2016-01-10 18:29:07 +08:00
|
|
|
/*
|
|
|
|
* Copyright (C) 2016 Linaro Ltd; <ard.biesheuvel@linaro.org>
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/efi.h>
|
|
|
|
#include <asm/efi.h>
|
|
|
|
|
|
|
|
#include "efistub.h"
|
|
|
|
|
|
|
|
struct efi_rng_protocol {
|
|
|
|
efi_status_t (*get_info)(struct efi_rng_protocol *,
|
|
|
|
unsigned long *, efi_guid_t *);
|
|
|
|
efi_status_t (*get_rng)(struct efi_rng_protocol *,
|
|
|
|
efi_guid_t *, unsigned long, u8 *out);
|
|
|
|
};
|
|
|
|
|
|
|
|
efi_status_t efi_get_random_bytes(efi_system_table_t *sys_table_arg,
|
|
|
|
unsigned long size, u8 *out)
|
|
|
|
{
|
|
|
|
efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
|
|
|
|
efi_status_t status;
|
|
|
|
struct efi_rng_protocol *rng;
|
|
|
|
|
|
|
|
status = efi_call_early(locate_protocol, &rng_proto, NULL,
|
|
|
|
(void **)&rng);
|
|
|
|
if (status != EFI_SUCCESS)
|
|
|
|
return status;
|
|
|
|
|
|
|
|
return rng->get_rng(rng, NULL, size, out);
|
|
|
|
}
|
2016-01-11 17:43:16 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Return the number of slots covered by this entry, i.e., the number of
|
|
|
|
* addresses it covers that are suitably aligned and supply enough room
|
|
|
|
* for the allocation.
|
|
|
|
*/
|
|
|
|
static unsigned long get_entry_num_slots(efi_memory_desc_t *md,
|
|
|
|
unsigned long size,
|
|
|
|
unsigned long align)
|
|
|
|
{
|
|
|
|
u64 start, end;
|
|
|
|
|
|
|
|
if (md->type != EFI_CONVENTIONAL_MEMORY)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
start = round_up(md->phys_addr, align);
|
|
|
|
end = round_down(md->phys_addr + md->num_pages * EFI_PAGE_SIZE - size,
|
|
|
|
align);
|
|
|
|
|
|
|
|
if (start > end)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return (end - start + 1) / align;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The UEFI memory descriptors have a virtual address field that is only used
|
|
|
|
* when installing the virtual mapping using SetVirtualAddressMap(). Since it
|
|
|
|
* is unused here, we can reuse it to keep track of each descriptor's slot
|
|
|
|
* count.
|
|
|
|
*/
|
|
|
|
#define MD_NUM_SLOTS(md) ((md)->virt_addr)
|
|
|
|
|
|
|
|
efi_status_t efi_random_alloc(efi_system_table_t *sys_table_arg,
|
|
|
|
unsigned long size,
|
|
|
|
unsigned long align,
|
|
|
|
unsigned long *addr,
|
|
|
|
unsigned long random_seed)
|
|
|
|
{
|
|
|
|
unsigned long map_size, desc_size, total_slots = 0, target_slot;
|
2016-08-30 04:38:51 +08:00
|
|
|
unsigned long buff_size;
|
2016-01-11 17:43:16 +08:00
|
|
|
efi_status_t status;
|
|
|
|
efi_memory_desc_t *memory_map;
|
|
|
|
int map_offset;
|
2016-08-30 04:38:51 +08:00
|
|
|
struct efi_boot_memmap map;
|
2016-01-11 17:43:16 +08:00
|
|
|
|
2016-08-30 04:38:51 +08:00
|
|
|
map.map = &memory_map;
|
|
|
|
map.map_size = &map_size;
|
|
|
|
map.desc_size = &desc_size;
|
|
|
|
map.desc_ver = NULL;
|
|
|
|
map.key_ptr = NULL;
|
|
|
|
map.buff_size = &buff_size;
|
|
|
|
|
|
|
|
status = efi_get_memory_map(sys_table_arg, &map);
|
2016-01-11 17:43:16 +08:00
|
|
|
if (status != EFI_SUCCESS)
|
|
|
|
return status;
|
|
|
|
|
|
|
|
if (align < EFI_ALLOC_ALIGN)
|
|
|
|
align = EFI_ALLOC_ALIGN;
|
|
|
|
|
|
|
|
/* count the suitable slots in each memory map entry */
|
|
|
|
for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
|
|
|
|
efi_memory_desc_t *md = (void *)memory_map + map_offset;
|
|
|
|
unsigned long slots;
|
|
|
|
|
|
|
|
slots = get_entry_num_slots(md, size, align);
|
|
|
|
MD_NUM_SLOTS(md) = slots;
|
|
|
|
total_slots += slots;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* find a random number between 0 and total_slots */
|
|
|
|
target_slot = (total_slots * (u16)random_seed) >> 16;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* target_slot is now a value in the range [0, total_slots), and so
|
|
|
|
* it corresponds with exactly one of the suitable slots we recorded
|
|
|
|
* when iterating over the memory map the first time around.
|
|
|
|
*
|
|
|
|
* So iterate over the memory map again, subtracting the number of
|
|
|
|
* slots of each entry at each iteration, until we have found the entry
|
|
|
|
* that covers our chosen slot. Use the residual value of target_slot
|
|
|
|
* to calculate the randomly chosen address, and allocate it directly
|
|
|
|
* using EFI_ALLOCATE_ADDRESS.
|
|
|
|
*/
|
|
|
|
for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
|
|
|
|
efi_memory_desc_t *md = (void *)memory_map + map_offset;
|
|
|
|
efi_physical_addr_t target;
|
|
|
|
unsigned long pages;
|
|
|
|
|
|
|
|
if (target_slot >= MD_NUM_SLOTS(md)) {
|
|
|
|
target_slot -= MD_NUM_SLOTS(md);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
target = round_up(md->phys_addr, align) + target_slot * align;
|
|
|
|
pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
|
|
|
|
|
|
|
|
status = efi_call_early(allocate_pages, EFI_ALLOCATE_ADDRESS,
|
|
|
|
EFI_LOADER_DATA, pages, &target);
|
|
|
|
if (status == EFI_SUCCESS)
|
|
|
|
*addr = target;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
efi_call_early(free_pool, memory_map);
|
|
|
|
|
|
|
|
return status;
|
|
|
|
}
|