2005-04-17 06:20:36 +08:00
|
|
|
/*
|
|
|
|
* net/sched/cls_basic.c Basic Packet Classifier.
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License
|
|
|
|
* as published by the Free Software Foundation; either version
|
|
|
|
* 2 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* Authors: Thomas Graf <tgraf@suug.ch>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/module.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
|
|
|
#include <linux/slab.h>
|
2005-04-17 06:20:36 +08:00
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/string.h>
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/rtnetlink.h>
|
|
|
|
#include <linux/skbuff.h>
|
2017-09-26 01:13:50 +08:00
|
|
|
#include <linux/idr.h>
|
2007-03-26 14:06:12 +08:00
|
|
|
#include <net/netlink.h>
|
2005-04-17 06:20:36 +08:00
|
|
|
#include <net/act_api.h>
|
|
|
|
#include <net/pkt_cls.h>
|
|
|
|
|
2011-01-20 03:26:56 +08:00
|
|
|
struct basic_head {
|
2005-04-17 06:20:36 +08:00
|
|
|
struct list_head flist;
|
2017-09-26 01:13:50 +08:00
|
|
|
struct idr handle_idr;
|
2014-09-13 11:05:59 +08:00
|
|
|
struct rcu_head rcu;
|
2005-04-17 06:20:36 +08:00
|
|
|
};
|
|
|
|
|
2011-01-20 03:26:56 +08:00
|
|
|
struct basic_filter {
|
2005-04-17 06:20:36 +08:00
|
|
|
u32 handle;
|
|
|
|
struct tcf_exts exts;
|
|
|
|
struct tcf_ematch_tree ematches;
|
|
|
|
struct tcf_result res;
|
2014-09-13 11:05:59 +08:00
|
|
|
struct tcf_proto *tp;
|
2005-04-17 06:20:36 +08:00
|
|
|
struct list_head link;
|
2017-10-27 09:24:29 +08:00
|
|
|
union {
|
|
|
|
struct work_struct work;
|
|
|
|
struct rcu_head rcu;
|
|
|
|
};
|
2005-04-17 06:20:36 +08:00
|
|
|
};
|
|
|
|
|
2011-07-06 07:25:42 +08:00
|
|
|
static int basic_classify(struct sk_buff *skb, const struct tcf_proto *tp,
|
2005-04-17 06:20:36 +08:00
|
|
|
struct tcf_result *res)
|
|
|
|
{
|
|
|
|
int r;
|
2014-09-13 11:05:59 +08:00
|
|
|
struct basic_head *head = rcu_dereference_bh(tp->root);
|
2005-04-17 06:20:36 +08:00
|
|
|
struct basic_filter *f;
|
|
|
|
|
2014-09-13 11:05:59 +08:00
|
|
|
list_for_each_entry_rcu(f, &head->flist, link) {
|
2005-04-17 06:20:36 +08:00
|
|
|
if (!tcf_em_tree_match(skb, &f->ematches, NULL))
|
|
|
|
continue;
|
|
|
|
*res = f->res;
|
|
|
|
r = tcf_exts_exec(skb, &f->exts, res);
|
|
|
|
if (r < 0)
|
|
|
|
continue;
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
2017-08-05 12:31:43 +08:00
|
|
|
static void *basic_get(struct tcf_proto *tp, u32 handle)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2014-09-13 11:05:59 +08:00
|
|
|
struct basic_head *head = rtnl_dereference(tp->root);
|
2005-04-17 06:20:36 +08:00
|
|
|
struct basic_filter *f;
|
|
|
|
|
2015-01-22 17:58:18 +08:00
|
|
|
list_for_each_entry(f, &head->flist, link) {
|
|
|
|
if (f->handle == handle) {
|
2017-08-05 12:31:43 +08:00
|
|
|
return f;
|
2015-01-22 17:58:18 +08:00
|
|
|
}
|
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2017-08-05 12:31:43 +08:00
|
|
|
return NULL;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static int basic_init(struct tcf_proto *tp)
|
|
|
|
{
|
2007-03-25 13:13:06 +08:00
|
|
|
struct basic_head *head;
|
|
|
|
|
|
|
|
head = kzalloc(sizeof(*head), GFP_KERNEL);
|
|
|
|
if (head == NULL)
|
|
|
|
return -ENOBUFS;
|
|
|
|
INIT_LIST_HEAD(&head->flist);
|
2017-09-26 01:13:50 +08:00
|
|
|
idr_init(&head->handle_idr);
|
2014-09-13 11:05:59 +08:00
|
|
|
rcu_assign_pointer(tp->root, head);
|
2005-04-17 06:20:36 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2017-11-07 05:47:20 +08:00
|
|
|
static void __basic_delete_filter(struct basic_filter *f)
|
|
|
|
{
|
|
|
|
tcf_exts_destroy(&f->exts);
|
|
|
|
tcf_em_tree_destroy(&f->ematches);
|
|
|
|
tcf_exts_put_net(&f->exts);
|
|
|
|
kfree(f);
|
|
|
|
}
|
|
|
|
|
2017-10-27 09:24:29 +08:00
|
|
|
static void basic_delete_filter_work(struct work_struct *work)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2017-10-27 09:24:29 +08:00
|
|
|
struct basic_filter *f = container_of(work, struct basic_filter, work);
|
2014-09-13 11:05:59 +08:00
|
|
|
|
2017-10-27 09:24:29 +08:00
|
|
|
rtnl_lock();
|
2017-11-07 05:47:20 +08:00
|
|
|
__basic_delete_filter(f);
|
2017-10-27 09:24:29 +08:00
|
|
|
rtnl_unlock();
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2017-10-27 09:24:29 +08:00
|
|
|
static void basic_delete_filter(struct rcu_head *head)
|
|
|
|
{
|
|
|
|
struct basic_filter *f = container_of(head, struct basic_filter, rcu);
|
|
|
|
|
|
|
|
INIT_WORK(&f->work, basic_delete_filter_work);
|
|
|
|
tcf_queue_work(&f->work);
|
|
|
|
}
|
|
|
|
|
2018-01-25 04:54:13 +08:00
|
|
|
static void basic_destroy(struct tcf_proto *tp, struct netlink_ext_ack *extack)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2014-09-13 11:05:59 +08:00
|
|
|
struct basic_head *head = rtnl_dereference(tp->root);
|
2005-04-17 06:20:36 +08:00
|
|
|
struct basic_filter *f, *n;
|
2007-02-09 22:25:16 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
list_for_each_entry_safe(f, n, &head->flist, link) {
|
2014-09-13 11:05:59 +08:00
|
|
|
list_del_rcu(&f->link);
|
2014-10-06 12:28:52 +08:00
|
|
|
tcf_unbind_filter(tp, &f->res);
|
2017-09-26 01:13:50 +08:00
|
|
|
idr_remove_ext(&head->handle_idr, f->handle);
|
2017-11-07 05:47:20 +08:00
|
|
|
if (tcf_exts_get_net(&f->exts))
|
|
|
|
call_rcu(&f->rcu, basic_delete_filter);
|
|
|
|
else
|
|
|
|
__basic_delete_filter(f);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
2017-09-26 01:13:50 +08:00
|
|
|
idr_destroy(&head->handle_idr);
|
2014-09-13 11:05:59 +08:00
|
|
|
kfree_rcu(head, rcu);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2018-01-19 00:20:53 +08:00
|
|
|
static int basic_delete(struct tcf_proto *tp, void *arg, bool *last,
|
|
|
|
struct netlink_ext_ack *extack)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2017-04-20 05:21:21 +08:00
|
|
|
struct basic_head *head = rtnl_dereference(tp->root);
|
2017-08-05 12:31:43 +08:00
|
|
|
struct basic_filter *f = arg;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2014-12-03 01:00:31 +08:00
|
|
|
list_del_rcu(&f->link);
|
|
|
|
tcf_unbind_filter(tp, &f->res);
|
2017-09-26 01:13:50 +08:00
|
|
|
idr_remove_ext(&head->handle_idr, f->handle);
|
2017-11-07 05:47:20 +08:00
|
|
|
tcf_exts_get_net(&f->exts);
|
2014-12-03 01:00:31 +08:00
|
|
|
call_rcu(&f->rcu, basic_delete_filter);
|
2017-04-20 05:21:21 +08:00
|
|
|
*last = list_empty(&head->flist);
|
2014-12-03 01:00:31 +08:00
|
|
|
return 0;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2008-01-24 12:36:12 +08:00
|
|
|
static const struct nla_policy basic_policy[TCA_BASIC_MAX + 1] = {
|
|
|
|
[TCA_BASIC_CLASSID] = { .type = NLA_U32 },
|
|
|
|
[TCA_BASIC_EMATCHES] = { .type = NLA_NESTED },
|
|
|
|
};
|
|
|
|
|
2013-01-14 13:15:39 +08:00
|
|
|
static int basic_set_parms(struct net *net, struct tcf_proto *tp,
|
|
|
|
struct basic_filter *f, unsigned long base,
|
|
|
|
struct nlattr **tb,
|
2018-01-19 00:20:52 +08:00
|
|
|
struct nlattr *est, bool ovr,
|
|
|
|
struct netlink_ext_ack *extack)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2013-09-27 08:42:16 +08:00
|
|
|
int err;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2018-01-19 00:20:52 +08:00
|
|
|
err = tcf_exts_validate(net, tp, tb, est, &f->exts, ovr, extack);
|
2005-04-17 06:20:36 +08:00
|
|
|
if (err < 0)
|
|
|
|
return err;
|
|
|
|
|
2017-08-04 20:28:57 +08:00
|
|
|
err = tcf_em_tree_validate(tp, tb[TCA_BASIC_EMATCHES], &f->ematches);
|
2005-04-17 06:20:36 +08:00
|
|
|
if (err < 0)
|
2017-08-04 20:29:09 +08:00
|
|
|
return err;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2008-01-23 14:11:33 +08:00
|
|
|
if (tb[TCA_BASIC_CLASSID]) {
|
2008-01-24 12:35:03 +08:00
|
|
|
f->res.classid = nla_get_u32(tb[TCA_BASIC_CLASSID]);
|
2005-04-17 06:20:36 +08:00
|
|
|
tcf_bind_filter(tp, &f->res, base);
|
|
|
|
}
|
|
|
|
|
2014-09-13 11:05:59 +08:00
|
|
|
f->tp = tp;
|
2005-04-17 06:20:36 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2013-01-14 13:15:39 +08:00
|
|
|
static int basic_change(struct net *net, struct sk_buff *in_skb,
|
2012-05-26 03:42:45 +08:00
|
|
|
struct tcf_proto *tp, unsigned long base, u32 handle,
|
2018-01-19 00:20:51 +08:00
|
|
|
struct nlattr **tca, void **arg, bool ovr,
|
|
|
|
struct netlink_ext_ack *extack)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2008-01-24 12:33:32 +08:00
|
|
|
int err;
|
2014-09-13 11:05:59 +08:00
|
|
|
struct basic_head *head = rtnl_dereference(tp->root);
|
2008-01-23 14:11:33 +08:00
|
|
|
struct nlattr *tb[TCA_BASIC_MAX + 1];
|
2014-09-13 11:05:59 +08:00
|
|
|
struct basic_filter *fold = (struct basic_filter *) *arg;
|
|
|
|
struct basic_filter *fnew;
|
2017-09-26 01:13:50 +08:00
|
|
|
unsigned long idr_index;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2008-01-23 14:11:33 +08:00
|
|
|
if (tca[TCA_OPTIONS] == NULL)
|
2005-04-17 06:20:36 +08:00
|
|
|
return -EINVAL;
|
|
|
|
|
2008-01-24 12:36:12 +08:00
|
|
|
err = nla_parse_nested(tb, TCA_BASIC_MAX, tca[TCA_OPTIONS],
|
2017-04-12 20:34:07 +08:00
|
|
|
basic_policy, NULL);
|
2008-01-24 12:33:32 +08:00
|
|
|
if (err < 0)
|
|
|
|
return err;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2014-09-13 11:05:59 +08:00
|
|
|
if (fold != NULL) {
|
|
|
|
if (handle && fold->handle != handle)
|
2005-04-17 06:20:36 +08:00
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2014-09-13 11:05:59 +08:00
|
|
|
fnew = kzalloc(sizeof(*fnew), GFP_KERNEL);
|
2014-12-05 22:50:22 +08:00
|
|
|
if (!fnew)
|
|
|
|
return -ENOBUFS;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2016-08-20 03:36:54 +08:00
|
|
|
err = tcf_exts_init(&fnew->exts, TCA_BASIC_ACT, TCA_BASIC_POLICE);
|
|
|
|
if (err < 0)
|
|
|
|
goto errout;
|
|
|
|
|
2014-09-13 11:05:59 +08:00
|
|
|
if (handle) {
|
|
|
|
fnew->handle = handle;
|
2017-09-26 01:13:50 +08:00
|
|
|
if (!fold) {
|
|
|
|
err = idr_alloc_ext(&head->handle_idr, fnew, &idr_index,
|
|
|
|
handle, handle + 1, GFP_KERNEL);
|
|
|
|
if (err)
|
|
|
|
goto errout;
|
|
|
|
}
|
2014-09-13 11:05:59 +08:00
|
|
|
} else {
|
2017-09-26 01:13:50 +08:00
|
|
|
err = idr_alloc_ext(&head->handle_idr, fnew, &idr_index,
|
|
|
|
1, 0x7FFFFFFF, GFP_KERNEL);
|
|
|
|
if (err)
|
2005-04-17 06:20:36 +08:00
|
|
|
goto errout;
|
2017-09-26 01:13:50 +08:00
|
|
|
fnew->handle = idr_index;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2018-01-19 00:20:52 +08:00
|
|
|
err = basic_set_parms(net, tp, fnew, base, tb, tca[TCA_RATE], ovr,
|
|
|
|
extack);
|
2017-09-26 01:13:50 +08:00
|
|
|
if (err < 0) {
|
|
|
|
if (!fold)
|
|
|
|
idr_remove_ext(&head->handle_idr, fnew->handle);
|
2005-04-17 06:20:36 +08:00
|
|
|
goto errout;
|
2017-09-26 01:13:50 +08:00
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2017-08-05 12:31:43 +08:00
|
|
|
*arg = fnew;
|
2014-09-13 11:05:59 +08:00
|
|
|
|
|
|
|
if (fold) {
|
2017-09-26 01:13:50 +08:00
|
|
|
idr_replace_ext(&head->handle_idr, fnew, fnew->handle);
|
2014-09-13 11:05:59 +08:00
|
|
|
list_replace_rcu(&fold->link, &fnew->link);
|
2014-10-06 12:28:52 +08:00
|
|
|
tcf_unbind_filter(tp, &fold->res);
|
2017-11-07 05:47:20 +08:00
|
|
|
tcf_exts_get_net(&fold->exts);
|
2014-09-13 11:05:59 +08:00
|
|
|
call_rcu(&fold->rcu, basic_delete_filter);
|
|
|
|
} else {
|
|
|
|
list_add_rcu(&fnew->link, &head->flist);
|
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
errout:
|
2016-08-20 03:36:54 +08:00
|
|
|
tcf_exts_destroy(&fnew->exts);
|
2014-09-13 11:05:59 +08:00
|
|
|
kfree(fnew);
|
2005-04-17 06:20:36 +08:00
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void basic_walk(struct tcf_proto *tp, struct tcf_walker *arg)
|
|
|
|
{
|
2014-09-13 11:05:59 +08:00
|
|
|
struct basic_head *head = rtnl_dereference(tp->root);
|
2005-04-17 06:20:36 +08:00
|
|
|
struct basic_filter *f;
|
|
|
|
|
|
|
|
list_for_each_entry(f, &head->flist, link) {
|
|
|
|
if (arg->count < arg->skip)
|
|
|
|
goto skip;
|
|
|
|
|
2017-08-05 12:31:43 +08:00
|
|
|
if (arg->fn(tp, f, arg) < 0) {
|
2005-04-17 06:20:36 +08:00
|
|
|
arg->stop = 1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
skip:
|
|
|
|
arg->count++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
net_sched: add reverse binding for tc class
TC filters when used as classifiers are bound to TC classes.
However, there is a hidden difference when adding them in different
orders:
1. If we add tc classes before its filters, everything is fine.
Logically, the classes exist before we specify their ID's in
filters, it is easy to bind them together, just as in the current
code base.
2. If we add tc filters before the tc classes they bind, we have to
do dynamic lookup in fast path. What's worse, this happens all
the time not just once, because on fast path tcf_result is passed
on stack, there is no way to propagate back to the one in tc filters.
This hidden difference hurts performance silently if we have many tc
classes in hierarchy.
This patch intends to close this gap by doing the reverse binding when
we create a new class, in this case we can actually search all the
filters in its parent, match and fixup by classid. And because
tcf_result is specific to each type of tc filter, we have to introduce
a new ops for each filter to tell how to bind the class.
Note, we still can NOT totally get rid of those class lookup in
->enqueue() because cgroup and flow filters have no way to determine
the classid at setup time, they still have to go through dynamic lookup.
Cc: Jamal Hadi Salim <jhs@mojatatu.com>
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-31 05:30:36 +08:00
|
|
|
static void basic_bind_class(void *fh, u32 classid, unsigned long cl)
|
|
|
|
{
|
|
|
|
struct basic_filter *f = fh;
|
|
|
|
|
|
|
|
if (f && f->res.classid == classid)
|
|
|
|
f->res.class = cl;
|
|
|
|
}
|
|
|
|
|
2017-08-05 12:31:43 +08:00
|
|
|
static int basic_dump(struct net *net, struct tcf_proto *tp, void *fh,
|
2005-04-17 06:20:36 +08:00
|
|
|
struct sk_buff *skb, struct tcmsg *t)
|
|
|
|
{
|
2017-08-05 12:31:43 +08:00
|
|
|
struct basic_filter *f = fh;
|
2008-01-24 12:34:11 +08:00
|
|
|
struct nlattr *nest;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
if (f == NULL)
|
|
|
|
return skb->len;
|
|
|
|
|
|
|
|
t->tcm_handle = f->handle;
|
|
|
|
|
2008-01-24 12:34:11 +08:00
|
|
|
nest = nla_nest_start(skb, TCA_OPTIONS);
|
|
|
|
if (nest == NULL)
|
|
|
|
goto nla_put_failure;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2012-03-29 17:11:39 +08:00
|
|
|
if (f->res.classid &&
|
|
|
|
nla_put_u32(skb, TCA_BASIC_CLASSID, f->res.classid))
|
|
|
|
goto nla_put_failure;
|
2005-06-09 06:11:02 +08:00
|
|
|
|
2013-12-16 12:15:07 +08:00
|
|
|
if (tcf_exts_dump(skb, &f->exts) < 0 ||
|
2005-04-17 06:20:36 +08:00
|
|
|
tcf_em_tree_dump(skb, &f->ematches, TCA_BASIC_EMATCHES) < 0)
|
2008-01-23 14:11:33 +08:00
|
|
|
goto nla_put_failure;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2008-01-24 12:34:11 +08:00
|
|
|
nla_nest_end(skb, nest);
|
2010-11-04 19:47:04 +08:00
|
|
|
|
2013-12-16 12:15:07 +08:00
|
|
|
if (tcf_exts_dump_stats(skb, &f->exts) < 0)
|
2010-11-04 19:47:04 +08:00
|
|
|
goto nla_put_failure;
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
return skb->len;
|
|
|
|
|
2008-01-23 14:11:33 +08:00
|
|
|
nla_put_failure:
|
2008-01-24 12:34:11 +08:00
|
|
|
nla_nest_cancel(skb, nest);
|
2005-04-17 06:20:36 +08:00
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
2008-01-23 14:10:42 +08:00
|
|
|
static struct tcf_proto_ops cls_basic_ops __read_mostly = {
|
2005-04-17 06:20:36 +08:00
|
|
|
.kind = "basic",
|
|
|
|
.classify = basic_classify,
|
|
|
|
.init = basic_init,
|
|
|
|
.destroy = basic_destroy,
|
|
|
|
.get = basic_get,
|
|
|
|
.change = basic_change,
|
|
|
|
.delete = basic_delete,
|
|
|
|
.walk = basic_walk,
|
|
|
|
.dump = basic_dump,
|
net_sched: add reverse binding for tc class
TC filters when used as classifiers are bound to TC classes.
However, there is a hidden difference when adding them in different
orders:
1. If we add tc classes before its filters, everything is fine.
Logically, the classes exist before we specify their ID's in
filters, it is easy to bind them together, just as in the current
code base.
2. If we add tc filters before the tc classes they bind, we have to
do dynamic lookup in fast path. What's worse, this happens all
the time not just once, because on fast path tcf_result is passed
on stack, there is no way to propagate back to the one in tc filters.
This hidden difference hurts performance silently if we have many tc
classes in hierarchy.
This patch intends to close this gap by doing the reverse binding when
we create a new class, in this case we can actually search all the
filters in its parent, match and fixup by classid. And because
tcf_result is specific to each type of tc filter, we have to introduce
a new ops for each filter to tell how to bind the class.
Note, we still can NOT totally get rid of those class lookup in
->enqueue() because cgroup and flow filters have no way to determine
the classid at setup time, they still have to go through dynamic lookup.
Cc: Jamal Hadi Salim <jhs@mojatatu.com>
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-31 05:30:36 +08:00
|
|
|
.bind_class = basic_bind_class,
|
2005-04-17 06:20:36 +08:00
|
|
|
.owner = THIS_MODULE,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int __init init_basic(void)
|
|
|
|
{
|
|
|
|
return register_tcf_proto_ops(&cls_basic_ops);
|
|
|
|
}
|
|
|
|
|
2007-02-09 22:25:16 +08:00
|
|
|
static void __exit exit_basic(void)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
unregister_tcf_proto_ops(&cls_basic_ops);
|
|
|
|
}
|
|
|
|
|
|
|
|
module_init(init_basic)
|
|
|
|
module_exit(exit_basic)
|
|
|
|
MODULE_LICENSE("GPL");
|
|
|
|
|