state & PNV_EEH_STATE_ENABLED) {
if (*val == EEH_IO_ERROR_VALUE(size) &&
eeh_dev_check_failure(of_node_to_eeh_dev(dn)))
return PCIBIOS_DEVICE_NOT_FOUND;
} else {
pnv_pci_config_check_eeh(phb, dn);
}
#else
pnv_pci_config_check_eeh(phb, dn);
#endif
return PCIBIOS_SUCCESSFUL;
}
int pnv_pci_cfg_write(struct device_node *dn,
int where, int size, u32 val)
{
struct pci_dn *pdn = PCI_DN(dn);
struct pnv_phb *phb = pdn->phb->private_data;
u32 bdfn = (pdn->busno << 8) | pdn->devfn;
cfg_dbg("%s: bus: %x devfn: %x +%x/%x -> %08x\n",
pdn->busno, pdn->devfn, where, size, val);
switch (size) {
case 1:
opal_pci_config_write_byte(phb->opal_id, bdfn, where, val);
break;
case 2:
opal_pci_config_write_half_word(phb->opal_id, bdfn, where, val);
break;
case 4:
opal_pci_config_write_word(phb->opal_id, bdfn, where, val);
break;
default:
return PCIBIOS_FUNC_NOT_SUPPORTED;
}
/* Check if the PHB got frozen due to an error (no response) */
#ifdef CONFIG_EEH
if (!(phb->eeh_state & PNV_EEH_STATE_ENABLED))
pnv_pci_config_check_eeh(phb, dn);
#else
pnv_pci_config_check_eeh(phb, dn);
#endif
return PCIBIOS_SUCCESSFUL;
}
static int pnv_pci_read_config(struct pci_bus *bus,
unsigned int devfn,
int where, int size, u32 *val)
{
struct device_node *dn, *busdn = pci_bus_to_OF_node(bus);
struct pci_dn *pdn;
for (dn = busdn->child; dn; dn = dn->sibling) {
pdn = PCI_DN(dn);
if (pdn && pdn->devfn == devfn)
return pnv_pci_cfg_read(dn, where, size, val);
}
*val = 0xFFFFFFFF;
return PCIBIOS_DEVICE_NOT_FOUND;
}
static int pnv_pci_write_config(struct pci_bus *bus,
unsigned int devfn,
int where, int size, u32 val)
{
struct device_node *dn, *busdn = pci_bus_to_OF_node(bus);
struct pci_dn *pdn;
for (dn = busdn->child; dn; dn = dn->sibling) {
pdn = PCI_DN(dn);
if (pdn && pdn->devfn == devfn)
return pnv_pci_cfg_write(dn, where, size, val);
}
return PCIBIOS_DEVICE_NOT_FOUND;
}
struct pci_ops pnv_pci_ops = {
.read = pnv_pci_read_config,
.write = pnv_pci_write_config,
};
static int pnv_tce_build(struct iommu_table *tbl, long index, long npages,
unsigned long uaddr, enum dma_data_direction direction,
struct dma_attrs *attrs, bool rm)
{
u64 proto_tce;
__be64 *tcep, *tces;
u64 rpn;
proto_tce = TCE_PCI_READ; // Read allowed
if (direction != DMA_TO_DEVICE)
proto_tce |= TCE_PCI_WRITE;
tces = tcep = ((__be64 *)tbl->it_base) + index - tbl->it_offset;
rpn = __pa(uaddr) >> TCE_SHIFT;
while (npages--)
*(tcep++) = cpu_to_be64(proto_tce | (rpn++ << TCE_RPN_SHIFT));
/* Some implementations won't cache invalid TCEs and thus may not
* need that flush. We'll probably turn it_type into a bit mask
* of flags if that becomes the case
*/
if (tbl->it_type & TCE_PCI_SWINV_CREATE)
pnv_pci_ioda_tce_invalidate(tbl, tces, tcep - 1, rm);
return 0;
}
static int pnv_tce_build_vm(struct iommu_table *tbl, long index, long npages,
unsigned long uaddr,
enum dma_data_direction direction,
struct dma_attrs *attrs)
{
return pnv_tce_build(tbl, index, npages, uaddr, direction, attrs,
false);
}
static void pnv_tce_free(struct iommu_table *tbl, long index, long npages,
bool rm)
{
__be64 *tcep, *tces;
tces = tcep = ((__be64 *)tbl->it_base) + index - tbl->it_offset;
while (npages--)
*(tcep++) = cpu_to_be64(0);
if (tbl->it_type & TCE_PCI_SWINV_FREE)
pnv_pci_ioda_tce_invalidate(tbl, tces, tcep - 1, rm);
}
static void pnv_tce_free_vm(struct iommu_table *tbl, long index, long npages)
{
pnv_tce_free(tbl, index, npages, false);
}
static unsigned long pnv_tce_get(struct iommu_table *tbl, long index)
{
return ((u64 *)tbl->it_base)[index - tbl->it_offset];
}
static int pnv_tce_build_rm(struct iommu_table *tbl, long index, long npages,
unsigned long uaddr,
enum dma_data_direction direction,
struct dma_attrs *attrs)
{
return pnv_tce_build(tbl, index, npages, uaddr, direction, attrs, true);
}
static void pnv_tce_free_rm(struct iommu_table *tbl, long index, long npages)
{
pnv_tce_free(tbl, index, npages, true);
}
void pnv_pci_setup_iommu_table(struct iommu_table *tbl,
void *tce_mem, u64 tce_size,
u64 dma_offset)
{
tbl->it_blocksize = 16;
tbl->it_base = (unsigned long)tce_mem;
tbl->it_offset = dma_offset >> IOMMU_PAGE_SHIFT;
tbl->it_index = 0;
tbl->it_size = tce_size >> 3;
tbl->it_busno = 0;
tbl->it_type = TCE_PCI;
}
static struct iommu_table *pnv_pci_setup_bml_iommu(struct pci_controller *hose)
{
struct iommu_table *tbl;
const __be64 *basep, *swinvp;
const __be32 *sizep;
basep = of_get_property(hose->dn, "linux,tce-base", NULL);
sizep = of_get_property(hose->dn, "linux,tce-size", NULL);
if (basep == NULL || sizep == NULL) {
pr_err("PCI: %s has missing tce entries !\n",
hose->dn->full_name);
return NULL;
}
tbl = kzalloc_node(sizeof(struct iommu_table), GFP_KERNEL, hose->node);
if (WARN_ON(!tbl))
return NULL;
pnv_pci_setup_iommu_table(tbl, __va(be64_to_cpup(basep)),
be32_to_cpup(sizep), 0);
iommu_init_table(tbl, hose->node);
iommu_register_group(tbl, pci_domain_nr(hose->bus), 0);
/* Deal with SW invalidated TCEs when needed (BML way) */
swinvp = of_get_property(hose->dn, "linux,tce-sw-invalidate-info",
NULL);
if (swinvp) {
tbl->it_busno = be64_to_cpu(swinvp[1]);
tbl->it_index = (unsigned long)ioremap(be64_to_cpup(swinvp), 8);
tbl->it_type = TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE;
}
return tbl;
}
static void pnv_pci_dma_fallback_setup(struct pci_controller *hose,
struct pci_dev *pdev)
{
struct device_node *np = pci_bus_to_OF_node(hose->bus);
struct pci_dn *pdn;
if (np == NULL)
return;
pdn = PCI_DN(np);
if (!pdn->iommu_table)
pdn->iommu_table = pnv_pci_setup_bml_iommu(hose);
if (!pdn->iommu_table)
return;
set_iommu_table_base(&pdev->dev, pdn->iommu_table);
}
static void pnv_pci_dma_dev_setup(struct pci_dev *pdev)
{
struct pci_controller *hose = pci_bus_to_host(pdev->bus);
struct pnv_phb *phb = hose->private_data;
/* If we have no phb structure, try to setup a fallback based on
* the device-tree (RTAS PCI for example)
*/
if (phb && phb->dma_dev_setup)
phb->dma_dev_setup(phb, pdev);
else
pnv_pci_dma_fallback_setup(hose, pdev);
}
void pnv_pci_shutdown(void)
{
struct pci_controller *hose;
list_for_each_entry(hose, &hose_list, list_node) {
struct pnv_phb *phb = hose->private_data;
if (phb && phb->shutdown)
phb->shutdown(phb);
}
}
/* Fixup wrong class code in p7ioc and p8 root complex */
static void pnv_p7ioc_rc_quirk(struct pci_dev *dev)
{
dev->class = PCI_CLASS_BRIDGE_PCI << 8;
}
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_IBM, 0x3b9, pnv_p7ioc_rc_quirk);
static int pnv_pci_probe_mode(struct pci_bus *bus)
{
struct pci_controller *hose = pci_bus_to_host(bus);
const __be64 *tstamp;
u64 now, target;
/* We hijack this as a way to ensure we have waited long
* enough since the reset was lifted on the PCI bus
*/
if (bus != hose->bus)
return PCI_PROBE_NORMAL;
tstamp = of_get_property(hose->dn, "reset-clear-timestamp", NULL);
if (!tstamp || !*tstamp)
return PCI_PROBE_NORMAL;
now = mftb() / tb_ticks_per_usec;
target = (be64_to_cpup(tstamp) / tb_ticks_per_usec)
+ PCI_RESET_DELAY_US;
pr_devel("pci %04d: Reset target: 0x%llx now: 0x%llx\n",
hose->global_number, target, now);
if (now < target)
msleep((target - now + 999) / 1000);
return PCI_PROBE_NORMAL;
}
void __init pnv_pci_init(void)
{
struct device_node *np;
pci_add_flags(PCI_CAN_SKIP_ISA_ALIGN);
/* OPAL absent, try POPAL first then RTAS detection of PHBs */
if (!firmware_has_feature(FW_FEATURE_OPAL)) {
#ifdef CONFIG_PPC_POWERNV_RTAS
init_pci_config_tokens();
find_and_init_phbs();
#endif /* CONFIG_PPC_POWERNV_RTAS */
}
/* OPAL is here, do our normal stuff */
else {
int found_ioda = 0;
/* Look for IODA IO-Hubs. We don't support mixing IODA
* and p5ioc2 due to the need to change some global
* probing flags
*/
for_each_compatible_node(np, NULL, "ibm,ioda-hub") {
pnv_pci_init_ioda_hub(np);
found_ioda = 1;
}
/* Look for p5ioc2 IO-Hubs */
if (!found_ioda)
for_each_compatible_node(np, NULL, "ibm,p5ioc2")
pnv_pci_init_p5ioc2_hub(np);
/* Look for ioda2 built-in PHB3's */
for_each_compatible_node(np, NULL, "ibm,ioda2-phb")
pnv_pci_init_ioda2_phb(np);
}
/* Setup the linkage between OF nodes and PHBs */
pci_devs_phb_init();
/* Configure IOMMU DMA hooks */
ppc_md.pci_dma_dev_setup = pnv_pci_dma_dev_setup;
ppc_md.tce_build = pnv_tce_build_vm;
ppc_md.tce_free = pnv_tce_free_vm;
ppc_md.tce_build_rm = pnv_tce_build_rm;
ppc_md.tce_free_rm = pnv_tce_free_rm;
ppc_md.tce_get = pnv_tce_get;
ppc_md.pci_probe_mode = pnv_pci_probe_mode;
set_pci_dma_ops(&dma_iommu_ops);
/* Configure MSIs */
#ifdef CONFIG_PCI_MSI
ppc_md.msi_check_device = pnv_msi_check_device;
ppc_md.setup_msi_irqs = pnv_setup_msi_irqs;
ppc_md.teardown_msi_irqs = pnv_teardown_msi_irqs;
#endif
}