linux/arch/powerpc/include/asm/book3s/64/pgtable.h

881 lines
26 KiB
C
Raw Normal View History

#ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
#define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
/*
* Common bits between hash and Radix page table
*/
#define _PAGE_BIT_SWAP_TYPE 0
#define _PAGE_EXEC 0x00001 /* execute permission */
#define _PAGE_WRITE 0x00002 /* write access allowed */
#define _PAGE_READ 0x00004 /* read access allowed */
#define _PAGE_RW (_PAGE_READ | _PAGE_WRITE)
#define _PAGE_RWX (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
#define _PAGE_PRIVILEGED 0x00008 /* kernel access only */
#define _PAGE_SAO 0x00010 /* Strong access order */
#define _PAGE_NON_IDEMPOTENT 0x00020 /* non idempotent memory */
#define _PAGE_TOLERANT 0x00030 /* tolerant memory, cache inhibited */
#define _PAGE_DIRTY 0x00080 /* C: page changed */
#define _PAGE_ACCESSED 0x00100 /* R: page referenced */
/*
* Software bits
*/
#ifdef CONFIG_MEM_SOFT_DIRTY
#define _PAGE_SOFT_DIRTY 0x00200 /* software: software dirty tracking */
#else
#define _PAGE_SOFT_DIRTY 0x00000
#endif
#define _PAGE_SPECIAL 0x00400 /* software: special page */
#define _PAGE_PTE (1ul << 62) /* distinguishes PTEs from pointers */
#define _PAGE_PRESENT (1ul << 63) /* pte contains a translation */
/*
* Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
* Instead of fixing all of them, add an alternate define which
* maps CI pte mapping.
*/
#define _PAGE_NO_CACHE _PAGE_TOLERANT
/*
* We support 57 bit real address in pte. Clear everything above 57, and
* every thing below PAGE_SHIFT;
*/
#define PTE_RPN_MASK (((1UL << 57) - 1) & (PAGE_MASK))
/*
* set of bits not changed in pmd_modify. Even though we have hash specific bits
* in here, on radix we expect them to be zero.
*/
#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
_PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
_PAGE_SOFT_DIRTY)
/*
* user access blocked by key
*/
#define _PAGE_KERNEL_RW (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
#define _PAGE_KERNEL_RO (_PAGE_PRIVILEGED | _PAGE_READ)
#define _PAGE_KERNEL_RWX (_PAGE_PRIVILEGED | _PAGE_DIRTY | \
_PAGE_RW | _PAGE_EXEC)
/*
* No page size encoding in the linux PTE
*/
#define _PAGE_PSIZE 0
/*
* _PAGE_CHG_MASK masks of bits that are to be preserved across
* pgprot changes
*/
#define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
_PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE | \
_PAGE_SOFT_DIRTY)
/*
* Mask of bits returned by pte_pgprot()
*/
#define PAGE_PROT_BITS (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT | \
H_PAGE_4K_PFN | _PAGE_PRIVILEGED | _PAGE_ACCESSED | \
_PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_EXEC | \
_PAGE_SOFT_DIRTY)
/*
* We define 2 sets of base prot bits, one for basic pages (ie,
* cacheable kernel and user pages) and one for non cacheable
* pages. We always set _PAGE_COHERENT when SMP is enabled or
* the processor might need it for DMA coherency.
*/
#define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_PSIZE)
#define _PAGE_BASE (_PAGE_BASE_NC)
/* Permission masks used to generate the __P and __S table,
*
* Note:__pgprot is defined in arch/powerpc/include/asm/page.h
*
* Write permissions imply read permissions for now (we could make write-only
* pages on BookE but we don't bother for now). Execute permission control is
* possible on platforms that define _PAGE_EXEC
*
* Note due to the way vm flags are laid out, the bits are XWR
*/
#define PAGE_NONE __pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW)
#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_READ)
#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_READ)
#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
#define __P000 PAGE_NONE
#define __P001 PAGE_READONLY
#define __P010 PAGE_COPY
#define __P011 PAGE_COPY
#define __P100 PAGE_READONLY_X
#define __P101 PAGE_READONLY_X
#define __P110 PAGE_COPY_X
#define __P111 PAGE_COPY_X
#define __S000 PAGE_NONE
#define __S001 PAGE_READONLY
#define __S010 PAGE_SHARED
#define __S011 PAGE_SHARED
#define __S100 PAGE_READONLY_X
#define __S101 PAGE_READONLY_X
#define __S110 PAGE_SHARED_X
#define __S111 PAGE_SHARED_X
/* Permission masks used for kernel mappings */
#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
#define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
_PAGE_TOLERANT)
#define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
_PAGE_NON_IDEMPOTENT)
#define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
#define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
#define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
/*
* Protection used for kernel text. We want the debuggers to be able to
* set breakpoints anywhere, so don't write protect the kernel text
* on platforms where such control is possible.
*/
#if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
#define PAGE_KERNEL_TEXT PAGE_KERNEL_X
#else
#define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX
#endif
/* Make modules code happy. We don't set RO yet */
#define PAGE_KERNEL_EXEC PAGE_KERNEL_X
#define PAGE_AGP (PAGE_KERNEL_NC)
#ifndef __ASSEMBLY__
/*
* page table defines
*/
extern unsigned long __pte_index_size;
extern unsigned long __pmd_index_size;
extern unsigned long __pud_index_size;
extern unsigned long __pgd_index_size;
extern unsigned long __pmd_cache_index;
#define PTE_INDEX_SIZE __pte_index_size
#define PMD_INDEX_SIZE __pmd_index_size
#define PUD_INDEX_SIZE __pud_index_size
#define PGD_INDEX_SIZE __pgd_index_size
#define PMD_CACHE_INDEX __pmd_cache_index
/*
* Because of use of pte fragments and THP, size of page table
* are not always derived out of index size above.
*/
extern unsigned long __pte_table_size;
extern unsigned long __pmd_table_size;
extern unsigned long __pud_table_size;
extern unsigned long __pgd_table_size;
#define PTE_TABLE_SIZE __pte_table_size
#define PMD_TABLE_SIZE __pmd_table_size
#define PUD_TABLE_SIZE __pud_table_size
#define PGD_TABLE_SIZE __pgd_table_size
extern unsigned long __pmd_val_bits;
extern unsigned long __pud_val_bits;
extern unsigned long __pgd_val_bits;
#define PMD_VAL_BITS __pmd_val_bits
#define PUD_VAL_BITS __pud_val_bits
#define PGD_VAL_BITS __pgd_val_bits
extern unsigned long __pte_frag_nr;
#define PTE_FRAG_NR __pte_frag_nr
extern unsigned long __pte_frag_size_shift;
#define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
#define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
/*
* Pgtable size used by swapper, init in asm code
*/
#define MAX_PGD_TABLE_SIZE (sizeof(pgd_t) << RADIX_PGD_INDEX_SIZE)
#define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
#define PTRS_PER_PMD (1 << PMD_INDEX_SIZE)
#define PTRS_PER_PUD (1 << PUD_INDEX_SIZE)
#define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
/* PMD_SHIFT determines what a second-level page table entry can map */
#define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
/* PUD_SHIFT determines what a third-level page table entry can map */
#define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE)
#define PUD_SIZE (1UL << PUD_SHIFT)
#define PUD_MASK (~(PUD_SIZE-1))
/* PGDIR_SHIFT determines what a fourth-level page table entry can map */
#define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE)
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
/* Bits to mask out from a PMD to get to the PTE page */
#define PMD_MASKED_BITS 0xc0000000000000ffUL
/* Bits to mask out from a PUD to get to the PMD page */
#define PUD_MASKED_BITS 0xc0000000000000ffUL
/* Bits to mask out from a PGD to get to the PUD page */
#define PGD_MASKED_BITS 0xc0000000000000ffUL
extern unsigned long __vmalloc_start;
extern unsigned long __vmalloc_end;
#define VMALLOC_START __vmalloc_start
#define VMALLOC_END __vmalloc_end
extern unsigned long __kernel_virt_start;
extern unsigned long __kernel_virt_size;
#define KERN_VIRT_START __kernel_virt_start
#define KERN_VIRT_SIZE __kernel_virt_size
extern struct page *vmemmap;
extern unsigned long ioremap_bot;
#endif /* __ASSEMBLY__ */
#include <asm/book3s/64/hash.h>
#include <asm/book3s/64/radix.h>
#ifdef CONFIG_PPC_64K_PAGES
#include <asm/book3s/64/pgtable-64k.h>
#else
#include <asm/book3s/64/pgtable-4k.h>
#endif
#include <asm/barrier.h>
/*
* The second half of the kernel virtual space is used for IO mappings,
* it's itself carved into the PIO region (ISA and PHB IO space) and
* the ioremap space
*
* ISA_IO_BASE = KERN_IO_START, 64K reserved area
* PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
* IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
*/
#define KERN_IO_START (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
#define FULL_IO_SIZE 0x80000000ul
#define ISA_IO_BASE (KERN_IO_START)
#define ISA_IO_END (KERN_IO_START + 0x10000ul)
#define PHB_IO_BASE (ISA_IO_END)
#define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
#define IOREMAP_BASE (PHB_IO_END)
#define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE)
/* Advertise special mapping type for AGP */
#define HAVE_PAGE_AGP
/* Advertise support for _PAGE_SPECIAL */
#define __HAVE_ARCH_PTE_SPECIAL
#ifndef __ASSEMBLY__
/*
* This is the default implementation of various PTE accessors, it's
* used in all cases except Book3S with 64K pages where we have a
* concept of sub-pages
*/
#ifndef __real_pte
#define __real_pte(e,p) ((real_pte_t){(e)})
#define __rpte_to_pte(r) ((r).pte)
#define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
#define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \
do { \
index = 0; \
shift = mmu_psize_defs[psize].shift; \
#define pte_iterate_hashed_end() } while(0)
/*
* We expect this to be called only for user addresses or kernel virtual
* addresses other than the linear mapping.
*/
#define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K
#endif /* __real_pte */
static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, unsigned long clr,
unsigned long set, int huge)
{
if (radix_enabled())
return radix__pte_update(mm, addr, ptep, clr, set, huge);
return hash__pte_update(mm, addr, ptep, clr, set, huge);
}
/*
* For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
* We currently remove entries from the hashtable regardless of whether
* the entry was young or dirty.
*
* We should be more intelligent about this but for the moment we override
* these functions and force a tlb flush unconditionally
* For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
* function for both hash and radix.
*/
static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
unsigned long old;
if ((pte_val(*ptep) & (_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
return 0;
old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
return (old & _PAGE_ACCESSED) != 0;
}
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
({ \
int __r; \
__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
__r; \
})
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
if ((pte_val(*ptep) & _PAGE_WRITE) == 0)
return;
pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
}
static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
if ((pte_val(*ptep) & _PAGE_WRITE) == 0)
return;
pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
}
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
return __pte(old);
}
static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
pte_t * ptep)
{
pte_update(mm, addr, ptep, ~0UL, 0, 0);
}
static inline int pte_write(pte_t pte) { return !!(pte_val(pte) & _PAGE_WRITE);}
static inline int pte_dirty(pte_t pte) { return !!(pte_val(pte) & _PAGE_DIRTY); }
static inline int pte_young(pte_t pte) { return !!(pte_val(pte) & _PAGE_ACCESSED); }
static inline int pte_special(pte_t pte) { return !!(pte_val(pte) & _PAGE_SPECIAL); }
static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
static inline bool pte_soft_dirty(pte_t pte)
{
return !!(pte_val(pte) & _PAGE_SOFT_DIRTY);
}
static inline pte_t pte_mksoft_dirty(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY);
}
static inline pte_t pte_clear_soft_dirty(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_SOFT_DIRTY);
}
#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
#ifdef CONFIG_NUMA_BALANCING
/*
* These work without NUMA balancing but the kernel does not care. See the
* comment in include/asm-generic/pgtable.h . On powerpc, this will only
* work for user pages and always return true for kernel pages.
*/
static inline int pte_protnone(pte_t pte)
{
return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PRIVILEGED)) ==
(_PAGE_PRESENT | _PAGE_PRIVILEGED);
}
#endif /* CONFIG_NUMA_BALANCING */
static inline int pte_present(pte_t pte)
{
return !!(pte_val(pte) & _PAGE_PRESENT);
}
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*
* Even if PTEs can be unsigned long long, a PFN is always an unsigned
* long for now.
*/
static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
{
return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
pgprot_val(pgprot));
}
static inline unsigned long pte_pfn(pte_t pte)
{
return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
}
/* Generic modifiers for PTE bits */
static inline pte_t pte_wrprotect(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_WRITE);
}
static inline pte_t pte_mkclean(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_DIRTY);
}
static inline pte_t pte_mkold(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
}
static inline pte_t pte_mkwrite(pte_t pte)
{
/*
* write implies read, hence set both
*/
return __pte(pte_val(pte) | _PAGE_RW);
}
static inline pte_t pte_mkdirty(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
}
static inline pte_t pte_mkyoung(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_ACCESSED);
}
static inline pte_t pte_mkspecial(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_SPECIAL);
}
static inline pte_t pte_mkhuge(pte_t pte)
{
return pte;
}
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
/* FIXME!! check whether this need to be a conditional */
return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
}
static inline bool pte_user(pte_t pte)
{
return !(pte_val(pte) & _PAGE_PRIVILEGED);
}
/* Encode and de-code a swap entry */
#define MAX_SWAPFILES_CHECK() do { \
BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
/* \
* Don't have overlapping bits with _PAGE_HPTEFLAGS \
* We filter HPTEFLAGS on set_pte. \
*/ \
BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY); \
} while (0)
/*
* on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
*/
#define SWP_TYPE_BITS 5
#define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \
& ((1UL << SWP_TYPE_BITS) - 1))
#define __swp_offset(x) (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
#define __swp_entry(type, offset) ((swp_entry_t) { \
((type) << _PAGE_BIT_SWAP_TYPE) \
| (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
/*
* swp_entry_t must be independent of pte bits. We build a swp_entry_t from
* swap type and offset we get from swap and convert that to pte to find a
* matching pte in linux page table.
* Clear bits not found in swap entries here.
*/
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
#define __swp_entry_to_pte(x) __pte((x).val | _PAGE_PTE)
#ifdef CONFIG_MEM_SOFT_DIRTY
#define _PAGE_SWP_SOFT_DIRTY (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
#else
#define _PAGE_SWP_SOFT_DIRTY 0UL
#endif /* CONFIG_MEM_SOFT_DIRTY */
#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY);
}
static inline bool pte_swp_soft_dirty(pte_t pte)
{
return !!(pte_val(pte) & _PAGE_SWP_SOFT_DIRTY);
}
static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_SWP_SOFT_DIRTY);
}
#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
static inline bool check_pte_access(unsigned long access, unsigned long ptev)
{
/*
* This check for _PAGE_RWX and _PAGE_PRESENT bits
*/
if (access & ~ptev)
return false;
/*
* This check for access to privilege space
*/
if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
return false;
return true;
}
/*
* Generic functions with hash/radix callbacks
*/
static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
{
if (radix_enabled())
return radix__ptep_set_access_flags(ptep, entry);
return hash__ptep_set_access_flags(ptep, entry);
}
#define __HAVE_ARCH_PTE_SAME
static inline int pte_same(pte_t pte_a, pte_t pte_b)
{
if (radix_enabled())
return radix__pte_same(pte_a, pte_b);
return hash__pte_same(pte_a, pte_b);
}
static inline int pte_none(pte_t pte)
{
if (radix_enabled())
return radix__pte_none(pte);
return hash__pte_none(pte);
}
static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte, int percpu)
{
if (radix_enabled())
return radix__set_pte_at(mm, addr, ptep, pte, percpu);
return hash__set_pte_at(mm, addr, ptep, pte, percpu);
}
#define _PAGE_CACHE_CTL (_PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
#define pgprot_noncached pgprot_noncached
static inline pgprot_t pgprot_noncached(pgprot_t prot)
{
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
_PAGE_NON_IDEMPOTENT);
}
#define pgprot_noncached_wc pgprot_noncached_wc
static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
{
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
_PAGE_TOLERANT);
}
#define pgprot_cached pgprot_cached
static inline pgprot_t pgprot_cached(pgprot_t prot)
{
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
}
#define pgprot_writecombine pgprot_writecombine
static inline pgprot_t pgprot_writecombine(pgprot_t prot)
{
return pgprot_noncached_wc(prot);
}
/*
* check a pte mapping have cache inhibited property
*/
static inline bool pte_ci(pte_t pte)
{
unsigned long pte_v = pte_val(pte);
if (((pte_v & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) ||
((pte_v & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT))
return true;
return false;
}
static inline void pmd_set(pmd_t *pmdp, unsigned long val)
{
*pmdp = __pmd(val);
}
static inline void pmd_clear(pmd_t *pmdp)
{
*pmdp = __pmd(0);
}
#define pmd_none(pmd) (!pmd_val(pmd))
#define pmd_present(pmd) (!pmd_none(pmd))
static inline int pmd_bad(pmd_t pmd)
{
if (radix_enabled())
return radix__pmd_bad(pmd);
return hash__pmd_bad(pmd);
}
static inline void pud_set(pud_t *pudp, unsigned long val)
{
*pudp = __pud(val);
}
static inline void pud_clear(pud_t *pudp)
{
*pudp = __pud(0);
}
#define pud_none(pud) (!pud_val(pud))
#define pud_present(pud) (pud_val(pud) != 0)
extern struct page *pud_page(pud_t pud);
extern struct page *pmd_page(pmd_t pmd);
static inline pte_t pud_pte(pud_t pud)
{
return __pte(pud_val(pud));
}
static inline pud_t pte_pud(pte_t pte)
{
return __pud(pte_val(pte));
}
#define pud_write(pud) pte_write(pud_pte(pud))
static inline int pud_bad(pud_t pud)
{
if (radix_enabled())
return radix__pud_bad(pud);
return hash__pud_bad(pud);
}
#define pgd_write(pgd) pte_write(pgd_pte(pgd))
static inline void pgd_set(pgd_t *pgdp, unsigned long val)
{
*pgdp = __pgd(val);
}
static inline void pgd_clear(pgd_t *pgdp)
{
*pgdp = __pgd(0);
}
#define pgd_none(pgd) (!pgd_val(pgd))
#define pgd_present(pgd) (!pgd_none(pgd))
static inline pte_t pgd_pte(pgd_t pgd)
{
return __pte(pgd_val(pgd));
}
static inline pgd_t pte_pgd(pte_t pte)
{
return __pgd(pte_val(pte));
}
static inline int pgd_bad(pgd_t pgd)
{
if (radix_enabled())
return radix__pgd_bad(pgd);
return hash__pgd_bad(pgd);
}
extern struct page *pgd_page(pgd_t pgd);
/* Pointers in the page table tree are physical addresses */
#define __pgtable_ptr_val(ptr) __pa(ptr)
#define pmd_page_vaddr(pmd) __va(pmd_val(pmd) & ~PMD_MASKED_BITS)
#define pud_page_vaddr(pud) __va(pud_val(pud) & ~PUD_MASKED_BITS)
#define pgd_page_vaddr(pgd) __va(pgd_val(pgd) & ~PGD_MASKED_BITS)
#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
#define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
#define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
#define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
/*
* Find an entry in a page-table-directory. We combine the address region
* (the high order N bits) and the pgd portion of the address.
*/
#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
#define pud_offset(pgdp, addr) \
(((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
#define pmd_offset(pudp,addr) \
(((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
#define pte_offset_kernel(dir,addr) \
(((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
#define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
#define pte_unmap(pte) do { } while(0)
/* to find an entry in a kernel page-table-directory */
/* This now only contains the vmalloc pages */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
#define pte_ERROR(e) \
pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
#define pmd_ERROR(e) \
pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
#define pud_ERROR(e) \
pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
#define pgd_ERROR(e) \
pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
void pgtable_cache_add(unsigned shift, void (*ctor)(void *));
void pgtable_cache_init(void);
static inline int map_kernel_page(unsigned long ea, unsigned long pa,
unsigned long flags)
{
if (radix_enabled()) {
#if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
#endif
return radix__map_kernel_page(ea, pa, __pgprot(flags), PAGE_SIZE);
}
return hash__map_kernel_page(ea, pa, flags);
}
static inline int __meminit vmemmap_create_mapping(unsigned long start,
unsigned long page_size,
unsigned long phys)
{
if (radix_enabled())
return radix__vmemmap_create_mapping(start, page_size, phys);
return hash__vmemmap_create_mapping(start, page_size, phys);
}
#ifdef CONFIG_MEMORY_HOTPLUG
static inline void vmemmap_remove_mapping(unsigned long start,
unsigned long page_size)
{
if (radix_enabled())
return radix__vmemmap_remove_mapping(start, page_size);
return hash__vmemmap_remove_mapping(start, page_size);
}
#endif
struct page *realmode_pfn_to_page(unsigned long pfn);
static inline pte_t pmd_pte(pmd_t pmd)
{
return __pte(pmd_val(pmd));
}
static inline pmd_t pte_pmd(pte_t pte)
{
return __pmd(pte_val(pte));
}
static inline pte_t *pmdp_ptep(pmd_t *pmd)
{
return (pte_t *)pmd;
}
#define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
#define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
#define pmd_young(pmd) pte_young(pmd_pte(pmd))
#define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
#define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
#define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
arch/powerpc/include/asm/pgtable-ppc64.h: add pmd_[dirty|mkclean] for THP MADV_FREE needs pmd_dirty and pmd_mkclean for detecting recent overwrite of the contents since MADV_FREE syscall is called for THP page. This patch adds pmd_dirty and pmd_mkclean for THP page MADV_FREE support. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jason Evans <je@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@redhat.com> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 08:55:29 +08:00
#define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
#define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
#define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
#define pmd_soft_dirty(pmd) pte_soft_dirty(pmd_pte(pmd))
#define pmd_mksoft_dirty(pmd) pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
#define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
#ifdef CONFIG_NUMA_BALANCING
static inline int pmd_protnone(pmd_t pmd)
{
return pte_protnone(pmd_pte(pmd));
}
#endif /* CONFIG_NUMA_BALANCING */
#define __HAVE_ARCH_PMD_WRITE
#define pmd_write(pmd) pte_write(pmd_pte(pmd))
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, pmd_t pmd);
extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
pmd_t *pmd);
extern int has_transparent_hugepage(void);
static inline pmd_t pmd_mkhuge(pmd_t pmd)
{
return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE));
}
#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp,
pmd_t entry, int dirty);
#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
extern pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
unsigned long addr, pmd_t *pmdp);
extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
#define pmdp_collapse_flush pmdp_collapse_flush
#define __HAVE_ARCH_PGTABLE_DEPOSIT
extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
pgtable_t pgtable);
#define __HAVE_ARCH_PGTABLE_WITHDRAW
extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
#define __HAVE_ARCH_PMDP_INVALIDATE
extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmdp);
powerpc/mm: Fix Multi hit ERAT cause by recent THP update With ppc64 we use the deposited pgtable_t to store the hash pte slot information. We should not withdraw the deposited pgtable_t without marking the pmd none. This ensure that low level hash fault handling will skip this huge pte and we will handle them at upper levels. Recent change to pmd splitting changed the above in order to handle the race between pmd split and exit_mmap. The race is explained below. Consider following race: CPU0 CPU1 shrink_page_list() add_to_swap() split_huge_page_to_list() __split_huge_pmd_locked() pmdp_huge_clear_flush_notify() // pmd_none() == true exit_mmap() unmap_vmas() zap_pmd_range() // no action on pmd since pmd_none() == true pmd_populate() As result the THP will not be freed. The leak is detected by check_mm(): BUG: Bad rss-counter state mm:ffff880058d2e580 idx:1 val:512 The above required us to not mark pmd none during a pmd split. The fix for ppc is to clear the huge pte of _PAGE_USER, so that low level fault handling code skip this pte. At higher level we do take ptl lock. That should serialze us against the pmd split. Once the lock is acquired we do check the pmd again using pmd_same. That should always return false for us and hence we should retry the access. We do the pmd_same check in all case after taking plt with THP (do_huge_pmd_wp_page, do_huge_pmd_numa_page and huge_pmd_set_accessed) Also make sure we wait for irq disable section in other cpus to finish before flipping a huge pte entry with a regular pmd entry. Code paths like find_linux_pte_or_hugepte depend on irq disable to get a stable pte_t pointer. A parallel thp split need to make sure we don't convert a pmd pte to a regular pmd entry without waiting for the irq disable section to finish. Fixes: eef1b3ba053a ("thp: implement split_huge_pmd()") Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-02-09 09:20:31 +08:00
#define __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE
extern void pmdp_huge_split_prepare(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
#define pmd_move_must_withdraw pmd_move_must_withdraw
struct spinlock;
static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
struct spinlock *old_pmd_ptl)
{
/*
* Archs like ppc64 use pgtable to store per pmd
* specific information. So when we switch the pmd,
* we should also withdraw and deposit the pgtable
*/
return true;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif /* __ASSEMBLY__ */
#endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */