mirror of https://gitee.com/openkylin/linux.git
466 lines
13 KiB
C
466 lines
13 KiB
C
|
/*
|
||
|
* BRIEF MODULE DESCRIPTION
|
||
|
* Au1xx0 Power Management routines.
|
||
|
*
|
||
|
* Copyright 2001, 2008 MontaVista Software Inc.
|
||
|
* Author: MontaVista Software, Inc. <source@mvista.com>
|
||
|
*
|
||
|
* Some of the routines are right out of init/main.c, whose
|
||
|
* copyrights apply here.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License as published by the
|
||
|
* Free Software Foundation; either version 2 of the License, or (at your
|
||
|
* option) any later version.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
||
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
|
||
|
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
|
||
|
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||
|
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License along
|
||
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
||
|
* 675 Mass Ave, Cambridge, MA 02139, USA.
|
||
|
*/
|
||
|
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/pm.h>
|
||
|
#include <linux/sysctl.h>
|
||
|
#include <linux/jiffies.h>
|
||
|
|
||
|
#include <asm/uaccess.h>
|
||
|
#include <asm/cacheflush.h>
|
||
|
#include <asm/mach-au1x00/au1000.h>
|
||
|
|
||
|
#ifdef CONFIG_PM
|
||
|
|
||
|
#define DEBUG 1
|
||
|
#ifdef DEBUG
|
||
|
#define DPRINTK(fmt, args...) printk(KERN_DEBUG "%s: " fmt, __func__, ## args)
|
||
|
#else
|
||
|
#define DPRINTK(fmt, args...)
|
||
|
#endif
|
||
|
|
||
|
static void au1000_calibrate_delay(void);
|
||
|
|
||
|
extern unsigned long save_local_and_disable(int controller);
|
||
|
extern void restore_local_and_enable(int controller, unsigned long mask);
|
||
|
extern void local_enable_irq(unsigned int irq_nr);
|
||
|
|
||
|
static DEFINE_SPINLOCK(pm_lock);
|
||
|
|
||
|
/*
|
||
|
* We need to save/restore a bunch of core registers that are
|
||
|
* either volatile or reset to some state across a processor sleep.
|
||
|
* If reading a register doesn't provide a proper result for a
|
||
|
* later restore, we have to provide a function for loading that
|
||
|
* register and save a copy.
|
||
|
*
|
||
|
* We only have to save/restore registers that aren't otherwise
|
||
|
* done as part of a driver pm_* function.
|
||
|
*/
|
||
|
static unsigned int sleep_aux_pll_cntrl;
|
||
|
static unsigned int sleep_cpu_pll_cntrl;
|
||
|
static unsigned int sleep_pin_function;
|
||
|
static unsigned int sleep_uart0_inten;
|
||
|
static unsigned int sleep_uart0_fifoctl;
|
||
|
static unsigned int sleep_uart0_linectl;
|
||
|
static unsigned int sleep_uart0_clkdiv;
|
||
|
static unsigned int sleep_uart0_enable;
|
||
|
static unsigned int sleep_usbhost_enable;
|
||
|
static unsigned int sleep_usbdev_enable;
|
||
|
static unsigned int sleep_static_memctlr[4][3];
|
||
|
|
||
|
/*
|
||
|
* Define this to cause the value you write to /proc/sys/pm/sleep to
|
||
|
* set the TOY timer for the amount of time you want to sleep.
|
||
|
* This is done mainly for testing, but may be useful in other cases.
|
||
|
* The value is number of 32KHz ticks to sleep.
|
||
|
*/
|
||
|
#define SLEEP_TEST_TIMEOUT 1
|
||
|
#ifdef SLEEP_TEST_TIMEOUT
|
||
|
static int sleep_ticks;
|
||
|
void wakeup_counter0_set(int ticks);
|
||
|
#endif
|
||
|
|
||
|
static void save_core_regs(void)
|
||
|
{
|
||
|
extern void save_au1xxx_intctl(void);
|
||
|
extern void pm_eth0_shutdown(void);
|
||
|
|
||
|
/*
|
||
|
* Do the serial ports.....these really should be a pm_*
|
||
|
* registered function by the driver......but of course the
|
||
|
* standard serial driver doesn't understand our Au1xxx
|
||
|
* unique registers.
|
||
|
*/
|
||
|
sleep_uart0_inten = au_readl(UART0_ADDR + UART_IER);
|
||
|
sleep_uart0_fifoctl = au_readl(UART0_ADDR + UART_FCR);
|
||
|
sleep_uart0_linectl = au_readl(UART0_ADDR + UART_LCR);
|
||
|
sleep_uart0_clkdiv = au_readl(UART0_ADDR + UART_CLK);
|
||
|
sleep_uart0_enable = au_readl(UART0_ADDR + UART_MOD_CNTRL);
|
||
|
|
||
|
/* Shutdown USB host/device. */
|
||
|
sleep_usbhost_enable = au_readl(USB_HOST_CONFIG);
|
||
|
|
||
|
/* There appears to be some undocumented reset register.... */
|
||
|
au_writel(0, 0xb0100004); au_sync();
|
||
|
au_writel(0, USB_HOST_CONFIG); au_sync();
|
||
|
|
||
|
sleep_usbdev_enable = au_readl(USBD_ENABLE);
|
||
|
au_writel(0, USBD_ENABLE); au_sync();
|
||
|
|
||
|
/* Save interrupt controller state. */
|
||
|
save_au1xxx_intctl();
|
||
|
|
||
|
/* Clocks and PLLs. */
|
||
|
sleep_aux_pll_cntrl = au_readl(SYS_AUXPLL);
|
||
|
|
||
|
/*
|
||
|
* We don't really need to do this one, but unless we
|
||
|
* write it again it won't have a valid value if we
|
||
|
* happen to read it.
|
||
|
*/
|
||
|
sleep_cpu_pll_cntrl = au_readl(SYS_CPUPLL);
|
||
|
|
||
|
sleep_pin_function = au_readl(SYS_PINFUNC);
|
||
|
|
||
|
/* Save the static memory controller configuration. */
|
||
|
sleep_static_memctlr[0][0] = au_readl(MEM_STCFG0);
|
||
|
sleep_static_memctlr[0][1] = au_readl(MEM_STTIME0);
|
||
|
sleep_static_memctlr[0][2] = au_readl(MEM_STADDR0);
|
||
|
sleep_static_memctlr[1][0] = au_readl(MEM_STCFG1);
|
||
|
sleep_static_memctlr[1][1] = au_readl(MEM_STTIME1);
|
||
|
sleep_static_memctlr[1][2] = au_readl(MEM_STADDR1);
|
||
|
sleep_static_memctlr[2][0] = au_readl(MEM_STCFG2);
|
||
|
sleep_static_memctlr[2][1] = au_readl(MEM_STTIME2);
|
||
|
sleep_static_memctlr[2][2] = au_readl(MEM_STADDR2);
|
||
|
sleep_static_memctlr[3][0] = au_readl(MEM_STCFG3);
|
||
|
sleep_static_memctlr[3][1] = au_readl(MEM_STTIME3);
|
||
|
sleep_static_memctlr[3][2] = au_readl(MEM_STADDR3);
|
||
|
}
|
||
|
|
||
|
static void restore_core_regs(void)
|
||
|
{
|
||
|
extern void restore_au1xxx_intctl(void);
|
||
|
extern void wakeup_counter0_adjust(void);
|
||
|
|
||
|
au_writel(sleep_aux_pll_cntrl, SYS_AUXPLL); au_sync();
|
||
|
au_writel(sleep_cpu_pll_cntrl, SYS_CPUPLL); au_sync();
|
||
|
au_writel(sleep_pin_function, SYS_PINFUNC); au_sync();
|
||
|
|
||
|
/* Restore the static memory controller configuration. */
|
||
|
au_writel(sleep_static_memctlr[0][0], MEM_STCFG0);
|
||
|
au_writel(sleep_static_memctlr[0][1], MEM_STTIME0);
|
||
|
au_writel(sleep_static_memctlr[0][2], MEM_STADDR0);
|
||
|
au_writel(sleep_static_memctlr[1][0], MEM_STCFG1);
|
||
|
au_writel(sleep_static_memctlr[1][1], MEM_STTIME1);
|
||
|
au_writel(sleep_static_memctlr[1][2], MEM_STADDR1);
|
||
|
au_writel(sleep_static_memctlr[2][0], MEM_STCFG2);
|
||
|
au_writel(sleep_static_memctlr[2][1], MEM_STTIME2);
|
||
|
au_writel(sleep_static_memctlr[2][2], MEM_STADDR2);
|
||
|
au_writel(sleep_static_memctlr[3][0], MEM_STCFG3);
|
||
|
au_writel(sleep_static_memctlr[3][1], MEM_STTIME3);
|
||
|
au_writel(sleep_static_memctlr[3][2], MEM_STADDR3);
|
||
|
|
||
|
/*
|
||
|
* Enable the UART if it was enabled before sleep.
|
||
|
* I guess I should define module control bits........
|
||
|
*/
|
||
|
if (sleep_uart0_enable & 0x02) {
|
||
|
au_writel(0, UART0_ADDR + UART_MOD_CNTRL); au_sync();
|
||
|
au_writel(1, UART0_ADDR + UART_MOD_CNTRL); au_sync();
|
||
|
au_writel(3, UART0_ADDR + UART_MOD_CNTRL); au_sync();
|
||
|
au_writel(sleep_uart0_inten, UART0_ADDR + UART_IER); au_sync();
|
||
|
au_writel(sleep_uart0_fifoctl, UART0_ADDR + UART_FCR); au_sync();
|
||
|
au_writel(sleep_uart0_linectl, UART0_ADDR + UART_LCR); au_sync();
|
||
|
au_writel(sleep_uart0_clkdiv, UART0_ADDR + UART_CLK); au_sync();
|
||
|
}
|
||
|
|
||
|
restore_au1xxx_intctl();
|
||
|
wakeup_counter0_adjust();
|
||
|
}
|
||
|
|
||
|
unsigned long suspend_mode;
|
||
|
|
||
|
void wakeup_from_suspend(void)
|
||
|
{
|
||
|
suspend_mode = 0;
|
||
|
}
|
||
|
|
||
|
int au_sleep(void)
|
||
|
{
|
||
|
unsigned long wakeup, flags;
|
||
|
extern void save_and_sleep(void);
|
||
|
|
||
|
spin_lock_irqsave(&pm_lock, flags);
|
||
|
|
||
|
save_core_regs();
|
||
|
|
||
|
flush_cache_all();
|
||
|
|
||
|
/**
|
||
|
** The code below is all system dependent and we should probably
|
||
|
** have a function call out of here to set this up. You need
|
||
|
** to configure the GPIO or timer interrupts that will bring
|
||
|
** you out of sleep.
|
||
|
** For testing, the TOY counter wakeup is useful.
|
||
|
**/
|
||
|
#if 0
|
||
|
au_writel(au_readl(SYS_PINSTATERD) & ~(1 << 11), SYS_PINSTATERD);
|
||
|
|
||
|
/* GPIO 6 can cause a wake up event */
|
||
|
wakeup = au_readl(SYS_WAKEMSK);
|
||
|
wakeup &= ~(1 << 8); /* turn off match20 wakeup */
|
||
|
wakeup |= 1 << 6; /* turn on GPIO 6 wakeup */
|
||
|
#else
|
||
|
/* For testing, allow match20 to wake us up. */
|
||
|
#ifdef SLEEP_TEST_TIMEOUT
|
||
|
wakeup_counter0_set(sleep_ticks);
|
||
|
#endif
|
||
|
wakeup = 1 << 8; /* turn on match20 wakeup */
|
||
|
wakeup = 0;
|
||
|
#endif
|
||
|
au_writel(1, SYS_WAKESRC); /* clear cause */
|
||
|
au_sync();
|
||
|
au_writel(wakeup, SYS_WAKEMSK);
|
||
|
au_sync();
|
||
|
|
||
|
save_and_sleep();
|
||
|
|
||
|
/*
|
||
|
* After a wakeup, the cpu vectors back to 0x1fc00000, so
|
||
|
* it's up to the boot code to get us back here.
|
||
|
*/
|
||
|
restore_core_regs();
|
||
|
spin_unlock_irqrestore(&pm_lock, flags);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pm_do_sleep(ctl_table *ctl, int write, struct file *file,
|
||
|
void __user *buffer, size_t *len, loff_t *ppos)
|
||
|
{
|
||
|
#ifdef SLEEP_TEST_TIMEOUT
|
||
|
#define TMPBUFLEN2 16
|
||
|
char buf[TMPBUFLEN2], *p;
|
||
|
#endif
|
||
|
|
||
|
if (!write)
|
||
|
*len = 0;
|
||
|
else {
|
||
|
#ifdef SLEEP_TEST_TIMEOUT
|
||
|
if (*len > TMPBUFLEN2 - 1)
|
||
|
return -EFAULT;
|
||
|
if (copy_from_user(buf, buffer, *len))
|
||
|
return -EFAULT;
|
||
|
buf[*len] = 0;
|
||
|
p = buf;
|
||
|
sleep_ticks = simple_strtoul(p, &p, 0);
|
||
|
#endif
|
||
|
|
||
|
au_sleep();
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pm_do_freq(ctl_table *ctl, int write, struct file *file,
|
||
|
void __user *buffer, size_t *len, loff_t *ppos)
|
||
|
{
|
||
|
int retval = 0, i;
|
||
|
unsigned long val, pll;
|
||
|
#define TMPBUFLEN 64
|
||
|
#define MAX_CPU_FREQ 396
|
||
|
char buf[TMPBUFLEN], *p;
|
||
|
unsigned long flags, intc0_mask, intc1_mask;
|
||
|
unsigned long old_baud_base, old_cpu_freq, old_clk, old_refresh;
|
||
|
unsigned long new_baud_base, new_cpu_freq, new_clk, new_refresh;
|
||
|
unsigned long baud_rate;
|
||
|
|
||
|
spin_lock_irqsave(&pm_lock, flags);
|
||
|
if (!write)
|
||
|
*len = 0;
|
||
|
else {
|
||
|
/* Parse the new frequency */
|
||
|
if (*len > TMPBUFLEN - 1) {
|
||
|
spin_unlock_irqrestore(&pm_lock, flags);
|
||
|
return -EFAULT;
|
||
|
}
|
||
|
if (copy_from_user(buf, buffer, *len)) {
|
||
|
spin_unlock_irqrestore(&pm_lock, flags);
|
||
|
return -EFAULT;
|
||
|
}
|
||
|
buf[*len] = 0;
|
||
|
p = buf;
|
||
|
val = simple_strtoul(p, &p, 0);
|
||
|
if (val > MAX_CPU_FREQ) {
|
||
|
spin_unlock_irqrestore(&pm_lock, flags);
|
||
|
return -EFAULT;
|
||
|
}
|
||
|
|
||
|
pll = val / 12;
|
||
|
if ((pll > 33) || (pll < 7)) { /* 396 MHz max, 84 MHz min */
|
||
|
/* Revisit this for higher speed CPUs */
|
||
|
spin_unlock_irqrestore(&pm_lock, flags);
|
||
|
return -EFAULT;
|
||
|
}
|
||
|
|
||
|
old_baud_base = get_au1x00_uart_baud_base();
|
||
|
old_cpu_freq = get_au1x00_speed();
|
||
|
|
||
|
new_cpu_freq = pll * 12 * 1000000;
|
||
|
new_baud_base = (new_cpu_freq / (2 * ((int)(au_readl(SYS_POWERCTRL)
|
||
|
& 0x03) + 2) * 16));
|
||
|
set_au1x00_speed(new_cpu_freq);
|
||
|
set_au1x00_uart_baud_base(new_baud_base);
|
||
|
|
||
|
old_refresh = au_readl(MEM_SDREFCFG) & 0x1ffffff;
|
||
|
new_refresh = ((old_refresh * new_cpu_freq) / old_cpu_freq) |
|
||
|
(au_readl(MEM_SDREFCFG) & ~0x1ffffff);
|
||
|
|
||
|
au_writel(pll, SYS_CPUPLL);
|
||
|
au_sync_delay(1);
|
||
|
au_writel(new_refresh, MEM_SDREFCFG);
|
||
|
au_sync_delay(1);
|
||
|
|
||
|
for (i = 0; i < 4; i++)
|
||
|
if (au_readl(UART_BASE + UART_MOD_CNTRL +
|
||
|
i * 0x00100000) == 3) {
|
||
|
old_clk = au_readl(UART_BASE + UART_CLK +
|
||
|
i * 0x00100000);
|
||
|
baud_rate = old_baud_base / old_clk;
|
||
|
/*
|
||
|
* We won't get an exact baud rate and the error
|
||
|
* could be significant enough that our new
|
||
|
* calculation will result in a clock that will
|
||
|
* give us a baud rate that's too far off from
|
||
|
* what we really want.
|
||
|
*/
|
||
|
if (baud_rate > 100000)
|
||
|
baud_rate = 115200;
|
||
|
else if (baud_rate > 50000)
|
||
|
baud_rate = 57600;
|
||
|
else if (baud_rate > 30000)
|
||
|
baud_rate = 38400;
|
||
|
else if (baud_rate > 17000)
|
||
|
baud_rate = 19200;
|
||
|
else
|
||
|
baud_rate = 9600;
|
||
|
new_clk = new_baud_base / baud_rate;
|
||
|
au_writel(new_clk, UART_BASE + UART_CLK +
|
||
|
i * 0x00100000);
|
||
|
au_sync_delay(10);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We don't want _any_ interrupts other than match20. Otherwise our
|
||
|
* au1000_calibrate_delay() calculation will be off, potentially a lot.
|
||
|
*/
|
||
|
intc0_mask = save_local_and_disable(0);
|
||
|
intc1_mask = save_local_and_disable(1);
|
||
|
local_enable_irq(AU1000_TOY_MATCH2_INT);
|
||
|
spin_unlock_irqrestore(&pm_lock, flags);
|
||
|
au1000_calibrate_delay();
|
||
|
restore_local_and_enable(0, intc0_mask);
|
||
|
restore_local_and_enable(1, intc1_mask);
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
|
||
|
static struct ctl_table pm_table[] = {
|
||
|
{
|
||
|
.ctl_name = CTL_UNNUMBERED,
|
||
|
.procname = "sleep",
|
||
|
.data = NULL,
|
||
|
.maxlen = 0,
|
||
|
.mode = 0600,
|
||
|
.proc_handler = &pm_do_sleep
|
||
|
},
|
||
|
{
|
||
|
.ctl_name = CTL_UNNUMBERED,
|
||
|
.procname = "freq",
|
||
|
.data = NULL,
|
||
|
.maxlen = 0,
|
||
|
.mode = 0600,
|
||
|
.proc_handler = &pm_do_freq
|
||
|
},
|
||
|
{}
|
||
|
};
|
||
|
|
||
|
static struct ctl_table pm_dir_table[] = {
|
||
|
{
|
||
|
.ctl_name = CTL_UNNUMBERED,
|
||
|
.procname = "pm",
|
||
|
.mode = 0555,
|
||
|
.child = pm_table
|
||
|
},
|
||
|
{}
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Initialize power interface
|
||
|
*/
|
||
|
static int __init pm_init(void)
|
||
|
{
|
||
|
register_sysctl_table(pm_dir_table);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
__initcall(pm_init);
|
||
|
|
||
|
/*
|
||
|
* This is right out of init/main.c
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* This is the number of bits of precision for the loops_per_jiffy.
|
||
|
* Each bit takes on average 1.5/HZ seconds. This (like the original)
|
||
|
* is a little better than 1%.
|
||
|
*/
|
||
|
#define LPS_PREC 8
|
||
|
|
||
|
static void au1000_calibrate_delay(void)
|
||
|
{
|
||
|
unsigned long ticks, loopbit;
|
||
|
int lps_precision = LPS_PREC;
|
||
|
|
||
|
loops_per_jiffy = 1 << 12;
|
||
|
|
||
|
while (loops_per_jiffy <<= 1) {
|
||
|
/* Wait for "start of" clock tick */
|
||
|
ticks = jiffies;
|
||
|
while (ticks == jiffies)
|
||
|
/* nothing */ ;
|
||
|
/* Go ... */
|
||
|
ticks = jiffies;
|
||
|
__delay(loops_per_jiffy);
|
||
|
ticks = jiffies - ticks;
|
||
|
if (ticks)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Do a binary approximation to get loops_per_jiffy set to be equal
|
||
|
* one clock (up to lps_precision bits)
|
||
|
*/
|
||
|
loops_per_jiffy >>= 1;
|
||
|
loopbit = loops_per_jiffy;
|
||
|
while (lps_precision-- && (loopbit >>= 1)) {
|
||
|
loops_per_jiffy |= loopbit;
|
||
|
ticks = jiffies;
|
||
|
while (ticks == jiffies);
|
||
|
ticks = jiffies;
|
||
|
__delay(loops_per_jiffy);
|
||
|
if (jiffies != ticks) /* longer than 1 tick */
|
||
|
loops_per_jiffy &= ~loopbit;
|
||
|
}
|
||
|
}
|
||
|
#endif /* CONFIG_PM */
|