mirror of https://gitee.com/openkylin/linux.git
848 lines
19 KiB
C
848 lines
19 KiB
C
|
/*
|
||
|
* Contains GICv2 specific emulation code, was in vgic.c before.
|
||
|
*
|
||
|
* Copyright (C) 2012 ARM Ltd.
|
||
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
|
*/
|
||
|
|
||
|
#include <linux/cpu.h>
|
||
|
#include <linux/kvm.h>
|
||
|
#include <linux/kvm_host.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/io.h>
|
||
|
#include <linux/uaccess.h>
|
||
|
|
||
|
#include <linux/irqchip/arm-gic.h>
|
||
|
|
||
|
#include <asm/kvm_emulate.h>
|
||
|
#include <asm/kvm_arm.h>
|
||
|
#include <asm/kvm_mmu.h>
|
||
|
|
||
|
#include "vgic.h"
|
||
|
|
||
|
#define GICC_ARCH_VERSION_V2 0x2
|
||
|
|
||
|
static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
|
||
|
static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi)
|
||
|
{
|
||
|
return dist->irq_sgi_sources + vcpu_id * VGIC_NR_SGIS + sgi;
|
||
|
}
|
||
|
|
||
|
static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
|
||
|
struct kvm_exit_mmio *mmio, phys_addr_t offset)
|
||
|
{
|
||
|
u32 reg;
|
||
|
u32 word_offset = offset & 3;
|
||
|
|
||
|
switch (offset & ~3) {
|
||
|
case 0: /* GICD_CTLR */
|
||
|
reg = vcpu->kvm->arch.vgic.enabled;
|
||
|
vgic_reg_access(mmio, ®, word_offset,
|
||
|
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
|
||
|
if (mmio->is_write) {
|
||
|
vcpu->kvm->arch.vgic.enabled = reg & 1;
|
||
|
vgic_update_state(vcpu->kvm);
|
||
|
return true;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case 4: /* GICD_TYPER */
|
||
|
reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
|
||
|
reg |= (vcpu->kvm->arch.vgic.nr_irqs >> 5) - 1;
|
||
|
vgic_reg_access(mmio, ®, word_offset,
|
||
|
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
|
||
|
break;
|
||
|
|
||
|
case 8: /* GICD_IIDR */
|
||
|
reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
|
||
|
vgic_reg_access(mmio, ®, word_offset,
|
||
|
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
|
||
|
struct kvm_exit_mmio *mmio,
|
||
|
phys_addr_t offset)
|
||
|
{
|
||
|
return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
|
||
|
vcpu->vcpu_id, ACCESS_WRITE_SETBIT);
|
||
|
}
|
||
|
|
||
|
static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
|
||
|
struct kvm_exit_mmio *mmio,
|
||
|
phys_addr_t offset)
|
||
|
{
|
||
|
return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
|
||
|
vcpu->vcpu_id, ACCESS_WRITE_CLEARBIT);
|
||
|
}
|
||
|
|
||
|
static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
|
||
|
struct kvm_exit_mmio *mmio,
|
||
|
phys_addr_t offset)
|
||
|
{
|
||
|
return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset,
|
||
|
vcpu->vcpu_id);
|
||
|
}
|
||
|
|
||
|
static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
|
||
|
struct kvm_exit_mmio *mmio,
|
||
|
phys_addr_t offset)
|
||
|
{
|
||
|
return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset,
|
||
|
vcpu->vcpu_id);
|
||
|
}
|
||
|
|
||
|
static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
|
||
|
struct kvm_exit_mmio *mmio,
|
||
|
phys_addr_t offset)
|
||
|
{
|
||
|
u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
|
||
|
vcpu->vcpu_id, offset);
|
||
|
vgic_reg_access(mmio, reg, offset,
|
||
|
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
#define GICD_ITARGETSR_SIZE 32
|
||
|
#define GICD_CPUTARGETS_BITS 8
|
||
|
#define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
|
||
|
static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
|
||
|
{
|
||
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
||
|
int i;
|
||
|
u32 val = 0;
|
||
|
|
||
|
irq -= VGIC_NR_PRIVATE_IRQS;
|
||
|
|
||
|
for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
|
||
|
val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
|
||
|
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
|
||
|
{
|
||
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
||
|
struct kvm_vcpu *vcpu;
|
||
|
int i, c;
|
||
|
unsigned long *bmap;
|
||
|
u32 target;
|
||
|
|
||
|
irq -= VGIC_NR_PRIVATE_IRQS;
|
||
|
|
||
|
/*
|
||
|
* Pick the LSB in each byte. This ensures we target exactly
|
||
|
* one vcpu per IRQ. If the byte is null, assume we target
|
||
|
* CPU0.
|
||
|
*/
|
||
|
for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
|
||
|
int shift = i * GICD_CPUTARGETS_BITS;
|
||
|
|
||
|
target = ffs((val >> shift) & 0xffU);
|
||
|
target = target ? (target - 1) : 0;
|
||
|
dist->irq_spi_cpu[irq + i] = target;
|
||
|
kvm_for_each_vcpu(c, vcpu, kvm) {
|
||
|
bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
|
||
|
if (c == target)
|
||
|
set_bit(irq + i, bmap);
|
||
|
else
|
||
|
clear_bit(irq + i, bmap);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
|
||
|
struct kvm_exit_mmio *mmio,
|
||
|
phys_addr_t offset)
|
||
|
{
|
||
|
u32 reg;
|
||
|
|
||
|
/* We treat the banked interrupts targets as read-only */
|
||
|
if (offset < 32) {
|
||
|
u32 roreg;
|
||
|
|
||
|
roreg = 1 << vcpu->vcpu_id;
|
||
|
roreg |= roreg << 8;
|
||
|
roreg |= roreg << 16;
|
||
|
|
||
|
vgic_reg_access(mmio, &roreg, offset,
|
||
|
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
|
||
|
vgic_reg_access(mmio, ®, offset,
|
||
|
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
|
||
|
if (mmio->is_write) {
|
||
|
vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
|
||
|
vgic_update_state(vcpu->kvm);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
|
||
|
struct kvm_exit_mmio *mmio, phys_addr_t offset)
|
||
|
{
|
||
|
u32 *reg;
|
||
|
|
||
|
reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
|
||
|
vcpu->vcpu_id, offset >> 1);
|
||
|
|
||
|
return vgic_handle_cfg_reg(reg, mmio, offset);
|
||
|
}
|
||
|
|
||
|
static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
|
||
|
struct kvm_exit_mmio *mmio, phys_addr_t offset)
|
||
|
{
|
||
|
u32 reg;
|
||
|
|
||
|
vgic_reg_access(mmio, ®, offset,
|
||
|
ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
|
||
|
if (mmio->is_write) {
|
||
|
vgic_dispatch_sgi(vcpu, reg);
|
||
|
vgic_update_state(vcpu->kvm);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
|
||
|
static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
|
||
|
struct kvm_exit_mmio *mmio,
|
||
|
phys_addr_t offset)
|
||
|
{
|
||
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
||
|
int sgi;
|
||
|
int min_sgi = (offset & ~0x3);
|
||
|
int max_sgi = min_sgi + 3;
|
||
|
int vcpu_id = vcpu->vcpu_id;
|
||
|
u32 reg = 0;
|
||
|
|
||
|
/* Copy source SGIs from distributor side */
|
||
|
for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
|
||
|
u8 sources = *vgic_get_sgi_sources(dist, vcpu_id, sgi);
|
||
|
|
||
|
reg |= ((u32)sources) << (8 * (sgi - min_sgi));
|
||
|
}
|
||
|
|
||
|
mmio_data_write(mmio, ~0, reg);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
|
||
|
struct kvm_exit_mmio *mmio,
|
||
|
phys_addr_t offset, bool set)
|
||
|
{
|
||
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
||
|
int sgi;
|
||
|
int min_sgi = (offset & ~0x3);
|
||
|
int max_sgi = min_sgi + 3;
|
||
|
int vcpu_id = vcpu->vcpu_id;
|
||
|
u32 reg;
|
||
|
bool updated = false;
|
||
|
|
||
|
reg = mmio_data_read(mmio, ~0);
|
||
|
|
||
|
/* Clear pending SGIs on the distributor */
|
||
|
for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
|
||
|
u8 mask = reg >> (8 * (sgi - min_sgi));
|
||
|
u8 *src = vgic_get_sgi_sources(dist, vcpu_id, sgi);
|
||
|
|
||
|
if (set) {
|
||
|
if ((*src & mask) != mask)
|
||
|
updated = true;
|
||
|
*src |= mask;
|
||
|
} else {
|
||
|
if (*src & mask)
|
||
|
updated = true;
|
||
|
*src &= ~mask;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (updated)
|
||
|
vgic_update_state(vcpu->kvm);
|
||
|
|
||
|
return updated;
|
||
|
}
|
||
|
|
||
|
static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
|
||
|
struct kvm_exit_mmio *mmio,
|
||
|
phys_addr_t offset)
|
||
|
{
|
||
|
if (!mmio->is_write)
|
||
|
return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
|
||
|
else
|
||
|
return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
|
||
|
}
|
||
|
|
||
|
static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
|
||
|
struct kvm_exit_mmio *mmio,
|
||
|
phys_addr_t offset)
|
||
|
{
|
||
|
if (!mmio->is_write)
|
||
|
return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
|
||
|
else
|
||
|
return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
|
||
|
}
|
||
|
|
||
|
static const struct kvm_mmio_range vgic_dist_ranges[] = {
|
||
|
{
|
||
|
.base = GIC_DIST_CTRL,
|
||
|
.len = 12,
|
||
|
.bits_per_irq = 0,
|
||
|
.handle_mmio = handle_mmio_misc,
|
||
|
},
|
||
|
{
|
||
|
.base = GIC_DIST_IGROUP,
|
||
|
.len = VGIC_MAX_IRQS / 8,
|
||
|
.bits_per_irq = 1,
|
||
|
.handle_mmio = handle_mmio_raz_wi,
|
||
|
},
|
||
|
{
|
||
|
.base = GIC_DIST_ENABLE_SET,
|
||
|
.len = VGIC_MAX_IRQS / 8,
|
||
|
.bits_per_irq = 1,
|
||
|
.handle_mmio = handle_mmio_set_enable_reg,
|
||
|
},
|
||
|
{
|
||
|
.base = GIC_DIST_ENABLE_CLEAR,
|
||
|
.len = VGIC_MAX_IRQS / 8,
|
||
|
.bits_per_irq = 1,
|
||
|
.handle_mmio = handle_mmio_clear_enable_reg,
|
||
|
},
|
||
|
{
|
||
|
.base = GIC_DIST_PENDING_SET,
|
||
|
.len = VGIC_MAX_IRQS / 8,
|
||
|
.bits_per_irq = 1,
|
||
|
.handle_mmio = handle_mmio_set_pending_reg,
|
||
|
},
|
||
|
{
|
||
|
.base = GIC_DIST_PENDING_CLEAR,
|
||
|
.len = VGIC_MAX_IRQS / 8,
|
||
|
.bits_per_irq = 1,
|
||
|
.handle_mmio = handle_mmio_clear_pending_reg,
|
||
|
},
|
||
|
{
|
||
|
.base = GIC_DIST_ACTIVE_SET,
|
||
|
.len = VGIC_MAX_IRQS / 8,
|
||
|
.bits_per_irq = 1,
|
||
|
.handle_mmio = handle_mmio_raz_wi,
|
||
|
},
|
||
|
{
|
||
|
.base = GIC_DIST_ACTIVE_CLEAR,
|
||
|
.len = VGIC_MAX_IRQS / 8,
|
||
|
.bits_per_irq = 1,
|
||
|
.handle_mmio = handle_mmio_raz_wi,
|
||
|
},
|
||
|
{
|
||
|
.base = GIC_DIST_PRI,
|
||
|
.len = VGIC_MAX_IRQS,
|
||
|
.bits_per_irq = 8,
|
||
|
.handle_mmio = handle_mmio_priority_reg,
|
||
|
},
|
||
|
{
|
||
|
.base = GIC_DIST_TARGET,
|
||
|
.len = VGIC_MAX_IRQS,
|
||
|
.bits_per_irq = 8,
|
||
|
.handle_mmio = handle_mmio_target_reg,
|
||
|
},
|
||
|
{
|
||
|
.base = GIC_DIST_CONFIG,
|
||
|
.len = VGIC_MAX_IRQS / 4,
|
||
|
.bits_per_irq = 2,
|
||
|
.handle_mmio = handle_mmio_cfg_reg,
|
||
|
},
|
||
|
{
|
||
|
.base = GIC_DIST_SOFTINT,
|
||
|
.len = 4,
|
||
|
.handle_mmio = handle_mmio_sgi_reg,
|
||
|
},
|
||
|
{
|
||
|
.base = GIC_DIST_SGI_PENDING_CLEAR,
|
||
|
.len = VGIC_NR_SGIS,
|
||
|
.handle_mmio = handle_mmio_sgi_clear,
|
||
|
},
|
||
|
{
|
||
|
.base = GIC_DIST_SGI_PENDING_SET,
|
||
|
.len = VGIC_NR_SGIS,
|
||
|
.handle_mmio = handle_mmio_sgi_set,
|
||
|
},
|
||
|
{}
|
||
|
};
|
||
|
|
||
|
static bool vgic_v2_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
|
||
|
struct kvm_exit_mmio *mmio)
|
||
|
{
|
||
|
unsigned long base = vcpu->kvm->arch.vgic.vgic_dist_base;
|
||
|
|
||
|
if (!is_in_range(mmio->phys_addr, mmio->len, base,
|
||
|
KVM_VGIC_V2_DIST_SIZE))
|
||
|
return false;
|
||
|
|
||
|
/* GICv2 does not support accesses wider than 32 bits */
|
||
|
if (mmio->len > 4) {
|
||
|
kvm_inject_dabt(vcpu, mmio->phys_addr);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return vgic_handle_mmio_range(vcpu, run, mmio, vgic_dist_ranges, base);
|
||
|
}
|
||
|
|
||
|
static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
|
||
|
{
|
||
|
struct kvm *kvm = vcpu->kvm;
|
||
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
||
|
int nrcpus = atomic_read(&kvm->online_vcpus);
|
||
|
u8 target_cpus;
|
||
|
int sgi, mode, c, vcpu_id;
|
||
|
|
||
|
vcpu_id = vcpu->vcpu_id;
|
||
|
|
||
|
sgi = reg & 0xf;
|
||
|
target_cpus = (reg >> 16) & 0xff;
|
||
|
mode = (reg >> 24) & 3;
|
||
|
|
||
|
switch (mode) {
|
||
|
case 0:
|
||
|
if (!target_cpus)
|
||
|
return;
|
||
|
break;
|
||
|
|
||
|
case 1:
|
||
|
target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
|
||
|
break;
|
||
|
|
||
|
case 2:
|
||
|
target_cpus = 1 << vcpu_id;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
kvm_for_each_vcpu(c, vcpu, kvm) {
|
||
|
if (target_cpus & 1) {
|
||
|
/* Flag the SGI as pending */
|
||
|
vgic_dist_irq_set_pending(vcpu, sgi);
|
||
|
*vgic_get_sgi_sources(dist, c, sgi) |= 1 << vcpu_id;
|
||
|
kvm_debug("SGI%d from CPU%d to CPU%d\n",
|
||
|
sgi, vcpu_id, c);
|
||
|
}
|
||
|
|
||
|
target_cpus >>= 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static bool vgic_v2_queue_sgi(struct kvm_vcpu *vcpu, int irq)
|
||
|
{
|
||
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
||
|
unsigned long sources;
|
||
|
int vcpu_id = vcpu->vcpu_id;
|
||
|
int c;
|
||
|
|
||
|
sources = *vgic_get_sgi_sources(dist, vcpu_id, irq);
|
||
|
|
||
|
for_each_set_bit(c, &sources, dist->nr_cpus) {
|
||
|
if (vgic_queue_irq(vcpu, c, irq))
|
||
|
clear_bit(c, &sources);
|
||
|
}
|
||
|
|
||
|
*vgic_get_sgi_sources(dist, vcpu_id, irq) = sources;
|
||
|
|
||
|
/*
|
||
|
* If the sources bitmap has been cleared it means that we
|
||
|
* could queue all the SGIs onto link registers (see the
|
||
|
* clear_bit above), and therefore we are done with them in
|
||
|
* our emulated gic and can get rid of them.
|
||
|
*/
|
||
|
if (!sources) {
|
||
|
vgic_dist_irq_clear_pending(vcpu, irq);
|
||
|
vgic_cpu_irq_clear(vcpu, irq);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* kvm_vgic_map_resources - Configure global VGIC state before running any VCPUs
|
||
|
* @kvm: pointer to the kvm struct
|
||
|
*
|
||
|
* Map the virtual CPU interface into the VM before running any VCPUs. We
|
||
|
* can't do this at creation time, because user space must first set the
|
||
|
* virtual CPU interface address in the guest physical address space.
|
||
|
*/
|
||
|
static int vgic_v2_map_resources(struct kvm *kvm,
|
||
|
const struct vgic_params *params)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
|
||
|
if (!irqchip_in_kernel(kvm))
|
||
|
return 0;
|
||
|
|
||
|
mutex_lock(&kvm->lock);
|
||
|
|
||
|
if (vgic_ready(kvm))
|
||
|
goto out;
|
||
|
|
||
|
if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
|
||
|
IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
|
||
|
kvm_err("Need to set vgic cpu and dist addresses first\n");
|
||
|
ret = -ENXIO;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initialize the vgic if this hasn't already been done on demand by
|
||
|
* accessing the vgic state from userspace.
|
||
|
*/
|
||
|
ret = vgic_init(kvm);
|
||
|
if (ret) {
|
||
|
kvm_err("Unable to allocate maps\n");
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
|
||
|
params->vcpu_base, KVM_VGIC_V2_CPU_SIZE,
|
||
|
true);
|
||
|
if (ret) {
|
||
|
kvm_err("Unable to remap VGIC CPU to VCPU\n");
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
kvm->arch.vgic.ready = true;
|
||
|
out:
|
||
|
if (ret)
|
||
|
kvm_vgic_destroy(kvm);
|
||
|
mutex_unlock(&kvm->lock);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void vgic_v2_add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
|
||
|
{
|
||
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
||
|
|
||
|
*vgic_get_sgi_sources(dist, vcpu->vcpu_id, irq) |= 1 << source;
|
||
|
}
|
||
|
|
||
|
static int vgic_v2_init_model(struct kvm *kvm)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = VGIC_NR_PRIVATE_IRQS; i < kvm->arch.vgic.nr_irqs; i += 4)
|
||
|
vgic_set_target_reg(kvm, 0, i);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void vgic_v2_init_emulation(struct kvm *kvm)
|
||
|
{
|
||
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
||
|
|
||
|
dist->vm_ops.handle_mmio = vgic_v2_handle_mmio;
|
||
|
dist->vm_ops.queue_sgi = vgic_v2_queue_sgi;
|
||
|
dist->vm_ops.add_sgi_source = vgic_v2_add_sgi_source;
|
||
|
dist->vm_ops.init_model = vgic_v2_init_model;
|
||
|
dist->vm_ops.map_resources = vgic_v2_map_resources;
|
||
|
|
||
|
kvm->arch.max_vcpus = VGIC_V2_MAX_CPUS;
|
||
|
}
|
||
|
|
||
|
static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
|
||
|
struct kvm_exit_mmio *mmio, phys_addr_t offset)
|
||
|
{
|
||
|
bool updated = false;
|
||
|
struct vgic_vmcr vmcr;
|
||
|
u32 *vmcr_field;
|
||
|
u32 reg;
|
||
|
|
||
|
vgic_get_vmcr(vcpu, &vmcr);
|
||
|
|
||
|
switch (offset & ~0x3) {
|
||
|
case GIC_CPU_CTRL:
|
||
|
vmcr_field = &vmcr.ctlr;
|
||
|
break;
|
||
|
case GIC_CPU_PRIMASK:
|
||
|
vmcr_field = &vmcr.pmr;
|
||
|
break;
|
||
|
case GIC_CPU_BINPOINT:
|
||
|
vmcr_field = &vmcr.bpr;
|
||
|
break;
|
||
|
case GIC_CPU_ALIAS_BINPOINT:
|
||
|
vmcr_field = &vmcr.abpr;
|
||
|
break;
|
||
|
default:
|
||
|
BUG();
|
||
|
}
|
||
|
|
||
|
if (!mmio->is_write) {
|
||
|
reg = *vmcr_field;
|
||
|
mmio_data_write(mmio, ~0, reg);
|
||
|
} else {
|
||
|
reg = mmio_data_read(mmio, ~0);
|
||
|
if (reg != *vmcr_field) {
|
||
|
*vmcr_field = reg;
|
||
|
vgic_set_vmcr(vcpu, &vmcr);
|
||
|
updated = true;
|
||
|
}
|
||
|
}
|
||
|
return updated;
|
||
|
}
|
||
|
|
||
|
static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
|
||
|
struct kvm_exit_mmio *mmio, phys_addr_t offset)
|
||
|
{
|
||
|
return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
|
||
|
}
|
||
|
|
||
|
static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
|
||
|
struct kvm_exit_mmio *mmio,
|
||
|
phys_addr_t offset)
|
||
|
{
|
||
|
u32 reg;
|
||
|
|
||
|
if (mmio->is_write)
|
||
|
return false;
|
||
|
|
||
|
/* GICC_IIDR */
|
||
|
reg = (PRODUCT_ID_KVM << 20) |
|
||
|
(GICC_ARCH_VERSION_V2 << 16) |
|
||
|
(IMPLEMENTER_ARM << 0);
|
||
|
mmio_data_write(mmio, ~0, reg);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* CPU Interface Register accesses - these are not accessed by the VM, but by
|
||
|
* user space for saving and restoring VGIC state.
|
||
|
*/
|
||
|
static const struct kvm_mmio_range vgic_cpu_ranges[] = {
|
||
|
{
|
||
|
.base = GIC_CPU_CTRL,
|
||
|
.len = 12,
|
||
|
.handle_mmio = handle_cpu_mmio_misc,
|
||
|
},
|
||
|
{
|
||
|
.base = GIC_CPU_ALIAS_BINPOINT,
|
||
|
.len = 4,
|
||
|
.handle_mmio = handle_mmio_abpr,
|
||
|
},
|
||
|
{
|
||
|
.base = GIC_CPU_ACTIVEPRIO,
|
||
|
.len = 16,
|
||
|
.handle_mmio = handle_mmio_raz_wi,
|
||
|
},
|
||
|
{
|
||
|
.base = GIC_CPU_IDENT,
|
||
|
.len = 4,
|
||
|
.handle_mmio = handle_cpu_mmio_ident,
|
||
|
},
|
||
|
};
|
||
|
|
||
|
static int vgic_attr_regs_access(struct kvm_device *dev,
|
||
|
struct kvm_device_attr *attr,
|
||
|
u32 *reg, bool is_write)
|
||
|
{
|
||
|
const struct kvm_mmio_range *r = NULL, *ranges;
|
||
|
phys_addr_t offset;
|
||
|
int ret, cpuid, c;
|
||
|
struct kvm_vcpu *vcpu, *tmp_vcpu;
|
||
|
struct vgic_dist *vgic;
|
||
|
struct kvm_exit_mmio mmio;
|
||
|
|
||
|
offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
|
||
|
cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
|
||
|
KVM_DEV_ARM_VGIC_CPUID_SHIFT;
|
||
|
|
||
|
mutex_lock(&dev->kvm->lock);
|
||
|
|
||
|
ret = vgic_init(dev->kvm);
|
||
|
if (ret)
|
||
|
goto out;
|
||
|
|
||
|
if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
|
||
|
ret = -EINVAL;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
vcpu = kvm_get_vcpu(dev->kvm, cpuid);
|
||
|
vgic = &dev->kvm->arch.vgic;
|
||
|
|
||
|
mmio.len = 4;
|
||
|
mmio.is_write = is_write;
|
||
|
if (is_write)
|
||
|
mmio_data_write(&mmio, ~0, *reg);
|
||
|
switch (attr->group) {
|
||
|
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
|
||
|
mmio.phys_addr = vgic->vgic_dist_base + offset;
|
||
|
ranges = vgic_dist_ranges;
|
||
|
break;
|
||
|
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
|
||
|
mmio.phys_addr = vgic->vgic_cpu_base + offset;
|
||
|
ranges = vgic_cpu_ranges;
|
||
|
break;
|
||
|
default:
|
||
|
BUG();
|
||
|
}
|
||
|
r = vgic_find_range(ranges, &mmio, offset);
|
||
|
|
||
|
if (unlikely(!r || !r->handle_mmio)) {
|
||
|
ret = -ENXIO;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
|
||
|
spin_lock(&vgic->lock);
|
||
|
|
||
|
/*
|
||
|
* Ensure that no other VCPU is running by checking the vcpu->cpu
|
||
|
* field. If no other VPCUs are running we can safely access the VGIC
|
||
|
* state, because even if another VPU is run after this point, that
|
||
|
* VCPU will not touch the vgic state, because it will block on
|
||
|
* getting the vgic->lock in kvm_vgic_sync_hwstate().
|
||
|
*/
|
||
|
kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
|
||
|
if (unlikely(tmp_vcpu->cpu != -1)) {
|
||
|
ret = -EBUSY;
|
||
|
goto out_vgic_unlock;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Move all pending IRQs from the LRs on all VCPUs so the pending
|
||
|
* state can be properly represented in the register state accessible
|
||
|
* through this API.
|
||
|
*/
|
||
|
kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
|
||
|
vgic_unqueue_irqs(tmp_vcpu);
|
||
|
|
||
|
offset -= r->base;
|
||
|
r->handle_mmio(vcpu, &mmio, offset);
|
||
|
|
||
|
if (!is_write)
|
||
|
*reg = mmio_data_read(&mmio, ~0);
|
||
|
|
||
|
ret = 0;
|
||
|
out_vgic_unlock:
|
||
|
spin_unlock(&vgic->lock);
|
||
|
out:
|
||
|
mutex_unlock(&dev->kvm->lock);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int vgic_v2_create(struct kvm_device *dev, u32 type)
|
||
|
{
|
||
|
return kvm_vgic_create(dev->kvm, type);
|
||
|
}
|
||
|
|
||
|
static void vgic_v2_destroy(struct kvm_device *dev)
|
||
|
{
|
||
|
kfree(dev);
|
||
|
}
|
||
|
|
||
|
static int vgic_v2_set_attr(struct kvm_device *dev,
|
||
|
struct kvm_device_attr *attr)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
ret = vgic_set_common_attr(dev, attr);
|
||
|
if (ret != -ENXIO)
|
||
|
return ret;
|
||
|
|
||
|
switch (attr->group) {
|
||
|
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
|
||
|
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
|
||
|
u32 __user *uaddr = (u32 __user *)(long)attr->addr;
|
||
|
u32 reg;
|
||
|
|
||
|
if (get_user(reg, uaddr))
|
||
|
return -EFAULT;
|
||
|
|
||
|
return vgic_attr_regs_access(dev, attr, ®, true);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
return -ENXIO;
|
||
|
}
|
||
|
|
||
|
static int vgic_v2_get_attr(struct kvm_device *dev,
|
||
|
struct kvm_device_attr *attr)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
ret = vgic_get_common_attr(dev, attr);
|
||
|
if (ret != -ENXIO)
|
||
|
return ret;
|
||
|
|
||
|
switch (attr->group) {
|
||
|
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
|
||
|
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
|
||
|
u32 __user *uaddr = (u32 __user *)(long)attr->addr;
|
||
|
u32 reg = 0;
|
||
|
|
||
|
ret = vgic_attr_regs_access(dev, attr, ®, false);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
return put_user(reg, uaddr);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
return -ENXIO;
|
||
|
}
|
||
|
|
||
|
static int vgic_v2_has_attr(struct kvm_device *dev,
|
||
|
struct kvm_device_attr *attr)
|
||
|
{
|
||
|
phys_addr_t offset;
|
||
|
|
||
|
switch (attr->group) {
|
||
|
case KVM_DEV_ARM_VGIC_GRP_ADDR:
|
||
|
switch (attr->attr) {
|
||
|
case KVM_VGIC_V2_ADDR_TYPE_DIST:
|
||
|
case KVM_VGIC_V2_ADDR_TYPE_CPU:
|
||
|
return 0;
|
||
|
}
|
||
|
break;
|
||
|
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
|
||
|
offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
|
||
|
return vgic_has_attr_regs(vgic_dist_ranges, offset);
|
||
|
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
|
||
|
offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
|
||
|
return vgic_has_attr_regs(vgic_cpu_ranges, offset);
|
||
|
case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
|
||
|
return 0;
|
||
|
case KVM_DEV_ARM_VGIC_GRP_CTRL:
|
||
|
switch (attr->attr) {
|
||
|
case KVM_DEV_ARM_VGIC_CTRL_INIT:
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
return -ENXIO;
|
||
|
}
|
||
|
|
||
|
struct kvm_device_ops kvm_arm_vgic_v2_ops = {
|
||
|
.name = "kvm-arm-vgic-v2",
|
||
|
.create = vgic_v2_create,
|
||
|
.destroy = vgic_v2_destroy,
|
||
|
.set_attr = vgic_v2_set_attr,
|
||
|
.get_attr = vgic_v2_get_attr,
|
||
|
.has_attr = vgic_v2_has_attr,
|
||
|
};
|