linux/arch/powerpc/kernel/module_64.c

841 lines
23 KiB
C
Raw Normal View History

/* Kernel module help for PPC64.
Copyright (C) 2001, 2003 Rusty Russell IBM Corporation.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/elf.h>
#include <linux/moduleloader.h>
#include <linux/err.h>
#include <linux/vmalloc.h>
#include <linux/ftrace.h>
#include <linux/bug.h>
#include <linux/uaccess.h>
#include <asm/module.h>
#include <asm/firmware.h>
#include <asm/code-patching.h>
[POWERPC] Optimize counting distinct entries in the relocation sections When a module has relocation sections with tens of thousands of entries, counting the distinct/unique entries only (i.e. no duplicates) at load time can take tens of seconds and up to minutes. The sore point is the count_relocs() function which is called as part of the architecture specific module loading processing path: -> load_module() generic -> module_frob_arch_sections() arch specific -> get_plt_size() 32-bit -> get_stubs_size() 64-bit -> count_relocs() Here count_relocs is being called to find out how many distinct targets of R_PPC_REL24 relocations there are, since each distinct target needs a PLT entry or a stub created for it. The previous counting algorithm has O(n^2) complexity. Basically two solutions were proposed on the e-mail list: a hash based approach and a sort based approach. The hash based approach is the fastest (O(n)) but the has it needs additional memory and for certain corner cases it could take lots of memory due to the degeneration of the hash. One such proposal was submitted here: http://ozlabs.org/pipermail/linuxppc-dev/2007-June/037641.html The sort based approach is slower (O(n * log n + n)) but if the sorting is done "in place" it doesn't need additional memory. This has O(n + n * log n) complexity with no additional memory requirements. This commit implements the in-place sort option. Signed-off-by: Emil Medve <Emilian.Medve@Freescale.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-11-14 00:24:04 +08:00
#include <linux/sort.h>
#include <asm/setup.h>
#include <asm/sections.h>
/* FIXME: We don't do .init separately. To do this, we'd need to have
a separate r2 value in the init and core section, and stub between
them, too.
Using a magic allocator which places modules within 32MB solves
this, and makes other things simpler. Anton?
--RR. */
#ifdef PPC64_ELF_ABI_v2
/* An address is simply the address of the function. */
typedef unsigned long func_desc_t;
static func_desc_t func_desc(unsigned long addr)
{
return addr;
}
static unsigned long func_addr(unsigned long addr)
{
return addr;
}
static unsigned long stub_func_addr(func_desc_t func)
{
return func;
}
/* PowerPC64 specific values for the Elf64_Sym st_other field. */
#define STO_PPC64_LOCAL_BIT 5
#define STO_PPC64_LOCAL_MASK (7 << STO_PPC64_LOCAL_BIT)
#define PPC64_LOCAL_ENTRY_OFFSET(other) \
(((1 << (((other) & STO_PPC64_LOCAL_MASK) >> STO_PPC64_LOCAL_BIT)) >> 2) << 2)
static unsigned int local_entry_offset(const Elf64_Sym *sym)
{
/* sym->st_other indicates offset to local entry point
* (otherwise it will assume r12 is the address of the start
* of function and try to derive r2 from it). */
return PPC64_LOCAL_ENTRY_OFFSET(sym->st_other);
}
#else
/* An address is address of the OPD entry, which contains address of fn. */
typedef struct ppc64_opd_entry func_desc_t;
static func_desc_t func_desc(unsigned long addr)
{
return *(struct ppc64_opd_entry *)addr;
}
static unsigned long func_addr(unsigned long addr)
{
return func_desc(addr).funcaddr;
}
static unsigned long stub_func_addr(func_desc_t func)
{
return func.funcaddr;
}
static unsigned int local_entry_offset(const Elf64_Sym *sym)
{
return 0;
}
powerpc64: Add .opd based function descriptor dereference We are moving towards separate kernel and module function descriptor dereference callbacks. This patch enables it for powerpc64. For pointers that belong to the kernel - Added __start_opd and __end_opd pointers, to track the kernel .opd section address range; - Added dereference_kernel_function_descriptor(). Now we will dereference only function pointers that are within [__start_opd, __end_opd); For pointers that belong to a module - Added dereference_module_function_descriptor() to handle module function descriptor dereference. Now we will dereference only pointers that are within [module->opd.start, module->opd.end). Link: http://lkml.kernel.org/r/20171109234830.5067-4-sergey.senozhatsky@gmail.com To: Tony Luck <tony.luck@intel.com> To: Fenghua Yu <fenghua.yu@intel.com> To: Helge Deller <deller@gmx.de> To: Benjamin Herrenschmidt <benh@kernel.crashing.org> To: Paul Mackerras <paulus@samba.org> To: Michael Ellerman <mpe@ellerman.id.au> To: James Bottomley <jejb@parisc-linux.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Jessica Yu <jeyu@kernel.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: linux-ia64@vger.kernel.org Cc: linux-parisc@vger.kernel.org Cc: linuxppc-dev@lists.ozlabs.org Cc: linux-kernel@vger.kernel.org Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Tested-by: Santosh Sivaraj <santosh@fossix.org> #powerpc Signed-off-by: Petr Mladek <pmladek@suse.com>
2017-11-10 07:48:27 +08:00
void *dereference_module_function_descriptor(struct module *mod, void *ptr)
{
if (ptr < (void *)mod->arch.start_opd ||
ptr >= (void *)mod->arch.end_opd)
return ptr;
return dereference_function_descriptor(ptr);
}
#endif
#define STUB_MAGIC 0x73747562 /* stub */
/* Like PPC32, we need little trampolines to do > 24-bit jumps (into
the kernel itself). But on PPC64, these need to be used for every
jump, actually, to reset r2 (TOC+0x8000). */
struct ppc64_stub_entry
{
/* 28 byte jump instruction sequence (7 instructions). We only
* need 6 instructions on ABIv2 but we always allocate 7 so
* so we don't have to modify the trampoline load instruction. */
u32 jump[7];
/* Used by ftrace to identify stubs */
u32 magic;
/* Data for the above code */
func_desc_t funcdata;
};
/*
* PPC64 uses 24 bit jumps, but we need to jump into other modules or
* the kernel which may be further. So we jump to a stub.
*
* For ELFv1 we need to use this to set up the new r2 value (aka TOC
* pointer). For ELFv2 it's the callee's responsibility to set up the
* new r2, but for both we need to save the old r2.
*
* We could simply patch the new r2 value and function pointer into
* the stub, but it's significantly shorter to put these values at the
* end of the stub code, and patch the stub address (32-bits relative
* to the TOC ptr, r2) into the stub.
*/
static u32 ppc64_stub_insns[] = {
0x3d620000, /* addis r11,r2, <high> */
0x396b0000, /* addi r11,r11, <low> */
/* Save current r2 value in magic place on the stack. */
0xf8410000|R2_STACK_OFFSET, /* std r2,R2_STACK_OFFSET(r1) */
0xe98b0020, /* ld r12,32(r11) */
#ifdef PPC64_ELF_ABI_v1
/* Set up new r2 from function descriptor */
0xe84b0028, /* ld r2,40(r11) */
#endif
0x7d8903a6, /* mtctr r12 */
0x4e800420 /* bctr */
};
#ifdef CONFIG_DYNAMIC_FTRACE
int module_trampoline_target(struct module *mod, unsigned long addr,
unsigned long *target)
{
struct ppc64_stub_entry *stub;
func_desc_t funcdata;
u32 magic;
if (!within_module_core(addr, mod)) {
pr_err("%s: stub %lx not in module %s\n", __func__, addr, mod->name);
return -EFAULT;
}
stub = (struct ppc64_stub_entry *)addr;
if (probe_kernel_read(&magic, &stub->magic, sizeof(magic))) {
pr_err("%s: fault reading magic for stub %lx for %s\n", __func__, addr, mod->name);
return -EFAULT;
}
if (magic != STUB_MAGIC) {
pr_err("%s: bad magic for stub %lx for %s\n", __func__, addr, mod->name);
return -EFAULT;
}
if (probe_kernel_read(&funcdata, &stub->funcdata, sizeof(funcdata))) {
pr_err("%s: fault reading funcdata for stub %lx for %s\n", __func__, addr, mod->name);
return -EFAULT;
}
*target = stub_func_addr(funcdata);
return 0;
}
#endif
/* Count how many different 24-bit relocations (different symbol,
different addend) */
static unsigned int count_relocs(const Elf64_Rela *rela, unsigned int num)
{
[POWERPC] Optimize counting distinct entries in the relocation sections When a module has relocation sections with tens of thousands of entries, counting the distinct/unique entries only (i.e. no duplicates) at load time can take tens of seconds and up to minutes. The sore point is the count_relocs() function which is called as part of the architecture specific module loading processing path: -> load_module() generic -> module_frob_arch_sections() arch specific -> get_plt_size() 32-bit -> get_stubs_size() 64-bit -> count_relocs() Here count_relocs is being called to find out how many distinct targets of R_PPC_REL24 relocations there are, since each distinct target needs a PLT entry or a stub created for it. The previous counting algorithm has O(n^2) complexity. Basically two solutions were proposed on the e-mail list: a hash based approach and a sort based approach. The hash based approach is the fastest (O(n)) but the has it needs additional memory and for certain corner cases it could take lots of memory due to the degeneration of the hash. One such proposal was submitted here: http://ozlabs.org/pipermail/linuxppc-dev/2007-June/037641.html The sort based approach is slower (O(n * log n + n)) but if the sorting is done "in place" it doesn't need additional memory. This has O(n + n * log n) complexity with no additional memory requirements. This commit implements the in-place sort option. Signed-off-by: Emil Medve <Emilian.Medve@Freescale.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-11-14 00:24:04 +08:00
unsigned int i, r_info, r_addend, _count_relocs;
/* FIXME: Only count external ones --RR */
[POWERPC] Optimize counting distinct entries in the relocation sections When a module has relocation sections with tens of thousands of entries, counting the distinct/unique entries only (i.e. no duplicates) at load time can take tens of seconds and up to minutes. The sore point is the count_relocs() function which is called as part of the architecture specific module loading processing path: -> load_module() generic -> module_frob_arch_sections() arch specific -> get_plt_size() 32-bit -> get_stubs_size() 64-bit -> count_relocs() Here count_relocs is being called to find out how many distinct targets of R_PPC_REL24 relocations there are, since each distinct target needs a PLT entry or a stub created for it. The previous counting algorithm has O(n^2) complexity. Basically two solutions were proposed on the e-mail list: a hash based approach and a sort based approach. The hash based approach is the fastest (O(n)) but the has it needs additional memory and for certain corner cases it could take lots of memory due to the degeneration of the hash. One such proposal was submitted here: http://ozlabs.org/pipermail/linuxppc-dev/2007-June/037641.html The sort based approach is slower (O(n * log n + n)) but if the sorting is done "in place" it doesn't need additional memory. This has O(n + n * log n) complexity with no additional memory requirements. This commit implements the in-place sort option. Signed-off-by: Emil Medve <Emilian.Medve@Freescale.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-11-14 00:24:04 +08:00
_count_relocs = 0;
r_info = 0;
r_addend = 0;
for (i = 0; i < num; i++)
/* Only count 24-bit relocs, others don't need stubs */
[POWERPC] Optimize counting distinct entries in the relocation sections When a module has relocation sections with tens of thousands of entries, counting the distinct/unique entries only (i.e. no duplicates) at load time can take tens of seconds and up to minutes. The sore point is the count_relocs() function which is called as part of the architecture specific module loading processing path: -> load_module() generic -> module_frob_arch_sections() arch specific -> get_plt_size() 32-bit -> get_stubs_size() 64-bit -> count_relocs() Here count_relocs is being called to find out how many distinct targets of R_PPC_REL24 relocations there are, since each distinct target needs a PLT entry or a stub created for it. The previous counting algorithm has O(n^2) complexity. Basically two solutions were proposed on the e-mail list: a hash based approach and a sort based approach. The hash based approach is the fastest (O(n)) but the has it needs additional memory and for certain corner cases it could take lots of memory due to the degeneration of the hash. One such proposal was submitted here: http://ozlabs.org/pipermail/linuxppc-dev/2007-June/037641.html The sort based approach is slower (O(n * log n + n)) but if the sorting is done "in place" it doesn't need additional memory. This has O(n + n * log n) complexity with no additional memory requirements. This commit implements the in-place sort option. Signed-off-by: Emil Medve <Emilian.Medve@Freescale.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-11-14 00:24:04 +08:00
if (ELF64_R_TYPE(rela[i].r_info) == R_PPC_REL24 &&
(r_info != ELF64_R_SYM(rela[i].r_info) ||
r_addend != rela[i].r_addend)) {
_count_relocs++;
r_info = ELF64_R_SYM(rela[i].r_info);
r_addend = rela[i].r_addend;
}
[POWERPC] Optimize counting distinct entries in the relocation sections When a module has relocation sections with tens of thousands of entries, counting the distinct/unique entries only (i.e. no duplicates) at load time can take tens of seconds and up to minutes. The sore point is the count_relocs() function which is called as part of the architecture specific module loading processing path: -> load_module() generic -> module_frob_arch_sections() arch specific -> get_plt_size() 32-bit -> get_stubs_size() 64-bit -> count_relocs() Here count_relocs is being called to find out how many distinct targets of R_PPC_REL24 relocations there are, since each distinct target needs a PLT entry or a stub created for it. The previous counting algorithm has O(n^2) complexity. Basically two solutions were proposed on the e-mail list: a hash based approach and a sort based approach. The hash based approach is the fastest (O(n)) but the has it needs additional memory and for certain corner cases it could take lots of memory due to the degeneration of the hash. One such proposal was submitted here: http://ozlabs.org/pipermail/linuxppc-dev/2007-June/037641.html The sort based approach is slower (O(n * log n + n)) but if the sorting is done "in place" it doesn't need additional memory. This has O(n + n * log n) complexity with no additional memory requirements. This commit implements the in-place sort option. Signed-off-by: Emil Medve <Emilian.Medve@Freescale.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-11-14 00:24:04 +08:00
return _count_relocs;
}
[POWERPC] Optimize counting distinct entries in the relocation sections When a module has relocation sections with tens of thousands of entries, counting the distinct/unique entries only (i.e. no duplicates) at load time can take tens of seconds and up to minutes. The sore point is the count_relocs() function which is called as part of the architecture specific module loading processing path: -> load_module() generic -> module_frob_arch_sections() arch specific -> get_plt_size() 32-bit -> get_stubs_size() 64-bit -> count_relocs() Here count_relocs is being called to find out how many distinct targets of R_PPC_REL24 relocations there are, since each distinct target needs a PLT entry or a stub created for it. The previous counting algorithm has O(n^2) complexity. Basically two solutions were proposed on the e-mail list: a hash based approach and a sort based approach. The hash based approach is the fastest (O(n)) but the has it needs additional memory and for certain corner cases it could take lots of memory due to the degeneration of the hash. One such proposal was submitted here: http://ozlabs.org/pipermail/linuxppc-dev/2007-June/037641.html The sort based approach is slower (O(n * log n + n)) but if the sorting is done "in place" it doesn't need additional memory. This has O(n + n * log n) complexity with no additional memory requirements. This commit implements the in-place sort option. Signed-off-by: Emil Medve <Emilian.Medve@Freescale.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-11-14 00:24:04 +08:00
static int relacmp(const void *_x, const void *_y)
{
const Elf64_Rela *x, *y;
y = (Elf64_Rela *)_x;
x = (Elf64_Rela *)_y;
/* Compare the entire r_info (as opposed to ELF64_R_SYM(r_info) only) to
* make the comparison cheaper/faster. It won't affect the sorting or
* the counting algorithms' performance
*/
if (x->r_info < y->r_info)
return -1;
else if (x->r_info > y->r_info)
return 1;
else if (x->r_addend < y->r_addend)
return -1;
else if (x->r_addend > y->r_addend)
return 1;
else
return 0;
}
static void relaswap(void *_x, void *_y, int size)
{
uint64_t *x, *y, tmp;
int i;
y = (uint64_t *)_x;
x = (uint64_t *)_y;
for (i = 0; i < sizeof(Elf64_Rela) / sizeof(uint64_t); i++) {
tmp = x[i];
x[i] = y[i];
y[i] = tmp;
}
}
/* Get size of potential trampolines required. */
static unsigned long get_stubs_size(const Elf64_Ehdr *hdr,
const Elf64_Shdr *sechdrs)
{
/* One extra reloc so it's always 0-funcaddr terminated */
unsigned long relocs = 1;
unsigned i;
/* Every relocated section... */
for (i = 1; i < hdr->e_shnum; i++) {
if (sechdrs[i].sh_type == SHT_RELA) {
pr_debug("Found relocations in section %u\n", i);
pr_debug("Ptr: %p. Number: %Lu\n",
(void *)sechdrs[i].sh_addr,
sechdrs[i].sh_size / sizeof(Elf64_Rela));
[POWERPC] Optimize counting distinct entries in the relocation sections When a module has relocation sections with tens of thousands of entries, counting the distinct/unique entries only (i.e. no duplicates) at load time can take tens of seconds and up to minutes. The sore point is the count_relocs() function which is called as part of the architecture specific module loading processing path: -> load_module() generic -> module_frob_arch_sections() arch specific -> get_plt_size() 32-bit -> get_stubs_size() 64-bit -> count_relocs() Here count_relocs is being called to find out how many distinct targets of R_PPC_REL24 relocations there are, since each distinct target needs a PLT entry or a stub created for it. The previous counting algorithm has O(n^2) complexity. Basically two solutions were proposed on the e-mail list: a hash based approach and a sort based approach. The hash based approach is the fastest (O(n)) but the has it needs additional memory and for certain corner cases it could take lots of memory due to the degeneration of the hash. One such proposal was submitted here: http://ozlabs.org/pipermail/linuxppc-dev/2007-June/037641.html The sort based approach is slower (O(n * log n + n)) but if the sorting is done "in place" it doesn't need additional memory. This has O(n + n * log n) complexity with no additional memory requirements. This commit implements the in-place sort option. Signed-off-by: Emil Medve <Emilian.Medve@Freescale.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-11-14 00:24:04 +08:00
/* Sort the relocation information based on a symbol and
* addend key. This is a stable O(n*log n) complexity
* alogrithm but it will reduce the complexity of
* count_relocs() to linear complexity O(n)
*/
sort((void *)sechdrs[i].sh_addr,
sechdrs[i].sh_size / sizeof(Elf64_Rela),
sizeof(Elf64_Rela), relacmp, relaswap);
relocs += count_relocs((void *)sechdrs[i].sh_addr,
sechdrs[i].sh_size
/ sizeof(Elf64_Rela));
}
}
#ifdef CONFIG_DYNAMIC_FTRACE
/* make the trampoline to the ftrace_caller */
relocs++;
#ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
/* an additional one for ftrace_regs_caller */
relocs++;
#endif
#endif
pr_debug("Looks like a total of %lu stubs, max\n", relocs);
return relocs * sizeof(struct ppc64_stub_entry);
}
/* Still needed for ELFv2, for .TOC. */
static void dedotify_versions(struct modversion_info *vers,
unsigned long size)
{
struct modversion_info *end;
for (end = (void *)vers + size; vers < end; vers++)
if (vers->name[0] == '.') {
memmove(vers->name, vers->name+1, strlen(vers->name));
}
}
/*
* Undefined symbols which refer to .funcname, hack to funcname. Make .TOC.
* seem to be defined (value set later).
*/
static void dedotify(Elf64_Sym *syms, unsigned int numsyms, char *strtab)
{
unsigned int i;
for (i = 1; i < numsyms; i++) {
if (syms[i].st_shndx == SHN_UNDEF) {
char *name = strtab + syms[i].st_name;
if (name[0] == '.') {
if (strcmp(name+1, "TOC.") == 0)
syms[i].st_shndx = SHN_ABS;
syms[i].st_name++;
}
}
}
}
static Elf64_Sym *find_dot_toc(Elf64_Shdr *sechdrs,
const char *strtab,
unsigned int symindex)
{
unsigned int i, numsyms;
Elf64_Sym *syms;
syms = (Elf64_Sym *)sechdrs[symindex].sh_addr;
numsyms = sechdrs[symindex].sh_size / sizeof(Elf64_Sym);
for (i = 1; i < numsyms; i++) {
if (syms[i].st_shndx == SHN_ABS
&& strcmp(strtab + syms[i].st_name, "TOC.") == 0)
return &syms[i];
}
return NULL;
}
int module_frob_arch_sections(Elf64_Ehdr *hdr,
Elf64_Shdr *sechdrs,
char *secstrings,
struct module *me)
{
unsigned int i;
/* Find .toc and .stubs sections, symtab and strtab */
for (i = 1; i < hdr->e_shnum; i++) {
char *p;
if (strcmp(secstrings + sechdrs[i].sh_name, ".stubs") == 0)
me->arch.stubs_section = i;
else if (strcmp(secstrings + sechdrs[i].sh_name, ".toc") == 0) {
me->arch.toc_section = i;
if (sechdrs[i].sh_addralign < 8)
sechdrs[i].sh_addralign = 8;
}
else if (strcmp(secstrings+sechdrs[i].sh_name,"__versions")==0)
dedotify_versions((void *)hdr + sechdrs[i].sh_offset,
sechdrs[i].sh_size);
powerpc64: Add .opd based function descriptor dereference We are moving towards separate kernel and module function descriptor dereference callbacks. This patch enables it for powerpc64. For pointers that belong to the kernel - Added __start_opd and __end_opd pointers, to track the kernel .opd section address range; - Added dereference_kernel_function_descriptor(). Now we will dereference only function pointers that are within [__start_opd, __end_opd); For pointers that belong to a module - Added dereference_module_function_descriptor() to handle module function descriptor dereference. Now we will dereference only pointers that are within [module->opd.start, module->opd.end). Link: http://lkml.kernel.org/r/20171109234830.5067-4-sergey.senozhatsky@gmail.com To: Tony Luck <tony.luck@intel.com> To: Fenghua Yu <fenghua.yu@intel.com> To: Helge Deller <deller@gmx.de> To: Benjamin Herrenschmidt <benh@kernel.crashing.org> To: Paul Mackerras <paulus@samba.org> To: Michael Ellerman <mpe@ellerman.id.au> To: James Bottomley <jejb@parisc-linux.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Jessica Yu <jeyu@kernel.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: linux-ia64@vger.kernel.org Cc: linux-parisc@vger.kernel.org Cc: linuxppc-dev@lists.ozlabs.org Cc: linux-kernel@vger.kernel.org Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Tested-by: Santosh Sivaraj <santosh@fossix.org> #powerpc Signed-off-by: Petr Mladek <pmladek@suse.com>
2017-11-10 07:48:27 +08:00
else if (!strcmp(secstrings + sechdrs[i].sh_name, ".opd")) {
me->arch.start_opd = sechdrs[i].sh_addr;
me->arch.end_opd = sechdrs[i].sh_addr +
sechdrs[i].sh_size;
}
/* We don't handle .init for the moment: rename to _init */
while ((p = strstr(secstrings + sechdrs[i].sh_name, ".init")))
p[0] = '_';
if (sechdrs[i].sh_type == SHT_SYMTAB)
dedotify((void *)hdr + sechdrs[i].sh_offset,
sechdrs[i].sh_size / sizeof(Elf64_Sym),
(void *)hdr
+ sechdrs[sechdrs[i].sh_link].sh_offset);
}
if (!me->arch.stubs_section) {
pr_err("%s: doesn't contain .stubs.\n", me->name);
return -ENOEXEC;
}
/* If we don't have a .toc, just use .stubs. We need to set r2
to some reasonable value in case the module calls out to
other functions via a stub, or if a function pointer escapes
the module by some means. */
if (!me->arch.toc_section)
me->arch.toc_section = me->arch.stubs_section;
/* Override the stubs size */
sechdrs[me->arch.stubs_section].sh_size = get_stubs_size(hdr, sechdrs);
return 0;
}
/*
* r2 is the TOC pointer: it actually points 0x8000 into the TOC (this gives the
* value maximum span in an instruction which uses a signed offset). Round down
* to a 256 byte boundary for the odd case where we are setting up r2 without a
* .toc section.
*/
static inline unsigned long my_r2(const Elf64_Shdr *sechdrs, struct module *me)
{
return (sechdrs[me->arch.toc_section].sh_addr & ~0xfful) + 0x8000;
}
/* Both low and high 16 bits are added as SIGNED additions, so if low
16 bits has high bit set, high 16 bits must be adjusted. These
macros do that (stolen from binutils). */
#define PPC_LO(v) ((v) & 0xffff)
#define PPC_HI(v) (((v) >> 16) & 0xffff)
#define PPC_HA(v) PPC_HI ((v) + 0x8000)
/* Patch stub to reference function and correct r2 value. */
static inline int create_stub(const Elf64_Shdr *sechdrs,
struct ppc64_stub_entry *entry,
unsigned long addr,
struct module *me)
{
long reladdr;
memcpy(entry->jump, ppc64_stub_insns, sizeof(ppc64_stub_insns));
/* Stub uses address relative to r2. */
reladdr = (unsigned long)entry - my_r2(sechdrs, me);
if (reladdr > 0x7FFFFFFF || reladdr < -(0x80000000L)) {
pr_err("%s: Address %p of stub out of range of %p.\n",
me->name, (void *)reladdr, (void *)my_r2);
return 0;
}
pr_debug("Stub %p get data from reladdr %li\n", entry, reladdr);
entry->jump[0] |= PPC_HA(reladdr);
entry->jump[1] |= PPC_LO(reladdr);
entry->funcdata = func_desc(addr);
entry->magic = STUB_MAGIC;
return 1;
}
/* Create stub to jump to function described in this OPD/ptr: we need the
stub to set up the TOC ptr (r2) for the function. */
static unsigned long stub_for_addr(const Elf64_Shdr *sechdrs,
unsigned long addr,
struct module *me)
{
struct ppc64_stub_entry *stubs;
unsigned int i, num_stubs;
num_stubs = sechdrs[me->arch.stubs_section].sh_size / sizeof(*stubs);
/* Find this stub, or if that fails, the next avail. entry */
stubs = (void *)sechdrs[me->arch.stubs_section].sh_addr;
for (i = 0; stub_func_addr(stubs[i].funcdata); i++) {
if (WARN_ON(i >= num_stubs))
return 0;
if (stub_func_addr(stubs[i].funcdata) == func_addr(addr))
return (unsigned long)&stubs[i];
}
if (!create_stub(sechdrs, &stubs[i], addr, me))
return 0;
return (unsigned long)&stubs[i];
}
#ifdef CONFIG_MPROFILE_KERNEL
static bool is_mprofile_mcount_callsite(const char *name, u32 *instruction)
{
if (strcmp("_mcount", name))
return false;
/*
* Check if this is one of the -mprofile-kernel sequences.
*/
if (instruction[-1] == PPC_INST_STD_LR &&
instruction[-2] == PPC_INST_MFLR)
return true;
if (instruction[-1] == PPC_INST_MFLR)
return true;
return false;
}
/*
* In case of _mcount calls, do not save the current callee's TOC (in r2) into
* the original caller's stack frame. If we did we would clobber the saved TOC
* value of the original caller.
*/
static void squash_toc_save_inst(const char *name, unsigned long addr)
{
struct ppc64_stub_entry *stub = (struct ppc64_stub_entry *)addr;
/* Only for calls to _mcount */
if (strcmp("_mcount", name) != 0)
return;
stub->jump[2] = PPC_INST_NOP;
}
#else
static void squash_toc_save_inst(const char *name, unsigned long addr) { }
static bool is_mprofile_mcount_callsite(const char *name, u32 *instruction)
{
return false;
}
#endif
/* We expect a noop next: if it is, replace it with instruction to
restore r2. */
static int restore_r2(const char *name, u32 *instruction, struct module *me)
{
u32 *prev_insn = instruction - 1;
if (is_mprofile_mcount_callsite(name, prev_insn))
return 1;
/*
* Make sure the branch isn't a sibling call. Sibling calls aren't
* "link" branches and they don't return, so they don't need the r2
* restore afterwards.
*/
if (!instr_is_relative_link_branch(*prev_insn))
powerpc/modules: Never restore r2 for a mprofile-kernel style mcount() call In the module loader we process relocations, and for long jumps we generate trampolines (aka stubs). At the call site for one of these trampolines we usually need to generate a load instruction to restore the TOC pointer into r2. There is one exception however, which is calls to mcount() using the mprofile-kernel ABI, they handle the TOC inside the stub, and so for them we do not generate a TOC load. The bug is in how the code in restore_r2() decides if it needs to generate the TOC load. It does so by looking for a nop following the branch, and if it sees a nop, it replaces it with the load. In general the compiler has no reason to generate a nop following the mcount() call and so that check works OK. However if we combine a jump label at the start of a function, with an early return, such that GCC applies the shrink-wrapping optimisation, we can then end up with an mcount call followed immediately by a nop. However the nop is not there for a TOC load, it is for the jump label. That confuses restore_r2() into replacing the jump label nop with a TOC load, which in turn confuses ftrace into replacing the mcount call with a b +8 (fixed in the previous commit). The end result is we jump over the jump label, which if it was supposed to return means we incorrectly run the body of the function. We have seen this in practice with some yet-to-be-merged patches that use jump labels more extensively. The fix is relatively simple, in restore_r2() we check for an mprofile-kernel style mcount() call first, before looking for the presence of a nop. Fixes: 153086644fd1 ("powerpc/ftrace: Add support for -mprofile-kernel ftrace ABI") Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-07-19 12:48:31 +08:00
return 1;
if (*instruction != PPC_INST_NOP) {
pr_err("%s: Expected nop after call, got %08x at %pS\n",
me->name, *instruction, instruction);
return 0;
}
/* ld r2,R2_STACK_OFFSET(r1) */
*instruction = PPC_INST_LD_TOC;
return 1;
}
int apply_relocate_add(Elf64_Shdr *sechdrs,
const char *strtab,
unsigned int symindex,
unsigned int relsec,
struct module *me)
{
unsigned int i;
Elf64_Rela *rela = (void *)sechdrs[relsec].sh_addr;
Elf64_Sym *sym;
unsigned long *location;
unsigned long value;
pr_debug("Applying ADD relocate section %u to %u\n", relsec,
sechdrs[relsec].sh_info);
/* First time we're called, we can fix up .TOC. */
if (!me->arch.toc_fixed) {
sym = find_dot_toc(sechdrs, strtab, symindex);
/* It's theoretically possible that a module doesn't want a
* .TOC. so don't fail it just for that. */
if (sym)
sym->st_value = my_r2(sechdrs, me);
me->arch.toc_fixed = true;
}
for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rela); i++) {
/* This is where to make the change */
location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
+ rela[i].r_offset;
/* This is the symbol it is referring to */
sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
+ ELF64_R_SYM(rela[i].r_info);
pr_debug("RELOC at %p: %li-type as %s (0x%lx) + %li\n",
location, (long)ELF64_R_TYPE(rela[i].r_info),
strtab + sym->st_name, (unsigned long)sym->st_value,
(long)rela[i].r_addend);
/* `Everything is relative'. */
value = sym->st_value + rela[i].r_addend;
switch (ELF64_R_TYPE(rela[i].r_info)) {
case R_PPC64_ADDR32:
/* Simply set it */
*(u32 *)location = value;
break;
[POWERPC] Optimize counting distinct entries in the relocation sections When a module has relocation sections with tens of thousands of entries, counting the distinct/unique entries only (i.e. no duplicates) at load time can take tens of seconds and up to minutes. The sore point is the count_relocs() function which is called as part of the architecture specific module loading processing path: -> load_module() generic -> module_frob_arch_sections() arch specific -> get_plt_size() 32-bit -> get_stubs_size() 64-bit -> count_relocs() Here count_relocs is being called to find out how many distinct targets of R_PPC_REL24 relocations there are, since each distinct target needs a PLT entry or a stub created for it. The previous counting algorithm has O(n^2) complexity. Basically two solutions were proposed on the e-mail list: a hash based approach and a sort based approach. The hash based approach is the fastest (O(n)) but the has it needs additional memory and for certain corner cases it could take lots of memory due to the degeneration of the hash. One such proposal was submitted here: http://ozlabs.org/pipermail/linuxppc-dev/2007-June/037641.html The sort based approach is slower (O(n * log n + n)) but if the sorting is done "in place" it doesn't need additional memory. This has O(n + n * log n) complexity with no additional memory requirements. This commit implements the in-place sort option. Signed-off-by: Emil Medve <Emilian.Medve@Freescale.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-11-14 00:24:04 +08:00
case R_PPC64_ADDR64:
/* Simply set it */
*(unsigned long *)location = value;
break;
case R_PPC64_TOC:
*(unsigned long *)location = my_r2(sechdrs, me);
break;
case R_PPC64_TOC16:
/* Subtract TOC pointer */
value -= my_r2(sechdrs, me);
if (value + 0x8000 > 0xffff) {
pr_err("%s: bad TOC16 relocation (0x%lx)\n",
me->name, value);
return -ENOEXEC;
}
*((uint16_t *) location)
= (*((uint16_t *) location) & ~0xffff)
| (value & 0xffff);
break;
case R_PPC64_TOC16_LO:
/* Subtract TOC pointer */
value -= my_r2(sechdrs, me);
*((uint16_t *) location)
= (*((uint16_t *) location) & ~0xffff)
| (value & 0xffff);
break;
case R_PPC64_TOC16_DS:
/* Subtract TOC pointer */
value -= my_r2(sechdrs, me);
if ((value & 3) != 0 || value + 0x8000 > 0xffff) {
pr_err("%s: bad TOC16_DS relocation (0x%lx)\n",
me->name, value);
return -ENOEXEC;
}
*((uint16_t *) location)
= (*((uint16_t *) location) & ~0xfffc)
| (value & 0xfffc);
break;
case R_PPC64_TOC16_LO_DS:
/* Subtract TOC pointer */
value -= my_r2(sechdrs, me);
if ((value & 3) != 0) {
pr_err("%s: bad TOC16_LO_DS relocation (0x%lx)\n",
me->name, value);
return -ENOEXEC;
}
*((uint16_t *) location)
= (*((uint16_t *) location) & ~0xfffc)
| (value & 0xfffc);
break;
case R_PPC64_TOC16_HA:
/* Subtract TOC pointer */
value -= my_r2(sechdrs, me);
value = ((value + 0x8000) >> 16);
*((uint16_t *) location)
= (*((uint16_t *) location) & ~0xffff)
| (value & 0xffff);
break;
case R_PPC_REL24:
/* FIXME: Handle weak symbols here --RR */
if (sym->st_shndx == SHN_UNDEF ||
sym->st_shndx == SHN_LIVEPATCH) {
/* External: go via stub */
value = stub_for_addr(sechdrs, value, me);
if (!value)
return -ENOENT;
if (!restore_r2(strtab + sym->st_name,
(u32 *)location + 1, me))
return -ENOEXEC;
squash_toc_save_inst(strtab + sym->st_name, value);
} else
value += local_entry_offset(sym);
/* Convert value to relative */
value -= (unsigned long)location;
if (value + 0x2000000 > 0x3ffffff || (value & 3) != 0){
pr_err("%s: REL24 %li out of range!\n",
me->name, (long int)value);
return -ENOEXEC;
}
/* Only replace bits 2 through 26 */
[POWERPC] Optimize counting distinct entries in the relocation sections When a module has relocation sections with tens of thousands of entries, counting the distinct/unique entries only (i.e. no duplicates) at load time can take tens of seconds and up to minutes. The sore point is the count_relocs() function which is called as part of the architecture specific module loading processing path: -> load_module() generic -> module_frob_arch_sections() arch specific -> get_plt_size() 32-bit -> get_stubs_size() 64-bit -> count_relocs() Here count_relocs is being called to find out how many distinct targets of R_PPC_REL24 relocations there are, since each distinct target needs a PLT entry or a stub created for it. The previous counting algorithm has O(n^2) complexity. Basically two solutions were proposed on the e-mail list: a hash based approach and a sort based approach. The hash based approach is the fastest (O(n)) but the has it needs additional memory and for certain corner cases it could take lots of memory due to the degeneration of the hash. One such proposal was submitted here: http://ozlabs.org/pipermail/linuxppc-dev/2007-June/037641.html The sort based approach is slower (O(n * log n + n)) but if the sorting is done "in place" it doesn't need additional memory. This has O(n + n * log n) complexity with no additional memory requirements. This commit implements the in-place sort option. Signed-off-by: Emil Medve <Emilian.Medve@Freescale.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-11-14 00:24:04 +08:00
*(uint32_t *)location
= (*(uint32_t *)location & ~0x03fffffc)
| (value & 0x03fffffc);
break;
case R_PPC64_REL64:
/* 64 bits relative (used by features fixups) */
*location = value - (unsigned long)location;
break;
case R_PPC64_REL32:
/* 32 bits relative (used by relative exception tables) */
*(u32 *)location = value - (unsigned long)location;
break;
case R_PPC64_TOCSAVE:
/*
* Marker reloc indicates we don't have to save r2.
* That would only save us one instruction, so ignore
* it.
*/
break;
case R_PPC64_ENTRY:
/*
* Optimize ELFv2 large code model entry point if
* the TOC is within 2GB range of current location.
*/
value = my_r2(sechdrs, me) - (unsigned long)location;
if (value + 0x80008000 > 0xffffffff)
break;
/*
* Check for the large code model prolog sequence:
* ld r2, ...(r12)
* add r2, r2, r12
*/
if ((((uint32_t *)location)[0] & ~0xfffc)
!= 0xe84c0000)
break;
if (((uint32_t *)location)[1] != 0x7c426214)
break;
/*
* If found, replace it with:
* addis r2, r12, (.TOC.-func)@ha
* addi r2, r12, (.TOC.-func)@l
*/
((uint32_t *)location)[0] = 0x3c4c0000 + PPC_HA(value);
((uint32_t *)location)[1] = 0x38420000 + PPC_LO(value);
break;
case R_PPC64_REL16_HA:
/* Subtract location pointer */
value -= (unsigned long)location;
value = ((value + 0x8000) >> 16);
*((uint16_t *) location)
= (*((uint16_t *) location) & ~0xffff)
| (value & 0xffff);
break;
case R_PPC64_REL16_LO:
/* Subtract location pointer */
value -= (unsigned long)location;
*((uint16_t *) location)
= (*((uint16_t *) location) & ~0xffff)
| (value & 0xffff);
break;
default:
pr_err("%s: Unknown ADD relocation: %lu\n",
me->name,
(unsigned long)ELF64_R_TYPE(rela[i].r_info));
return -ENOEXEC;
}
}
return 0;
}
#ifdef CONFIG_DYNAMIC_FTRACE
#ifdef CONFIG_MPROFILE_KERNEL
#define PACATOC offsetof(struct paca_struct, kernel_toc)
/*
* For mprofile-kernel we use a special stub for ftrace_caller() because we
* can't rely on r2 containing this module's TOC when we enter the stub.
*
* That can happen if the function calling us didn't need to use the toc. In
* that case it won't have setup r2, and the r2 value will be either the
* kernel's toc, or possibly another modules toc.
*
* To deal with that this stub uses the kernel toc, which is always accessible
* via the paca (in r13). The target (ftrace_caller()) is responsible for
* saving and restoring the toc before returning.
*/
static unsigned long create_ftrace_stub(const Elf64_Shdr *sechdrs,
struct module *me, unsigned long addr)
{
struct ppc64_stub_entry *entry;
unsigned int i, num_stubs;
static u32 stub_insns[] = {
0xe98d0000 | PACATOC, /* ld r12,PACATOC(r13) */
0x3d8c0000, /* addis r12,r12,<high> */
0x398c0000, /* addi r12,r12,<low> */
0x7d8903a6, /* mtctr r12 */
0x4e800420, /* bctr */
};
long reladdr;
num_stubs = sechdrs[me->arch.stubs_section].sh_size / sizeof(*entry);
/* Find the next available stub entry */
entry = (void *)sechdrs[me->arch.stubs_section].sh_addr;
for (i = 0; i < num_stubs && stub_func_addr(entry->funcdata); i++, entry++);
if (i >= num_stubs) {
pr_err("%s: Unable to find a free slot for ftrace stub.\n", me->name);
return 0;
}
memcpy(entry->jump, stub_insns, sizeof(stub_insns));
/* Stub uses address relative to kernel toc (from the paca) */
reladdr = addr - kernel_toc_addr();
if (reladdr > 0x7FFFFFFF || reladdr < -(0x80000000L)) {
pr_err("%s: Address of %ps out of range of kernel_toc.\n",
me->name, (void *)addr);
return 0;
}
entry->jump[1] |= PPC_HA(reladdr);
entry->jump[2] |= PPC_LO(reladdr);
/* Eventhough we don't use funcdata in the stub, it's needed elsewhere. */
entry->funcdata = func_desc(addr);
entry->magic = STUB_MAGIC;
return (unsigned long)entry;
}
#else
static unsigned long create_ftrace_stub(const Elf64_Shdr *sechdrs,
struct module *me, unsigned long addr)
{
return stub_for_addr(sechdrs, addr, me);
}
#endif
int module_finalize_ftrace(struct module *mod, const Elf_Shdr *sechdrs)
{
mod->arch.tramp = create_ftrace_stub(sechdrs, mod,
(unsigned long)ftrace_caller);
#ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
mod->arch.tramp_regs = create_ftrace_stub(sechdrs, mod,
(unsigned long)ftrace_regs_caller);
if (!mod->arch.tramp_regs)
return -ENOENT;
#endif
if (!mod->arch.tramp)
return -ENOENT;
return 0;
}
#endif