linux/drivers/media/rc/img-ir/img-ir-hw.c

1157 lines
33 KiB
C
Raw Normal View History

/*
* ImgTec IR Hardware Decoder found in PowerDown Controller.
*
* Copyright 2010-2014 Imagination Technologies Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This ties into the input subsystem using the RC-core. Protocol support is
* provided in separate modules which provide the parameters and scancode
* translation functions to set up the hardware decoder and interpret the
* resulting input.
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/timer.h>
#include <media/rc-core.h>
#include "img-ir.h"
/* Decoders lock (only modified to preprocess them) */
static DEFINE_SPINLOCK(img_ir_decoders_lock);
static bool img_ir_decoders_preprocessed;
static struct img_ir_decoder *img_ir_decoders[] = {
#ifdef CONFIG_IR_IMG_NEC
&img_ir_nec,
#endif
#ifdef CONFIG_IR_IMG_JVC
&img_ir_jvc,
#endif
#ifdef CONFIG_IR_IMG_SONY
&img_ir_sony,
#endif
#ifdef CONFIG_IR_IMG_SHARP
&img_ir_sharp,
#endif
#ifdef CONFIG_IR_IMG_SANYO
&img_ir_sanyo,
#endif
#ifdef CONFIG_IR_IMG_RC5
&img_ir_rc5,
#endif
#ifdef CONFIG_IR_IMG_RC6
&img_ir_rc6,
#endif
NULL
};
#define IMG_IR_F_FILTER BIT(RC_FILTER_NORMAL) /* enable filtering */
#define IMG_IR_F_WAKE BIT(RC_FILTER_WAKEUP) /* enable waking */
/* code type quirks */
#define IMG_IR_QUIRK_CODE_BROKEN 0x1 /* Decode is broken */
#define IMG_IR_QUIRK_CODE_LEN_INCR 0x2 /* Bit length needs increment */
/*
* The decoder generates rapid interrupts without actually having
* received any new data after an incomplete IR code is decoded.
*/
#define IMG_IR_QUIRK_CODE_IRQ 0x4
/* functions for preprocessing timings, ensuring max is set */
static void img_ir_timing_preprocess(struct img_ir_timing_range *range,
unsigned int unit)
{
if (range->max < range->min)
range->max = range->min;
if (unit) {
/* multiply by unit and convert to microseconds */
range->min = (range->min*unit)/1000;
range->max = (range->max*unit + 999)/1000; /* round up */
}
}
static void img_ir_symbol_timing_preprocess(struct img_ir_symbol_timing *timing,
unsigned int unit)
{
img_ir_timing_preprocess(&timing->pulse, unit);
img_ir_timing_preprocess(&timing->space, unit);
}
static void img_ir_timings_preprocess(struct img_ir_timings *timings,
unsigned int unit)
{
img_ir_symbol_timing_preprocess(&timings->ldr, unit);
img_ir_symbol_timing_preprocess(&timings->s00, unit);
img_ir_symbol_timing_preprocess(&timings->s01, unit);
img_ir_symbol_timing_preprocess(&timings->s10, unit);
img_ir_symbol_timing_preprocess(&timings->s11, unit);
/* default s10 and s11 to s00 and s01 if no leader */
if (unit)
/* multiply by unit and convert to microseconds (round up) */
timings->ft.ft_min = (timings->ft.ft_min*unit + 999)/1000;
}
/* functions for filling empty fields with defaults */
static void img_ir_timing_defaults(struct img_ir_timing_range *range,
struct img_ir_timing_range *defaults)
{
if (!range->min)
range->min = defaults->min;
if (!range->max)
range->max = defaults->max;
}
static void img_ir_symbol_timing_defaults(struct img_ir_symbol_timing *timing,
struct img_ir_symbol_timing *defaults)
{
img_ir_timing_defaults(&timing->pulse, &defaults->pulse);
img_ir_timing_defaults(&timing->space, &defaults->space);
}
static void img_ir_timings_defaults(struct img_ir_timings *timings,
struct img_ir_timings *defaults)
{
img_ir_symbol_timing_defaults(&timings->ldr, &defaults->ldr);
img_ir_symbol_timing_defaults(&timings->s00, &defaults->s00);
img_ir_symbol_timing_defaults(&timings->s01, &defaults->s01);
img_ir_symbol_timing_defaults(&timings->s10, &defaults->s10);
img_ir_symbol_timing_defaults(&timings->s11, &defaults->s11);
if (!timings->ft.ft_min)
timings->ft.ft_min = defaults->ft.ft_min;
}
/* functions for converting timings to register values */
/**
* img_ir_control() - Convert control struct to control register value.
* @control: Control data
*
* Returns: The control register value equivalent of @control.
*/
static u32 img_ir_control(const struct img_ir_control *control)
{
u32 ctrl = control->code_type << IMG_IR_CODETYPE_SHIFT;
if (control->decoden)
ctrl |= IMG_IR_DECODEN;
if (control->hdrtog)
ctrl |= IMG_IR_HDRTOG;
if (control->ldrdec)
ctrl |= IMG_IR_LDRDEC;
if (control->decodinpol)
ctrl |= IMG_IR_DECODINPOL;
if (control->bitorien)
ctrl |= IMG_IR_BITORIEN;
if (control->d1validsel)
ctrl |= IMG_IR_D1VALIDSEL;
if (control->bitinv)
ctrl |= IMG_IR_BITINV;
if (control->decodend2)
ctrl |= IMG_IR_DECODEND2;
if (control->bitoriend2)
ctrl |= IMG_IR_BITORIEND2;
if (control->bitinvd2)
ctrl |= IMG_IR_BITINVD2;
return ctrl;
}
/**
* img_ir_timing_range_convert() - Convert microsecond range.
* @out: Output timing range in clock cycles with a shift.
* @in: Input timing range in microseconds.
* @tolerance: Tolerance as a fraction of 128 (roughly percent).
* @clock_hz: IR clock rate in Hz.
* @shift: Shift of output units.
*
* Converts min and max from microseconds to IR clock cycles, applies a
* tolerance, and shifts for the register, rounding in the right direction.
* Note that in and out can safely be the same object.
*/
static void img_ir_timing_range_convert(struct img_ir_timing_range *out,
const struct img_ir_timing_range *in,
unsigned int tolerance,
unsigned long clock_hz,
unsigned int shift)
{
unsigned int min = in->min;
unsigned int max = in->max;
/* add a tolerance */
min = min - (min*tolerance >> 7);
max = max + (max*tolerance >> 7);
/* convert from microseconds into clock cycles */
min = min*clock_hz / 1000000;
max = (max*clock_hz + 999999) / 1000000; /* round up */
/* apply shift and copy to output */
out->min = min >> shift;
out->max = (max + ((1 << shift) - 1)) >> shift; /* round up */
}
/**
* img_ir_symbol_timing() - Convert symbol timing struct to register value.
* @timing: Symbol timing data
* @tolerance: Timing tolerance where 0-128 represents 0-100%
* @clock_hz: Frequency of source clock in Hz
* @pd_shift: Shift to apply to symbol period
* @w_shift: Shift to apply to symbol width
*
* Returns: Symbol timing register value based on arguments.
*/
static u32 img_ir_symbol_timing(const struct img_ir_symbol_timing *timing,
unsigned int tolerance,
unsigned long clock_hz,
unsigned int pd_shift,
unsigned int w_shift)
{
struct img_ir_timing_range hw_pulse, hw_period;
/* we calculate period in hw_period, then convert in place */
hw_period.min = timing->pulse.min + timing->space.min;
hw_period.max = timing->pulse.max + timing->space.max;
img_ir_timing_range_convert(&hw_period, &hw_period,
tolerance, clock_hz, pd_shift);
img_ir_timing_range_convert(&hw_pulse, &timing->pulse,
tolerance, clock_hz, w_shift);
/* construct register value */
return (hw_period.max << IMG_IR_PD_MAX_SHIFT) |
(hw_period.min << IMG_IR_PD_MIN_SHIFT) |
(hw_pulse.max << IMG_IR_W_MAX_SHIFT) |
(hw_pulse.min << IMG_IR_W_MIN_SHIFT);
}
/**
* img_ir_free_timing() - Convert free time timing struct to register value.
* @timing: Free symbol timing data
* @clock_hz: Source clock frequency in Hz
*
* Returns: Free symbol timing register value.
*/
static u32 img_ir_free_timing(const struct img_ir_free_timing *timing,
unsigned long clock_hz)
{
unsigned int minlen, maxlen, ft_min;
/* minlen is only 5 bits, and round minlen to multiple of 2 */
if (timing->minlen < 30)
minlen = timing->minlen & -2;
else
minlen = 30;
/* maxlen has maximum value of 48, and round maxlen to multiple of 2 */
if (timing->maxlen < 48)
maxlen = (timing->maxlen + 1) & -2;
else
maxlen = 48;
/* convert and shift ft_min, rounding upwards */
ft_min = (timing->ft_min*clock_hz + 999999) / 1000000;
ft_min = (ft_min + 7) >> 3;
/* construct register value */
return (maxlen << IMG_IR_MAXLEN_SHIFT) |
(minlen << IMG_IR_MINLEN_SHIFT) |
(ft_min << IMG_IR_FT_MIN_SHIFT);
}
/**
* img_ir_free_timing_dynamic() - Update free time register value.
* @st_ft: Static free time register value from img_ir_free_timing.
* @filter: Current filter which may additionally restrict min/max len.
*
* Returns: Updated free time register value based on the current filter.
*/
static u32 img_ir_free_timing_dynamic(u32 st_ft, struct img_ir_filter *filter)
{
unsigned int minlen, maxlen, newminlen, newmaxlen;
/* round minlen, maxlen to multiple of 2 */
newminlen = filter->minlen & -2;
newmaxlen = (filter->maxlen + 1) & -2;
/* extract min/max len from register */
minlen = (st_ft & IMG_IR_MINLEN) >> IMG_IR_MINLEN_SHIFT;
maxlen = (st_ft & IMG_IR_MAXLEN) >> IMG_IR_MAXLEN_SHIFT;
/* if the new values are more restrictive, update the register value */
if (newminlen > minlen) {
st_ft &= ~IMG_IR_MINLEN;
st_ft |= newminlen << IMG_IR_MINLEN_SHIFT;
}
if (newmaxlen < maxlen) {
st_ft &= ~IMG_IR_MAXLEN;
st_ft |= newmaxlen << IMG_IR_MAXLEN_SHIFT;
}
return st_ft;
}
/**
* img_ir_timings_convert() - Convert timings to register values
* @regs: Output timing register values
* @timings: Input timing data
* @tolerance: Timing tolerance where 0-128 represents 0-100%
* @clock_hz: Source clock frequency in Hz
*/
static void img_ir_timings_convert(struct img_ir_timing_regvals *regs,
const struct img_ir_timings *timings,
unsigned int tolerance,
unsigned int clock_hz)
{
/* leader symbol timings are divided by 16 */
regs->ldr = img_ir_symbol_timing(&timings->ldr, tolerance, clock_hz,
4, 4);
/* other symbol timings, pd fields only are divided by 2 */
regs->s00 = img_ir_symbol_timing(&timings->s00, tolerance, clock_hz,
1, 0);
regs->s01 = img_ir_symbol_timing(&timings->s01, tolerance, clock_hz,
1, 0);
regs->s10 = img_ir_symbol_timing(&timings->s10, tolerance, clock_hz,
1, 0);
regs->s11 = img_ir_symbol_timing(&timings->s11, tolerance, clock_hz,
1, 0);
regs->ft = img_ir_free_timing(&timings->ft, clock_hz);
}
/**
* img_ir_decoder_preprocess() - Preprocess timings in decoder.
* @decoder: Decoder to be preprocessed.
*
* Ensures that the symbol timing ranges are valid with respect to ordering, and
* does some fixed conversion on them.
*/
static void img_ir_decoder_preprocess(struct img_ir_decoder *decoder)
{
/* default tolerance */
if (!decoder->tolerance)
decoder->tolerance = 10; /* percent */
/* and convert tolerance to fraction out of 128 */
decoder->tolerance = decoder->tolerance * 128 / 100;
/* fill in implicit fields */
img_ir_timings_preprocess(&decoder->timings, decoder->unit);
/* do the same for repeat timings if applicable */
if (decoder->repeat) {
img_ir_timings_preprocess(&decoder->rtimings, decoder->unit);
img_ir_timings_defaults(&decoder->rtimings, &decoder->timings);
}
}
/**
* img_ir_decoder_convert() - Generate internal timings in decoder.
* @decoder: Decoder to be converted to internal timings.
* @timings: Timing register values.
* @clock_hz: IR clock rate in Hz.
*
* Fills out the repeat timings and timing register values for a specific clock
* rate.
*/
static void img_ir_decoder_convert(const struct img_ir_decoder *decoder,
struct img_ir_reg_timings *reg_timings,
unsigned int clock_hz)
{
/* calculate control value */
reg_timings->ctrl = img_ir_control(&decoder->control);
/* fill in implicit fields and calculate register values */
img_ir_timings_convert(&reg_timings->timings, &decoder->timings,
decoder->tolerance, clock_hz);
/* do the same for repeat timings if applicable */
if (decoder->repeat)
img_ir_timings_convert(&reg_timings->rtimings,
&decoder->rtimings, decoder->tolerance,
clock_hz);
}
/**
* img_ir_write_timings() - Write timings to the hardware now
* @priv: IR private data
* @regs: Timing register values to write
* @type: RC filter type (RC_FILTER_*)
*
* Write timing register values @regs to the hardware, taking into account the
* current filter which may impose restrictions on the length of the expected
* data.
*/
static void img_ir_write_timings(struct img_ir_priv *priv,
struct img_ir_timing_regvals *regs,
enum rc_filter_type type)
{
struct img_ir_priv_hw *hw = &priv->hw;
/* filter may be more restrictive to minlen, maxlen */
u32 ft = regs->ft;
if (hw->flags & BIT(type))
ft = img_ir_free_timing_dynamic(regs->ft, &hw->filters[type]);
/* write to registers */
img_ir_write(priv, IMG_IR_LEAD_SYMB_TIMING, regs->ldr);
img_ir_write(priv, IMG_IR_S00_SYMB_TIMING, regs->s00);
img_ir_write(priv, IMG_IR_S01_SYMB_TIMING, regs->s01);
img_ir_write(priv, IMG_IR_S10_SYMB_TIMING, regs->s10);
img_ir_write(priv, IMG_IR_S11_SYMB_TIMING, regs->s11);
img_ir_write(priv, IMG_IR_FREE_SYMB_TIMING, ft);
dev_dbg(priv->dev, "timings: ldr=%#x, s=[%#x, %#x, %#x, %#x], ft=%#x\n",
regs->ldr, regs->s00, regs->s01, regs->s10, regs->s11, ft);
}
static void img_ir_write_filter(struct img_ir_priv *priv,
struct img_ir_filter *filter)
{
if (filter) {
dev_dbg(priv->dev, "IR filter=%016llx & %016llx\n",
(unsigned long long)filter->data,
(unsigned long long)filter->mask);
img_ir_write(priv, IMG_IR_IRQ_MSG_DATA_LW, (u32)filter->data);
img_ir_write(priv, IMG_IR_IRQ_MSG_DATA_UP, (u32)(filter->data
>> 32));
img_ir_write(priv, IMG_IR_IRQ_MSG_MASK_LW, (u32)filter->mask);
img_ir_write(priv, IMG_IR_IRQ_MSG_MASK_UP, (u32)(filter->mask
>> 32));
} else {
dev_dbg(priv->dev, "IR clearing filter\n");
img_ir_write(priv, IMG_IR_IRQ_MSG_MASK_LW, 0);
img_ir_write(priv, IMG_IR_IRQ_MSG_MASK_UP, 0);
}
}
/* caller must have lock */
static void _img_ir_set_filter(struct img_ir_priv *priv,
struct img_ir_filter *filter)
{
struct img_ir_priv_hw *hw = &priv->hw;
u32 irq_en, irq_on;
irq_en = img_ir_read(priv, IMG_IR_IRQ_ENABLE);
if (filter) {
/* Only use the match interrupt */
hw->filters[RC_FILTER_NORMAL] = *filter;
hw->flags |= IMG_IR_F_FILTER;
irq_on = IMG_IR_IRQ_DATA_MATCH;
irq_en &= ~(IMG_IR_IRQ_DATA_VALID | IMG_IR_IRQ_DATA2_VALID);
} else {
/* Only use the valid interrupt */
hw->flags &= ~IMG_IR_F_FILTER;
irq_en &= ~IMG_IR_IRQ_DATA_MATCH;
irq_on = IMG_IR_IRQ_DATA_VALID | IMG_IR_IRQ_DATA2_VALID;
}
irq_en |= irq_on;
img_ir_write_filter(priv, filter);
/* clear any interrupts we're enabling so we don't handle old ones */
img_ir_write(priv, IMG_IR_IRQ_CLEAR, irq_on);
img_ir_write(priv, IMG_IR_IRQ_ENABLE, irq_en);
}
/* caller must have lock */
static void _img_ir_set_wake_filter(struct img_ir_priv *priv,
struct img_ir_filter *filter)
{
struct img_ir_priv_hw *hw = &priv->hw;
if (filter) {
/* Enable wake, and copy filter for later */
hw->filters[RC_FILTER_WAKEUP] = *filter;
hw->flags |= IMG_IR_F_WAKE;
} else {
/* Disable wake */
hw->flags &= ~IMG_IR_F_WAKE;
}
}
/* Callback for setting scancode filter */
static int img_ir_set_filter(struct rc_dev *dev, enum rc_filter_type type,
struct rc_scancode_filter *sc_filter)
{
struct img_ir_priv *priv = dev->priv;
struct img_ir_priv_hw *hw = &priv->hw;
struct img_ir_filter filter, *filter_ptr = &filter;
int ret = 0;
dev_dbg(priv->dev, "IR scancode %sfilter=%08x & %08x\n",
type == RC_FILTER_WAKEUP ? "wake " : "",
sc_filter->data,
sc_filter->mask);
spin_lock_irq(&priv->lock);
/* filtering can always be disabled */
if (!sc_filter->mask) {
filter_ptr = NULL;
goto set_unlock;
}
/* current decoder must support scancode filtering */
if (!hw->decoder || !hw->decoder->filter) {
ret = -EINVAL;
goto unlock;
}
/* convert scancode filter to raw filter */
filter.minlen = 0;
filter.maxlen = ~0;
if (type == RC_FILTER_NORMAL) {
/* guess scancode from protocol */
ret = hw->decoder->filter(sc_filter, &filter,
dev->enabled_protocols);
} else {
/* for wakeup user provided exact protocol variant */
ret = hw->decoder->filter(sc_filter, &filter,
1ULL << dev->wakeup_protocol);
}
if (ret)
goto unlock;
dev_dbg(priv->dev, "IR raw %sfilter=%016llx & %016llx\n",
type == RC_FILTER_WAKEUP ? "wake " : "",
(unsigned long long)filter.data,
(unsigned long long)filter.mask);
set_unlock:
/* apply raw filters */
switch (type) {
case RC_FILTER_NORMAL:
_img_ir_set_filter(priv, filter_ptr);
break;
case RC_FILTER_WAKEUP:
_img_ir_set_wake_filter(priv, filter_ptr);
break;
default:
ret = -EINVAL;
}
unlock:
spin_unlock_irq(&priv->lock);
return ret;
}
static int img_ir_set_normal_filter(struct rc_dev *dev,
struct rc_scancode_filter *sc_filter)
{
return img_ir_set_filter(dev, RC_FILTER_NORMAL, sc_filter);
}
static int img_ir_set_wakeup_filter(struct rc_dev *dev,
struct rc_scancode_filter *sc_filter)
{
return img_ir_set_filter(dev, RC_FILTER_WAKEUP, sc_filter);
}
/**
* img_ir_set_decoder() - Set the current decoder.
* @priv: IR private data.
* @decoder: Decoder to use with immediate effect.
* @proto: Protocol bitmap (or 0 to use decoder->type).
*/
static void img_ir_set_decoder(struct img_ir_priv *priv,
const struct img_ir_decoder *decoder,
u64 proto)
{
struct img_ir_priv_hw *hw = &priv->hw;
struct rc_dev *rdev = hw->rdev;
u32 ir_status, irq_en;
spin_lock_irq(&priv->lock);
[media] img-ir/hw: Fix potential deadlock stopping timer The end timer is used for switching back from repeat code timings when no repeat codes have been received for a certain amount of time. When the protocol is changed, the end timer is deleted synchronously with del_timer_sync(), however this takes place while holding the main spin lock, and the timer handler also needs to acquire the spin lock. This opens the possibility of a deadlock on an SMP system if the protocol is changed just as the repeat timer is expiring. One CPU could end up in img_ir_set_decoder() holding the lock and waiting for the end timer to complete, while the other CPU is stuck in the timer handler spinning on the lock held by the first CPU. Lockdep also spots a possible lock inversion in the same code, since img_ir_set_decoder() acquires the img-ir lock before the timer lock, but the timer handler will try and acquire them the other way around: ========================================================= [ INFO: possible irq lock inversion dependency detected ] 3.18.0-rc5+ #957 Not tainted --------------------------------------------------------- swapper/0/0 just changed the state of lock: (((&hw->end_timer))){+.-...}, at: [<4006ae5c>] _call_timer_fn+0x0/0xfc but this lock was taken by another, HARDIRQ-safe lock in the past: (&(&priv->lock)->rlock#2){-.....} and interrupts could create inverse lock ordering between them. other info that might help us debug this: Possible interrupt unsafe locking scenario: CPU0 CPU1 ---- ---- lock(((&hw->end_timer))); local_irq_disable(); lock(&(&priv->lock)->rlock#2); lock(((&hw->end_timer))); <Interrupt> lock(&(&priv->lock)->rlock#2); *** DEADLOCK *** This is fixed by releasing the main spin lock while performing the del_timer_sync() call. The timer is prevented from restarting before the lock is reacquired by a new "stopping" flag which img_ir_handle_data() checks before updating the timer. --------------------------------------------------------- swapper/0/0 just changed the state of lock: (((&hw->end_timer))){+.-...}, at: [<4006ae5c>] _call_timer_fn+0x0/0xfc but this lock was taken by another, HARDIRQ-safe lock in the past: (&(&priv->lock)->rlock#2){-.....} and interrupts could create inverse lock ordering between them. other info that might help us debug this: Possible interrupt unsafe locking scenario: CPU0 CPU1 ---- ---- lock(((&hw->end_timer))); local_irq_disable(); lock(&(&priv->lock)->rlock#2); lock(((&hw->end_timer))); <Interrupt> lock(&(&priv->lock)->rlock#2); *** DEADLOCK *** This is fixed by releasing the main spin lock while performing the del_timer_sync() call. The timer is prevented from restarting before the lock is reacquired by a new "stopping" flag which img_ir_handle_data() checks before updating the timer. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Sifan Naeem <sifan.naeem@imgtec.com> Cc: <stable@vger.kernel.org> # v3.15+ Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
2014-12-01 20:55:10 +08:00
/*
* First record that the protocol is being stopped so that the end timer
* isn't restarted while we're trying to stop it.
*/
hw->stopping = true;
/*
* Release the lock to stop the end timer, since the end timer handler
* acquires the lock and we don't want to deadlock waiting for it.
*/
spin_unlock_irq(&priv->lock);
del_timer_sync(&hw->end_timer);
del_timer_sync(&hw->suspend_timer);
[media] img-ir/hw: Fix potential deadlock stopping timer The end timer is used for switching back from repeat code timings when no repeat codes have been received for a certain amount of time. When the protocol is changed, the end timer is deleted synchronously with del_timer_sync(), however this takes place while holding the main spin lock, and the timer handler also needs to acquire the spin lock. This opens the possibility of a deadlock on an SMP system if the protocol is changed just as the repeat timer is expiring. One CPU could end up in img_ir_set_decoder() holding the lock and waiting for the end timer to complete, while the other CPU is stuck in the timer handler spinning on the lock held by the first CPU. Lockdep also spots a possible lock inversion in the same code, since img_ir_set_decoder() acquires the img-ir lock before the timer lock, but the timer handler will try and acquire them the other way around: ========================================================= [ INFO: possible irq lock inversion dependency detected ] 3.18.0-rc5+ #957 Not tainted --------------------------------------------------------- swapper/0/0 just changed the state of lock: (((&hw->end_timer))){+.-...}, at: [<4006ae5c>] _call_timer_fn+0x0/0xfc but this lock was taken by another, HARDIRQ-safe lock in the past: (&(&priv->lock)->rlock#2){-.....} and interrupts could create inverse lock ordering between them. other info that might help us debug this: Possible interrupt unsafe locking scenario: CPU0 CPU1 ---- ---- lock(((&hw->end_timer))); local_irq_disable(); lock(&(&priv->lock)->rlock#2); lock(((&hw->end_timer))); <Interrupt> lock(&(&priv->lock)->rlock#2); *** DEADLOCK *** This is fixed by releasing the main spin lock while performing the del_timer_sync() call. The timer is prevented from restarting before the lock is reacquired by a new "stopping" flag which img_ir_handle_data() checks before updating the timer. --------------------------------------------------------- swapper/0/0 just changed the state of lock: (((&hw->end_timer))){+.-...}, at: [<4006ae5c>] _call_timer_fn+0x0/0xfc but this lock was taken by another, HARDIRQ-safe lock in the past: (&(&priv->lock)->rlock#2){-.....} and interrupts could create inverse lock ordering between them. other info that might help us debug this: Possible interrupt unsafe locking scenario: CPU0 CPU1 ---- ---- lock(((&hw->end_timer))); local_irq_disable(); lock(&(&priv->lock)->rlock#2); lock(((&hw->end_timer))); <Interrupt> lock(&(&priv->lock)->rlock#2); *** DEADLOCK *** This is fixed by releasing the main spin lock while performing the del_timer_sync() call. The timer is prevented from restarting before the lock is reacquired by a new "stopping" flag which img_ir_handle_data() checks before updating the timer. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Sifan Naeem <sifan.naeem@imgtec.com> Cc: <stable@vger.kernel.org> # v3.15+ Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
2014-12-01 20:55:10 +08:00
spin_lock_irq(&priv->lock);
hw->stopping = false;
/* switch off and disable interrupts */
img_ir_write(priv, IMG_IR_CONTROL, 0);
irq_en = img_ir_read(priv, IMG_IR_IRQ_ENABLE);
img_ir_write(priv, IMG_IR_IRQ_ENABLE, irq_en & IMG_IR_IRQ_EDGE);
img_ir_write(priv, IMG_IR_IRQ_CLEAR, IMG_IR_IRQ_ALL & ~IMG_IR_IRQ_EDGE);
/* ack any data already detected */
ir_status = img_ir_read(priv, IMG_IR_STATUS);
if (ir_status & (IMG_IR_RXDVAL | IMG_IR_RXDVALD2)) {
ir_status &= ~(IMG_IR_RXDVAL | IMG_IR_RXDVALD2);
img_ir_write(priv, IMG_IR_STATUS, ir_status);
}
/* always read data to clear buffer if IR wakes the device */
img_ir_read(priv, IMG_IR_DATA_LW);
img_ir_read(priv, IMG_IR_DATA_UP);
[media] img-ir/hw: Fix potential deadlock stopping timer The end timer is used for switching back from repeat code timings when no repeat codes have been received for a certain amount of time. When the protocol is changed, the end timer is deleted synchronously with del_timer_sync(), however this takes place while holding the main spin lock, and the timer handler also needs to acquire the spin lock. This opens the possibility of a deadlock on an SMP system if the protocol is changed just as the repeat timer is expiring. One CPU could end up in img_ir_set_decoder() holding the lock and waiting for the end timer to complete, while the other CPU is stuck in the timer handler spinning on the lock held by the first CPU. Lockdep also spots a possible lock inversion in the same code, since img_ir_set_decoder() acquires the img-ir lock before the timer lock, but the timer handler will try and acquire them the other way around: ========================================================= [ INFO: possible irq lock inversion dependency detected ] 3.18.0-rc5+ #957 Not tainted --------------------------------------------------------- swapper/0/0 just changed the state of lock: (((&hw->end_timer))){+.-...}, at: [<4006ae5c>] _call_timer_fn+0x0/0xfc but this lock was taken by another, HARDIRQ-safe lock in the past: (&(&priv->lock)->rlock#2){-.....} and interrupts could create inverse lock ordering between them. other info that might help us debug this: Possible interrupt unsafe locking scenario: CPU0 CPU1 ---- ---- lock(((&hw->end_timer))); local_irq_disable(); lock(&(&priv->lock)->rlock#2); lock(((&hw->end_timer))); <Interrupt> lock(&(&priv->lock)->rlock#2); *** DEADLOCK *** This is fixed by releasing the main spin lock while performing the del_timer_sync() call. The timer is prevented from restarting before the lock is reacquired by a new "stopping" flag which img_ir_handle_data() checks before updating the timer. --------------------------------------------------------- swapper/0/0 just changed the state of lock: (((&hw->end_timer))){+.-...}, at: [<4006ae5c>] _call_timer_fn+0x0/0xfc but this lock was taken by another, HARDIRQ-safe lock in the past: (&(&priv->lock)->rlock#2){-.....} and interrupts could create inverse lock ordering between them. other info that might help us debug this: Possible interrupt unsafe locking scenario: CPU0 CPU1 ---- ---- lock(((&hw->end_timer))); local_irq_disable(); lock(&(&priv->lock)->rlock#2); lock(((&hw->end_timer))); <Interrupt> lock(&(&priv->lock)->rlock#2); *** DEADLOCK *** This is fixed by releasing the main spin lock while performing the del_timer_sync() call. The timer is prevented from restarting before the lock is reacquired by a new "stopping" flag which img_ir_handle_data() checks before updating the timer. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Sifan Naeem <sifan.naeem@imgtec.com> Cc: <stable@vger.kernel.org> # v3.15+ Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
2014-12-01 20:55:10 +08:00
/* switch back to normal mode */
hw->mode = IMG_IR_M_NORMAL;
/* clear the wakeup scancode filter */
rdev->scancode_wakeup_filter.data = 0;
rdev->scancode_wakeup_filter.mask = 0;
rdev->wakeup_protocol = RC_TYPE_UNKNOWN;
/* clear raw filters */
_img_ir_set_filter(priv, NULL);
_img_ir_set_wake_filter(priv, NULL);
/* clear the enabled protocols */
hw->enabled_protocols = 0;
/* switch decoder */
hw->decoder = decoder;
if (!decoder)
goto unlock;
/* set the enabled protocols */
if (!proto)
proto = decoder->type;
hw->enabled_protocols = proto;
/* write the new timings */
img_ir_decoder_convert(decoder, &hw->reg_timings, hw->clk_hz);
img_ir_write_timings(priv, &hw->reg_timings.timings, RC_FILTER_NORMAL);
/* set up and enable */
img_ir_write(priv, IMG_IR_CONTROL, hw->reg_timings.ctrl);
unlock:
spin_unlock_irq(&priv->lock);
}
/**
* img_ir_decoder_compatable() - Find whether a decoder will work with a device.
* @priv: IR private data.
* @dec: Decoder to check.
*
* Returns: true if @dec is compatible with the device @priv refers to.
*/
static bool img_ir_decoder_compatible(struct img_ir_priv *priv,
const struct img_ir_decoder *dec)
{
unsigned int ct;
/* don't accept decoders using code types which aren't supported */
ct = dec->control.code_type;
if (priv->hw.ct_quirks[ct] & IMG_IR_QUIRK_CODE_BROKEN)
return false;
return true;
}
/**
* img_ir_allowed_protos() - Get allowed protocols from global decoder list.
* @priv: IR private data.
*
* Returns: Mask of protocols supported by the device @priv refers to.
*/
static u64 img_ir_allowed_protos(struct img_ir_priv *priv)
{
u64 protos = 0;
struct img_ir_decoder **decp;
for (decp = img_ir_decoders; *decp; ++decp) {
const struct img_ir_decoder *dec = *decp;
if (img_ir_decoder_compatible(priv, dec))
protos |= dec->type;
}
return protos;
}
/* Callback for changing protocol using sysfs */
static int img_ir_change_protocol(struct rc_dev *dev, u64 *ir_type)
{
struct img_ir_priv *priv = dev->priv;
struct img_ir_priv_hw *hw = &priv->hw;
struct rc_dev *rdev = hw->rdev;
struct img_ir_decoder **decp;
u64 wakeup_protocols;
if (!*ir_type) {
/* disable all protocols */
img_ir_set_decoder(priv, NULL, 0);
goto success;
}
for (decp = img_ir_decoders; *decp; ++decp) {
const struct img_ir_decoder *dec = *decp;
if (!img_ir_decoder_compatible(priv, dec))
continue;
if (*ir_type & dec->type) {
*ir_type &= dec->type;
img_ir_set_decoder(priv, dec, *ir_type);
goto success;
}
}
return -EINVAL;
success:
/*
* Only allow matching wakeup protocols for now, and only if filtering
* is supported.
*/
wakeup_protocols = *ir_type;
if (!hw->decoder || !hw->decoder->filter)
wakeup_protocols = 0;
rdev->allowed_wakeup_protocols = wakeup_protocols;
return 0;
}
/* Changes ir-core protocol device attribute */
static void img_ir_set_protocol(struct img_ir_priv *priv, u64 proto)
{
struct rc_dev *rdev = priv->hw.rdev;
spin_lock_irq(&rdev->rc_map.lock);
rdev->rc_map.rc_type = __ffs64(proto);
spin_unlock_irq(&rdev->rc_map.lock);
mutex_lock(&rdev->lock);
rdev->enabled_protocols = proto;
rdev->allowed_wakeup_protocols = proto;
mutex_unlock(&rdev->lock);
}
/* Set up IR decoders */
static void img_ir_init_decoders(void)
{
struct img_ir_decoder **decp;
spin_lock(&img_ir_decoders_lock);
if (!img_ir_decoders_preprocessed) {
for (decp = img_ir_decoders; *decp; ++decp)
img_ir_decoder_preprocess(*decp);
img_ir_decoders_preprocessed = true;
}
spin_unlock(&img_ir_decoders_lock);
}
#ifdef CONFIG_PM_SLEEP
/**
* img_ir_enable_wake() - Switch to wake mode.
* @priv: IR private data.
*
* Returns: non-zero if the IR can wake the system.
*/
static int img_ir_enable_wake(struct img_ir_priv *priv)
{
struct img_ir_priv_hw *hw = &priv->hw;
int ret = 0;
spin_lock_irq(&priv->lock);
if (hw->flags & IMG_IR_F_WAKE) {
/* interrupt only on a match */
hw->suspend_irqen = img_ir_read(priv, IMG_IR_IRQ_ENABLE);
img_ir_write(priv, IMG_IR_IRQ_ENABLE, IMG_IR_IRQ_DATA_MATCH);
img_ir_write_filter(priv, &hw->filters[RC_FILTER_WAKEUP]);
img_ir_write_timings(priv, &hw->reg_timings.timings,
RC_FILTER_WAKEUP);
hw->mode = IMG_IR_M_WAKE;
ret = 1;
}
spin_unlock_irq(&priv->lock);
return ret;
}
/**
* img_ir_disable_wake() - Switch out of wake mode.
* @priv: IR private data
*
* Returns: 1 if the hardware should be allowed to wake from a sleep state.
* 0 otherwise.
*/
static int img_ir_disable_wake(struct img_ir_priv *priv)
{
struct img_ir_priv_hw *hw = &priv->hw;
int ret = 0;
spin_lock_irq(&priv->lock);
if (hw->flags & IMG_IR_F_WAKE) {
/* restore normal filtering */
if (hw->flags & IMG_IR_F_FILTER) {
img_ir_write(priv, IMG_IR_IRQ_ENABLE,
(hw->suspend_irqen & IMG_IR_IRQ_EDGE) |
IMG_IR_IRQ_DATA_MATCH);
img_ir_write_filter(priv,
&hw->filters[RC_FILTER_NORMAL]);
} else {
img_ir_write(priv, IMG_IR_IRQ_ENABLE,
(hw->suspend_irqen & IMG_IR_IRQ_EDGE) |
IMG_IR_IRQ_DATA_VALID |
IMG_IR_IRQ_DATA2_VALID);
img_ir_write_filter(priv, NULL);
}
img_ir_write_timings(priv, &hw->reg_timings.timings,
RC_FILTER_NORMAL);
hw->mode = IMG_IR_M_NORMAL;
ret = 1;
}
spin_unlock_irq(&priv->lock);
return ret;
}
#endif /* CONFIG_PM_SLEEP */
/* lock must be held */
static void img_ir_begin_repeat(struct img_ir_priv *priv)
{
struct img_ir_priv_hw *hw = &priv->hw;
if (hw->mode == IMG_IR_M_NORMAL) {
/* switch to repeat timings */
img_ir_write(priv, IMG_IR_CONTROL, 0);
hw->mode = IMG_IR_M_REPEATING;
img_ir_write_timings(priv, &hw->reg_timings.rtimings,
RC_FILTER_NORMAL);
img_ir_write(priv, IMG_IR_CONTROL, hw->reg_timings.ctrl);
}
}
/* lock must be held */
static void img_ir_end_repeat(struct img_ir_priv *priv)
{
struct img_ir_priv_hw *hw = &priv->hw;
if (hw->mode == IMG_IR_M_REPEATING) {
/* switch to normal timings */
img_ir_write(priv, IMG_IR_CONTROL, 0);
hw->mode = IMG_IR_M_NORMAL;
img_ir_write_timings(priv, &hw->reg_timings.timings,
RC_FILTER_NORMAL);
img_ir_write(priv, IMG_IR_CONTROL, hw->reg_timings.ctrl);
}
}
/* lock must be held */
static void img_ir_handle_data(struct img_ir_priv *priv, u32 len, u64 raw)
{
struct img_ir_priv_hw *hw = &priv->hw;
const struct img_ir_decoder *dec = hw->decoder;
int ret = IMG_IR_SCANCODE;
struct img_ir_scancode_req request;
request.protocol = RC_TYPE_UNKNOWN;
request.toggle = 0;
if (dec->scancode)
ret = dec->scancode(len, raw, hw->enabled_protocols, &request);
else if (len >= 32)
request.scancode = (u32)raw;
else if (len < 32)
request.scancode = (u32)raw & ((1 << len)-1);
dev_dbg(priv->dev, "data (%u bits) = %#llx\n",
len, (unsigned long long)raw);
if (ret == IMG_IR_SCANCODE) {
dev_dbg(priv->dev, "decoded scan code %#x, toggle %u\n",
request.scancode, request.toggle);
rc_keydown(hw->rdev, request.protocol, request.scancode,
request.toggle);
img_ir_end_repeat(priv);
} else if (ret == IMG_IR_REPEATCODE) {
if (hw->mode == IMG_IR_M_REPEATING) {
dev_dbg(priv->dev, "decoded repeat code\n");
rc_repeat(hw->rdev);
} else {
dev_dbg(priv->dev, "decoded unexpected repeat code, ignoring\n");
}
} else {
dev_dbg(priv->dev, "decode failed (%d)\n", ret);
return;
}
[media] img-ir/hw: Fix potential deadlock stopping timer The end timer is used for switching back from repeat code timings when no repeat codes have been received for a certain amount of time. When the protocol is changed, the end timer is deleted synchronously with del_timer_sync(), however this takes place while holding the main spin lock, and the timer handler also needs to acquire the spin lock. This opens the possibility of a deadlock on an SMP system if the protocol is changed just as the repeat timer is expiring. One CPU could end up in img_ir_set_decoder() holding the lock and waiting for the end timer to complete, while the other CPU is stuck in the timer handler spinning on the lock held by the first CPU. Lockdep also spots a possible lock inversion in the same code, since img_ir_set_decoder() acquires the img-ir lock before the timer lock, but the timer handler will try and acquire them the other way around: ========================================================= [ INFO: possible irq lock inversion dependency detected ] 3.18.0-rc5+ #957 Not tainted --------------------------------------------------------- swapper/0/0 just changed the state of lock: (((&hw->end_timer))){+.-...}, at: [<4006ae5c>] _call_timer_fn+0x0/0xfc but this lock was taken by another, HARDIRQ-safe lock in the past: (&(&priv->lock)->rlock#2){-.....} and interrupts could create inverse lock ordering between them. other info that might help us debug this: Possible interrupt unsafe locking scenario: CPU0 CPU1 ---- ---- lock(((&hw->end_timer))); local_irq_disable(); lock(&(&priv->lock)->rlock#2); lock(((&hw->end_timer))); <Interrupt> lock(&(&priv->lock)->rlock#2); *** DEADLOCK *** This is fixed by releasing the main spin lock while performing the del_timer_sync() call. The timer is prevented from restarting before the lock is reacquired by a new "stopping" flag which img_ir_handle_data() checks before updating the timer. --------------------------------------------------------- swapper/0/0 just changed the state of lock: (((&hw->end_timer))){+.-...}, at: [<4006ae5c>] _call_timer_fn+0x0/0xfc but this lock was taken by another, HARDIRQ-safe lock in the past: (&(&priv->lock)->rlock#2){-.....} and interrupts could create inverse lock ordering between them. other info that might help us debug this: Possible interrupt unsafe locking scenario: CPU0 CPU1 ---- ---- lock(((&hw->end_timer))); local_irq_disable(); lock(&(&priv->lock)->rlock#2); lock(((&hw->end_timer))); <Interrupt> lock(&(&priv->lock)->rlock#2); *** DEADLOCK *** This is fixed by releasing the main spin lock while performing the del_timer_sync() call. The timer is prevented from restarting before the lock is reacquired by a new "stopping" flag which img_ir_handle_data() checks before updating the timer. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Sifan Naeem <sifan.naeem@imgtec.com> Cc: <stable@vger.kernel.org> # v3.15+ Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
2014-12-01 20:55:10 +08:00
/* we mustn't update the end timer while trying to stop it */
if (dec->repeat && !hw->stopping) {
unsigned long interval;
img_ir_begin_repeat(priv);
/* update timer, but allowing for 1/8th tolerance */
interval = dec->repeat + (dec->repeat >> 3);
mod_timer(&hw->end_timer,
jiffies + msecs_to_jiffies(interval));
}
}
/* timer function to end waiting for repeat. */
static void img_ir_end_timer(unsigned long arg)
{
struct img_ir_priv *priv = (struct img_ir_priv *)arg;
spin_lock_irq(&priv->lock);
img_ir_end_repeat(priv);
spin_unlock_irq(&priv->lock);
}
/*
* Timer function to re-enable the current protocol after it had been
* cleared when invalid interrupts were generated due to a quirk in the
* img-ir decoder.
*/
static void img_ir_suspend_timer(unsigned long arg)
{
struct img_ir_priv *priv = (struct img_ir_priv *)arg;
spin_lock_irq(&priv->lock);
/*
* Don't overwrite enabled valid/match IRQs if they have already been
* changed by e.g. a filter change.
*/
if ((priv->hw.quirk_suspend_irq & IMG_IR_IRQ_EDGE) ==
img_ir_read(priv, IMG_IR_IRQ_ENABLE))
img_ir_write(priv, IMG_IR_IRQ_ENABLE,
priv->hw.quirk_suspend_irq);
/* enable */
img_ir_write(priv, IMG_IR_CONTROL, priv->hw.reg_timings.ctrl);
spin_unlock_irq(&priv->lock);
}
#ifdef CONFIG_COMMON_CLK
static void img_ir_change_frequency(struct img_ir_priv *priv,
struct clk_notifier_data *change)
{
struct img_ir_priv_hw *hw = &priv->hw;
dev_dbg(priv->dev, "clk changed %lu HZ -> %lu HZ\n",
change->old_rate, change->new_rate);
spin_lock_irq(&priv->lock);
if (hw->clk_hz == change->new_rate)
goto unlock;
hw->clk_hz = change->new_rate;
/* refresh current timings */
if (hw->decoder) {
img_ir_decoder_convert(hw->decoder, &hw->reg_timings,
hw->clk_hz);
switch (hw->mode) {
case IMG_IR_M_NORMAL:
img_ir_write_timings(priv, &hw->reg_timings.timings,
RC_FILTER_NORMAL);
break;
case IMG_IR_M_REPEATING:
img_ir_write_timings(priv, &hw->reg_timings.rtimings,
RC_FILTER_NORMAL);
break;
#ifdef CONFIG_PM_SLEEP
case IMG_IR_M_WAKE:
img_ir_write_timings(priv, &hw->reg_timings.timings,
RC_FILTER_WAKEUP);
break;
#endif
}
}
unlock:
spin_unlock_irq(&priv->lock);
}
static int img_ir_clk_notify(struct notifier_block *self, unsigned long action,
void *data)
{
struct img_ir_priv *priv = container_of(self, struct img_ir_priv,
hw.clk_nb);
switch (action) {
case POST_RATE_CHANGE:
img_ir_change_frequency(priv, data);
break;
default:
break;
}
return NOTIFY_OK;
}
#endif /* CONFIG_COMMON_CLK */
/* called with priv->lock held */
void img_ir_isr_hw(struct img_ir_priv *priv, u32 irq_status)
{
struct img_ir_priv_hw *hw = &priv->hw;
u32 ir_status, len, lw, up;
unsigned int ct;
/* use the current decoder */
if (!hw->decoder)
return;
ct = hw->decoder->control.code_type;
ir_status = img_ir_read(priv, IMG_IR_STATUS);
if (!(ir_status & (IMG_IR_RXDVAL | IMG_IR_RXDVALD2))) {
if (!(priv->hw.ct_quirks[ct] & IMG_IR_QUIRK_CODE_IRQ) ||
hw->stopping)
return;
/*
* The below functionality is added as a work around to stop
* multiple Interrupts generated when an incomplete IR code is
* received by the decoder.
* The decoder generates rapid interrupts without actually
* having received any new data. After a single interrupt it's
* expected to clear up, but instead multiple interrupts are
* rapidly generated. only way to get out of this loop is to
* reset the control register after a short delay.
*/
img_ir_write(priv, IMG_IR_CONTROL, 0);
hw->quirk_suspend_irq = img_ir_read(priv, IMG_IR_IRQ_ENABLE);
img_ir_write(priv, IMG_IR_IRQ_ENABLE,
hw->quirk_suspend_irq & IMG_IR_IRQ_EDGE);
/* Timer activated to re-enable the protocol. */
mod_timer(&hw->suspend_timer,
jiffies + msecs_to_jiffies(5));
return;
}
ir_status &= ~(IMG_IR_RXDVAL | IMG_IR_RXDVALD2);
img_ir_write(priv, IMG_IR_STATUS, ir_status);
len = (ir_status & IMG_IR_RXDLEN) >> IMG_IR_RXDLEN_SHIFT;
/* some versions report wrong length for certain code types */
if (hw->ct_quirks[ct] & IMG_IR_QUIRK_CODE_LEN_INCR)
++len;
lw = img_ir_read(priv, IMG_IR_DATA_LW);
up = img_ir_read(priv, IMG_IR_DATA_UP);
img_ir_handle_data(priv, len, (u64)up << 32 | lw);
}
void img_ir_setup_hw(struct img_ir_priv *priv)
{
struct img_ir_decoder **decp;
if (!priv->hw.rdev)
return;
/* Use the first available decoder (or disable stuff if NULL) */
for (decp = img_ir_decoders; *decp; ++decp) {
const struct img_ir_decoder *dec = *decp;
if (img_ir_decoder_compatible(priv, dec)) {
img_ir_set_protocol(priv, dec->type);
img_ir_set_decoder(priv, dec, 0);
return;
}
}
img_ir_set_decoder(priv, NULL, 0);
}
/**
* img_ir_probe_hw_caps() - Probe capabilities of the hardware.
* @priv: IR private data.
*/
static void img_ir_probe_hw_caps(struct img_ir_priv *priv)
{
struct img_ir_priv_hw *hw = &priv->hw;
/*
* When a version of the block becomes available without these quirks,
* they'll have to depend on the core revision.
*/
hw->ct_quirks[IMG_IR_CODETYPE_PULSELEN]
|= IMG_IR_QUIRK_CODE_LEN_INCR;
hw->ct_quirks[IMG_IR_CODETYPE_BIPHASE]
|= IMG_IR_QUIRK_CODE_IRQ;
hw->ct_quirks[IMG_IR_CODETYPE_2BITPULSEPOS]
|= IMG_IR_QUIRK_CODE_BROKEN;
}
int img_ir_probe_hw(struct img_ir_priv *priv)
{
struct img_ir_priv_hw *hw = &priv->hw;
struct rc_dev *rdev;
int error;
/* Ensure hardware decoders have been preprocessed */
img_ir_init_decoders();
/* Probe hardware capabilities */
img_ir_probe_hw_caps(priv);
/* Set up the end timer */
setup_timer(&hw->end_timer, img_ir_end_timer, (unsigned long)priv);
setup_timer(&hw->suspend_timer, img_ir_suspend_timer,
(unsigned long)priv);
/* Register a clock notifier */
if (!IS_ERR(priv->clk)) {
hw->clk_hz = clk_get_rate(priv->clk);
#ifdef CONFIG_COMMON_CLK
hw->clk_nb.notifier_call = img_ir_clk_notify;
error = clk_notifier_register(priv->clk, &hw->clk_nb);
if (error)
dev_warn(priv->dev,
"failed to register clock notifier\n");
#endif
} else {
hw->clk_hz = 32768;
}
/* Allocate hardware decoder */
hw->rdev = rdev = rc_allocate_device(RC_DRIVER_SCANCODE);
if (!rdev) {
dev_err(priv->dev, "cannot allocate input device\n");
error = -ENOMEM;
goto err_alloc_rc;
}
rdev->priv = priv;
rdev->map_name = RC_MAP_EMPTY;
rdev->allowed_protocols = img_ir_allowed_protos(priv);
rdev->input_name = "IMG Infrared Decoder";
rdev->s_filter = img_ir_set_normal_filter;
rdev->s_wakeup_filter = img_ir_set_wakeup_filter;
/* Register hardware decoder */
error = rc_register_device(rdev);
if (error) {
dev_err(priv->dev, "failed to register IR input device\n");
goto err_register_rc;
}
/*
* Set this after rc_register_device as no protocols have been
* registered yet.
*/
rdev->change_protocol = img_ir_change_protocol;
device_init_wakeup(priv->dev, 1);
return 0;
err_register_rc:
img_ir_set_decoder(priv, NULL, 0);
hw->rdev = NULL;
rc_free_device(rdev);
err_alloc_rc:
#ifdef CONFIG_COMMON_CLK
if (!IS_ERR(priv->clk))
clk_notifier_unregister(priv->clk, &hw->clk_nb);
#endif
return error;
}
void img_ir_remove_hw(struct img_ir_priv *priv)
{
struct img_ir_priv_hw *hw = &priv->hw;
struct rc_dev *rdev = hw->rdev;
if (!rdev)
return;
img_ir_set_decoder(priv, NULL, 0);
hw->rdev = NULL;
rc_unregister_device(rdev);
#ifdef CONFIG_COMMON_CLK
if (!IS_ERR(priv->clk))
clk_notifier_unregister(priv->clk, &hw->clk_nb);
#endif
}
#ifdef CONFIG_PM_SLEEP
int img_ir_suspend(struct device *dev)
{
struct img_ir_priv *priv = dev_get_drvdata(dev);
if (device_may_wakeup(dev) && img_ir_enable_wake(priv))
enable_irq_wake(priv->irq);
return 0;
}
int img_ir_resume(struct device *dev)
{
struct img_ir_priv *priv = dev_get_drvdata(dev);
if (device_may_wakeup(dev) && img_ir_disable_wake(priv))
disable_irq_wake(priv->irq);
return 0;
}
#endif /* CONFIG_PM_SLEEP */