linux/drivers/gpu/drm/i915/intel_sdvo.c

1129 lines
32 KiB
C
Raw Normal View History

/*
* Copyright 2006 Dave Airlie <airlied@linux.ie>
* Copyright © 2006-2007 Intel Corporation
* Jesse Barnes <jesse.barnes@intel.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*/
#include <linux/i2c.h>
#include <linux/delay.h>
#include "drmP.h"
#include "drm.h"
#include "drm_crtc.h"
#include "intel_drv.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "intel_sdvo_regs.h"
#undef SDVO_DEBUG
struct intel_sdvo_priv {
struct intel_i2c_chan *i2c_bus;
int slaveaddr;
int output_device;
u16 active_outputs;
struct intel_sdvo_caps caps;
int pixel_clock_min, pixel_clock_max;
int save_sdvo_mult;
u16 save_active_outputs;
struct intel_sdvo_dtd save_input_dtd_1, save_input_dtd_2;
struct intel_sdvo_dtd save_output_dtd[16];
u32 save_SDVOX;
};
/**
* Writes the SDVOB or SDVOC with the given value, but always writes both
* SDVOB and SDVOC to work around apparent hardware issues (according to
* comments in the BIOS).
*/
static void intel_sdvo_write_sdvox(struct intel_output *intel_output, u32 val)
{
struct drm_device *dev = intel_output->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
u32 bval = val, cval = val;
int i;
if (sdvo_priv->output_device == SDVOB) {
cval = I915_READ(SDVOC);
} else {
bval = I915_READ(SDVOB);
}
/*
* Write the registers twice for luck. Sometimes,
* writing them only once doesn't appear to 'stick'.
* The BIOS does this too. Yay, magic
*/
for (i = 0; i < 2; i++)
{
I915_WRITE(SDVOB, bval);
I915_READ(SDVOB);
I915_WRITE(SDVOC, cval);
I915_READ(SDVOC);
}
}
static bool intel_sdvo_read_byte(struct intel_output *intel_output, u8 addr,
u8 *ch)
{
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
u8 out_buf[2];
u8 buf[2];
int ret;
struct i2c_msg msgs[] = {
{
.addr = sdvo_priv->i2c_bus->slave_addr,
.flags = 0,
.len = 1,
.buf = out_buf,
},
{
.addr = sdvo_priv->i2c_bus->slave_addr,
.flags = I2C_M_RD,
.len = 1,
.buf = buf,
}
};
out_buf[0] = addr;
out_buf[1] = 0;
if ((ret = i2c_transfer(&sdvo_priv->i2c_bus->adapter, msgs, 2)) == 2)
{
*ch = buf[0];
return true;
}
DRM_DEBUG("i2c transfer returned %d\n", ret);
return false;
}
static bool intel_sdvo_write_byte(struct intel_output *intel_output, int addr,
u8 ch)
{
u8 out_buf[2];
struct i2c_msg msgs[] = {
{
.addr = intel_output->i2c_bus->slave_addr,
.flags = 0,
.len = 2,
.buf = out_buf,
}
};
out_buf[0] = addr;
out_buf[1] = ch;
if (i2c_transfer(&intel_output->i2c_bus->adapter, msgs, 1) == 1)
{
return true;
}
return false;
}
#define SDVO_CMD_NAME_ENTRY(cmd) {cmd, #cmd}
/** Mapping of command numbers to names, for debug output */
const static struct _sdvo_cmd_name {
u8 cmd;
char *name;
} sdvo_cmd_names[] = {
SDVO_CMD_NAME_ENTRY(SDVO_CMD_RESET),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_DEVICE_CAPS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_FIRMWARE_REV),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TRAINED_INPUTS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ACTIVE_OUTPUTS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ACTIVE_OUTPUTS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_IN_OUT_MAP),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_IN_OUT_MAP),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ATTACHED_DISPLAYS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HOT_PLUG_SUPPORT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ACTIVE_HOT_PLUG),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ACTIVE_HOT_PLUG),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INTERRUPT_EVENT_SOURCE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TARGET_INPUT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TARGET_OUTPUT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_TIMINGS_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_TIMINGS_PART2),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART2),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OUTPUT_TIMINGS_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OUTPUT_TIMINGS_PART2),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_TIMINGS_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_TIMINGS_PART2),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_CREATE_PREFERRED_INPUT_TIMING),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART2),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_PIXEL_CLOCK_RANGE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_PIXEL_CLOCK_RANGE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_CLOCK_RATE_MULTS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_CLOCK_RATE_MULT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_CLOCK_RATE_MULT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_TV_FORMATS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TV_FORMAT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TV_FORMAT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TV_RESOLUTION_SUPPORT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_CONTROL_BUS_SWITCH),
};
#define SDVO_NAME(dev_priv) ((dev_priv)->output_device == SDVOB ? "SDVOB" : "SDVOC")
#define SDVO_PRIV(output) ((struct intel_sdvo_priv *) (output)->dev_priv)
#ifdef SDVO_DEBUG
static void intel_sdvo_debug_write(struct intel_output *intel_output, u8 cmd,
void *args, int args_len)
{
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
int i;
DRM_DEBUG("%s: W: %02X ", SDVO_NAME(sdvo_priv), cmd);
for (i = 0; i < args_len; i++)
printk("%02X ", ((u8 *)args)[i]);
for (; i < 8; i++)
printk(" ");
for (i = 0; i < sizeof(sdvo_cmd_names) / sizeof(sdvo_cmd_names[0]); i++) {
if (cmd == sdvo_cmd_names[i].cmd) {
printk("(%s)", sdvo_cmd_names[i].name);
break;
}
}
if (i == sizeof(sdvo_cmd_names)/ sizeof(sdvo_cmd_names[0]))
printk("(%02X)",cmd);
printk("\n");
}
#else
#define intel_sdvo_debug_write(o, c, a, l)
#endif
static void intel_sdvo_write_cmd(struct intel_output *intel_output, u8 cmd,
void *args, int args_len)
{
int i;
intel_sdvo_debug_write(intel_output, cmd, args, args_len);
for (i = 0; i < args_len; i++) {
intel_sdvo_write_byte(intel_output, SDVO_I2C_ARG_0 - i,
((u8*)args)[i]);
}
intel_sdvo_write_byte(intel_output, SDVO_I2C_OPCODE, cmd);
}
#ifdef SDVO_DEBUG
static const char *cmd_status_names[] = {
"Power on",
"Success",
"Not supported",
"Invalid arg",
"Pending",
"Target not specified",
"Scaling not supported"
};
static void intel_sdvo_debug_response(struct intel_output *intel_output,
void *response, int response_len,
u8 status)
{
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
DRM_DEBUG("%s: R: ", SDVO_NAME(sdvo_priv));
for (i = 0; i < response_len; i++)
printk("%02X ", ((u8 *)response)[i]);
for (; i < 8; i++)
printk(" ");
if (status <= SDVO_CMD_STATUS_SCALING_NOT_SUPP)
printk("(%s)", cmd_status_names[status]);
else
printk("(??? %d)", status);
printk("\n");
}
#else
#define intel_sdvo_debug_response(o, r, l, s)
#endif
static u8 intel_sdvo_read_response(struct intel_output *intel_output,
void *response, int response_len)
{
int i;
u8 status;
u8 retry = 50;
while (retry--) {
/* Read the command response */
for (i = 0; i < response_len; i++) {
intel_sdvo_read_byte(intel_output,
SDVO_I2C_RETURN_0 + i,
&((u8 *)response)[i]);
}
/* read the return status */
intel_sdvo_read_byte(intel_output, SDVO_I2C_CMD_STATUS,
&status);
intel_sdvo_debug_response(intel_output, response, response_len,
status);
if (status != SDVO_CMD_STATUS_PENDING)
return status;
mdelay(50);
}
return status;
}
static int intel_sdvo_get_pixel_multiplier(struct drm_display_mode *mode)
{
if (mode->clock >= 100000)
return 1;
else if (mode->clock >= 50000)
return 2;
else
return 4;
}
/**
* Don't check status code from this as it switches the bus back to the
* SDVO chips which defeats the purpose of doing a bus switch in the first
* place.
*/
static void intel_sdvo_set_control_bus_switch(struct intel_output *intel_output,
u8 target)
{
intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_CONTROL_BUS_SWITCH, &target, 1);
}
static bool intel_sdvo_set_target_input(struct intel_output *intel_output, bool target_0, bool target_1)
{
struct intel_sdvo_set_target_input_args targets = {0};
u8 status;
if (target_0 && target_1)
return SDVO_CMD_STATUS_NOTSUPP;
if (target_1)
targets.target_1 = 1;
intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_TARGET_INPUT, &targets,
sizeof(targets));
status = intel_sdvo_read_response(intel_output, NULL, 0);
return (status == SDVO_CMD_STATUS_SUCCESS);
}
/**
* Return whether each input is trained.
*
* This function is making an assumption about the layout of the response,
* which should be checked against the docs.
*/
static bool intel_sdvo_get_trained_inputs(struct intel_output *intel_output, bool *input_1, bool *input_2)
{
struct intel_sdvo_get_trained_inputs_response response;
u8 status;
intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_TRAINED_INPUTS, NULL, 0);
status = intel_sdvo_read_response(intel_output, &response, sizeof(response));
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
*input_1 = response.input0_trained;
*input_2 = response.input1_trained;
return true;
}
static bool intel_sdvo_get_active_outputs(struct intel_output *intel_output,
u16 *outputs)
{
u8 status;
intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_ACTIVE_OUTPUTS, NULL, 0);
status = intel_sdvo_read_response(intel_output, outputs, sizeof(*outputs));
return (status == SDVO_CMD_STATUS_SUCCESS);
}
static bool intel_sdvo_set_active_outputs(struct intel_output *intel_output,
u16 outputs)
{
u8 status;
intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_ACTIVE_OUTPUTS, &outputs,
sizeof(outputs));
status = intel_sdvo_read_response(intel_output, NULL, 0);
return (status == SDVO_CMD_STATUS_SUCCESS);
}
static bool intel_sdvo_set_encoder_power_state(struct intel_output *intel_output,
int mode)
{
u8 status, state = SDVO_ENCODER_STATE_ON;
switch (mode) {
case DRM_MODE_DPMS_ON:
state = SDVO_ENCODER_STATE_ON;
break;
case DRM_MODE_DPMS_STANDBY:
state = SDVO_ENCODER_STATE_STANDBY;
break;
case DRM_MODE_DPMS_SUSPEND:
state = SDVO_ENCODER_STATE_SUSPEND;
break;
case DRM_MODE_DPMS_OFF:
state = SDVO_ENCODER_STATE_OFF;
break;
}
intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_ENCODER_POWER_STATE, &state,
sizeof(state));
status = intel_sdvo_read_response(intel_output, NULL, 0);
return (status == SDVO_CMD_STATUS_SUCCESS);
}
static bool intel_sdvo_get_input_pixel_clock_range(struct intel_output *intel_output,
int *clock_min,
int *clock_max)
{
struct intel_sdvo_pixel_clock_range clocks;
u8 status;
intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_INPUT_PIXEL_CLOCK_RANGE,
NULL, 0);
status = intel_sdvo_read_response(intel_output, &clocks, sizeof(clocks));
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
/* Convert the values from units of 10 kHz to kHz. */
*clock_min = clocks.min * 10;
*clock_max = clocks.max * 10;
return true;
}
static bool intel_sdvo_set_target_output(struct intel_output *intel_output,
u16 outputs)
{
u8 status;
intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_TARGET_OUTPUT, &outputs,
sizeof(outputs));
status = intel_sdvo_read_response(intel_output, NULL, 0);
return (status == SDVO_CMD_STATUS_SUCCESS);
}
static bool intel_sdvo_get_timing(struct intel_output *intel_output, u8 cmd,
struct intel_sdvo_dtd *dtd)
{
u8 status;
intel_sdvo_write_cmd(intel_output, cmd, NULL, 0);
status = intel_sdvo_read_response(intel_output, &dtd->part1,
sizeof(dtd->part1));
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
intel_sdvo_write_cmd(intel_output, cmd + 1, NULL, 0);
status = intel_sdvo_read_response(intel_output, &dtd->part2,
sizeof(dtd->part2));
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
return true;
}
static bool intel_sdvo_get_input_timing(struct intel_output *intel_output,
struct intel_sdvo_dtd *dtd)
{
return intel_sdvo_get_timing(intel_output,
SDVO_CMD_GET_INPUT_TIMINGS_PART1, dtd);
}
static bool intel_sdvo_get_output_timing(struct intel_output *intel_output,
struct intel_sdvo_dtd *dtd)
{
return intel_sdvo_get_timing(intel_output,
SDVO_CMD_GET_OUTPUT_TIMINGS_PART1, dtd);
}
static bool intel_sdvo_set_timing(struct intel_output *intel_output, u8 cmd,
struct intel_sdvo_dtd *dtd)
{
u8 status;
intel_sdvo_write_cmd(intel_output, cmd, &dtd->part1, sizeof(dtd->part1));
status = intel_sdvo_read_response(intel_output, NULL, 0);
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
intel_sdvo_write_cmd(intel_output, cmd + 1, &dtd->part2, sizeof(dtd->part2));
status = intel_sdvo_read_response(intel_output, NULL, 0);
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
return true;
}
static bool intel_sdvo_set_input_timing(struct intel_output *intel_output,
struct intel_sdvo_dtd *dtd)
{
return intel_sdvo_set_timing(intel_output,
SDVO_CMD_SET_INPUT_TIMINGS_PART1, dtd);
}
static bool intel_sdvo_set_output_timing(struct intel_output *intel_output,
struct intel_sdvo_dtd *dtd)
{
return intel_sdvo_set_timing(intel_output,
SDVO_CMD_SET_OUTPUT_TIMINGS_PART1, dtd);
}
static int intel_sdvo_get_clock_rate_mult(struct intel_output *intel_output)
{
u8 response, status;
intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_CLOCK_RATE_MULT, NULL, 0);
status = intel_sdvo_read_response(intel_output, &response, 1);
if (status != SDVO_CMD_STATUS_SUCCESS) {
DRM_DEBUG("Couldn't get SDVO clock rate multiplier\n");
return SDVO_CLOCK_RATE_MULT_1X;
} else {
DRM_DEBUG("Current clock rate multiplier: %d\n", response);
}
return response;
}
static bool intel_sdvo_set_clock_rate_mult(struct intel_output *intel_output, u8 val)
{
u8 status;
intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_CLOCK_RATE_MULT, &val, 1);
status = intel_sdvo_read_response(intel_output, NULL, 0);
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
return true;
}
static bool intel_sdvo_mode_fixup(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
/* Make the CRTC code factor in the SDVO pixel multiplier. The SDVO
* device will be told of the multiplier during mode_set.
*/
adjusted_mode->clock *= intel_sdvo_get_pixel_multiplier(mode);
return true;
}
static void intel_sdvo_mode_set(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = encoder->crtc;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_output *intel_output = enc_to_intel_output(encoder);
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
u16 width, height;
u16 h_blank_len, h_sync_len, v_blank_len, v_sync_len;
u16 h_sync_offset, v_sync_offset;
u32 sdvox;
struct intel_sdvo_dtd output_dtd;
int sdvo_pixel_multiply;
if (!mode)
return;
width = mode->crtc_hdisplay;
height = mode->crtc_vdisplay;
/* do some mode translations */
h_blank_len = mode->crtc_hblank_end - mode->crtc_hblank_start;
h_sync_len = mode->crtc_hsync_end - mode->crtc_hsync_start;
v_blank_len = mode->crtc_vblank_end - mode->crtc_vblank_start;
v_sync_len = mode->crtc_vsync_end - mode->crtc_vsync_start;
h_sync_offset = mode->crtc_hsync_start - mode->crtc_hblank_start;
v_sync_offset = mode->crtc_vsync_start - mode->crtc_vblank_start;
output_dtd.part1.clock = mode->clock / 10;
output_dtd.part1.h_active = width & 0xff;
output_dtd.part1.h_blank = h_blank_len & 0xff;
output_dtd.part1.h_high = (((width >> 8) & 0xf) << 4) |
((h_blank_len >> 8) & 0xf);
output_dtd.part1.v_active = height & 0xff;
output_dtd.part1.v_blank = v_blank_len & 0xff;
output_dtd.part1.v_high = (((height >> 8) & 0xf) << 4) |
((v_blank_len >> 8) & 0xf);
output_dtd.part2.h_sync_off = h_sync_offset;
output_dtd.part2.h_sync_width = h_sync_len & 0xff;
output_dtd.part2.v_sync_off_width = (v_sync_offset & 0xf) << 4 |
(v_sync_len & 0xf);
output_dtd.part2.sync_off_width_high = ((h_sync_offset & 0x300) >> 2) |
((h_sync_len & 0x300) >> 4) | ((v_sync_offset & 0x30) >> 2) |
((v_sync_len & 0x30) >> 4);
output_dtd.part2.dtd_flags = 0x18;
if (mode->flags & DRM_MODE_FLAG_PHSYNC)
output_dtd.part2.dtd_flags |= 0x2;
if (mode->flags & DRM_MODE_FLAG_PVSYNC)
output_dtd.part2.dtd_flags |= 0x4;
output_dtd.part2.sdvo_flags = 0;
output_dtd.part2.v_sync_off_high = v_sync_offset & 0xc0;
output_dtd.part2.reserved = 0;
/* Set the output timing to the screen */
intel_sdvo_set_target_output(intel_output, sdvo_priv->active_outputs);
intel_sdvo_set_output_timing(intel_output, &output_dtd);
/* Set the input timing to the screen. Assume always input 0. */
intel_sdvo_set_target_input(intel_output, true, false);
/* We would like to use i830_sdvo_create_preferred_input_timing() to
* provide the device with a timing it can support, if it supports that
* feature. However, presumably we would need to adjust the CRTC to
* output the preferred timing, and we don't support that currently.
*/
intel_sdvo_set_input_timing(intel_output, &output_dtd);
switch (intel_sdvo_get_pixel_multiplier(mode)) {
case 1:
intel_sdvo_set_clock_rate_mult(intel_output,
SDVO_CLOCK_RATE_MULT_1X);
break;
case 2:
intel_sdvo_set_clock_rate_mult(intel_output,
SDVO_CLOCK_RATE_MULT_2X);
break;
case 4:
intel_sdvo_set_clock_rate_mult(intel_output,
SDVO_CLOCK_RATE_MULT_4X);
break;
}
/* Set the SDVO control regs. */
if (0/*IS_I965GM(dev)*/) {
sdvox = SDVO_BORDER_ENABLE;
} else {
sdvox = I915_READ(sdvo_priv->output_device);
switch (sdvo_priv->output_device) {
case SDVOB:
sdvox &= SDVOB_PRESERVE_MASK;
break;
case SDVOC:
sdvox &= SDVOC_PRESERVE_MASK;
break;
}
sdvox |= (9 << 19) | SDVO_BORDER_ENABLE;
}
if (intel_crtc->pipe == 1)
sdvox |= SDVO_PIPE_B_SELECT;
sdvo_pixel_multiply = intel_sdvo_get_pixel_multiplier(mode);
if (IS_I965G(dev)) {
/* done in crtc_mode_set as the dpll_md reg must be written
early */
} else if (IS_I945G(dev) || IS_I945GM(dev)) {
/* done in crtc_mode_set as it lives inside the
dpll register */
} else {
sdvox |= (sdvo_pixel_multiply - 1) << SDVO_PORT_MULTIPLY_SHIFT;
}
intel_sdvo_write_sdvox(intel_output, sdvox);
}
static void intel_sdvo_dpms(struct drm_encoder *encoder, int mode)
{
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_output *intel_output = enc_to_intel_output(encoder);
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
u32 temp;
if (mode != DRM_MODE_DPMS_ON) {
intel_sdvo_set_active_outputs(intel_output, 0);
if (0)
intel_sdvo_set_encoder_power_state(intel_output, mode);
if (mode == DRM_MODE_DPMS_OFF) {
temp = I915_READ(sdvo_priv->output_device);
if ((temp & SDVO_ENABLE) != 0) {
intel_sdvo_write_sdvox(intel_output, temp & ~SDVO_ENABLE);
}
}
} else {
bool input1, input2;
int i;
u8 status;
temp = I915_READ(sdvo_priv->output_device);
if ((temp & SDVO_ENABLE) == 0)
intel_sdvo_write_sdvox(intel_output, temp | SDVO_ENABLE);
for (i = 0; i < 2; i++)
intel_wait_for_vblank(dev);
status = intel_sdvo_get_trained_inputs(intel_output, &input1,
&input2);
/* Warn if the device reported failure to sync.
* A lot of SDVO devices fail to notify of sync, but it's
* a given it the status is a success, we succeeded.
*/
if (status == SDVO_CMD_STATUS_SUCCESS && !input1) {
DRM_DEBUG("First %s output reported failure to sync\n",
SDVO_NAME(sdvo_priv));
}
if (0)
intel_sdvo_set_encoder_power_state(intel_output, mode);
intel_sdvo_set_active_outputs(intel_output, sdvo_priv->active_outputs);
}
return;
}
static void intel_sdvo_save(struct drm_connector *connector)
{
struct drm_device *dev = connector->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_output *intel_output = to_intel_output(connector);
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
int o;
sdvo_priv->save_sdvo_mult = intel_sdvo_get_clock_rate_mult(intel_output);
intel_sdvo_get_active_outputs(intel_output, &sdvo_priv->save_active_outputs);
if (sdvo_priv->caps.sdvo_inputs_mask & 0x1) {
intel_sdvo_set_target_input(intel_output, true, false);
intel_sdvo_get_input_timing(intel_output,
&sdvo_priv->save_input_dtd_1);
}
if (sdvo_priv->caps.sdvo_inputs_mask & 0x2) {
intel_sdvo_set_target_input(intel_output, false, true);
intel_sdvo_get_input_timing(intel_output,
&sdvo_priv->save_input_dtd_2);
}
for (o = SDVO_OUTPUT_FIRST; o <= SDVO_OUTPUT_LAST; o++)
{
u16 this_output = (1 << o);
if (sdvo_priv->caps.output_flags & this_output)
{
intel_sdvo_set_target_output(intel_output, this_output);
intel_sdvo_get_output_timing(intel_output,
&sdvo_priv->save_output_dtd[o]);
}
}
sdvo_priv->save_SDVOX = I915_READ(sdvo_priv->output_device);
}
static void intel_sdvo_restore(struct drm_connector *connector)
{
struct drm_device *dev = connector->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_output *intel_output = to_intel_output(connector);
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
int o;
int i;
bool input1, input2;
u8 status;
intel_sdvo_set_active_outputs(intel_output, 0);
for (o = SDVO_OUTPUT_FIRST; o <= SDVO_OUTPUT_LAST; o++)
{
u16 this_output = (1 << o);
if (sdvo_priv->caps.output_flags & this_output) {
intel_sdvo_set_target_output(intel_output, this_output);
intel_sdvo_set_output_timing(intel_output, &sdvo_priv->save_output_dtd[o]);
}
}
if (sdvo_priv->caps.sdvo_inputs_mask & 0x1) {
intel_sdvo_set_target_input(intel_output, true, false);
intel_sdvo_set_input_timing(intel_output, &sdvo_priv->save_input_dtd_1);
}
if (sdvo_priv->caps.sdvo_inputs_mask & 0x2) {
intel_sdvo_set_target_input(intel_output, false, true);
intel_sdvo_set_input_timing(intel_output, &sdvo_priv->save_input_dtd_2);
}
intel_sdvo_set_clock_rate_mult(intel_output, sdvo_priv->save_sdvo_mult);
I915_WRITE(sdvo_priv->output_device, sdvo_priv->save_SDVOX);
if (sdvo_priv->save_SDVOX & SDVO_ENABLE)
{
for (i = 0; i < 2; i++)
intel_wait_for_vblank(dev);
status = intel_sdvo_get_trained_inputs(intel_output, &input1, &input2);
if (status == SDVO_CMD_STATUS_SUCCESS && !input1)
DRM_DEBUG("First %s output reported failure to sync\n",
SDVO_NAME(sdvo_priv));
}
intel_sdvo_set_active_outputs(intel_output, sdvo_priv->save_active_outputs);
}
static int intel_sdvo_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct intel_output *intel_output = to_intel_output(connector);
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
return MODE_NO_DBLESCAN;
if (sdvo_priv->pixel_clock_min > mode->clock)
return MODE_CLOCK_LOW;
if (sdvo_priv->pixel_clock_max < mode->clock)
return MODE_CLOCK_HIGH;
return MODE_OK;
}
static bool intel_sdvo_get_capabilities(struct intel_output *intel_output, struct intel_sdvo_caps *caps)
{
u8 status;
intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_DEVICE_CAPS, NULL, 0);
status = intel_sdvo_read_response(intel_output, caps, sizeof(*caps));
if (status != SDVO_CMD_STATUS_SUCCESS)
return false;
return true;
}
struct drm_connector* intel_sdvo_find(struct drm_device *dev, int sdvoB)
{
struct drm_connector *connector = NULL;
struct intel_output *iout = NULL;
struct intel_sdvo_priv *sdvo;
/* find the sdvo connector */
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
iout = to_intel_output(connector);
if (iout->type != INTEL_OUTPUT_SDVO)
continue;
sdvo = iout->dev_priv;
if (sdvo->output_device == SDVOB && sdvoB)
return connector;
if (sdvo->output_device == SDVOC && !sdvoB)
return connector;
}
return NULL;
}
int intel_sdvo_supports_hotplug(struct drm_connector *connector)
{
u8 response[2];
u8 status;
struct intel_output *intel_output;
DRM_DEBUG("\n");
if (!connector)
return 0;
intel_output = to_intel_output(connector);
intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_HOT_PLUG_SUPPORT, NULL, 0);
status = intel_sdvo_read_response(intel_output, &response, 2);
if (response[0] !=0)
return 1;
return 0;
}
void intel_sdvo_set_hotplug(struct drm_connector *connector, int on)
{
u8 response[2];
u8 status;
struct intel_output *intel_output = to_intel_output(connector);
intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_ACTIVE_HOT_PLUG, NULL, 0);
intel_sdvo_read_response(intel_output, &response, 2);
if (on) {
intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_HOT_PLUG_SUPPORT, NULL, 0);
status = intel_sdvo_read_response(intel_output, &response, 2);
intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_ACTIVE_HOT_PLUG, &response, 2);
} else {
response[0] = 0;
response[1] = 0;
intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_ACTIVE_HOT_PLUG, &response, 2);
}
intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_ACTIVE_HOT_PLUG, NULL, 0);
intel_sdvo_read_response(intel_output, &response, 2);
}
static enum drm_connector_status intel_sdvo_detect(struct drm_connector *connector)
{
u8 response[2];
u8 status;
struct intel_output *intel_output = to_intel_output(connector);
intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_ATTACHED_DISPLAYS, NULL, 0);
status = intel_sdvo_read_response(intel_output, &response, 2);
DRM_DEBUG("SDVO response %d %d\n", response[0], response[1]);
if ((response[0] != 0) || (response[1] != 0))
return connector_status_connected;
else
return connector_status_disconnected;
}
static int intel_sdvo_get_modes(struct drm_connector *connector)
{
struct intel_output *intel_output = to_intel_output(connector);
/* set the bus switch and get the modes */
intel_sdvo_set_control_bus_switch(intel_output, SDVO_CONTROL_BUS_DDC2);
intel_ddc_get_modes(intel_output);
if (list_empty(&connector->probed_modes))
return 0;
return 1;
}
static void intel_sdvo_destroy(struct drm_connector *connector)
{
struct intel_output *intel_output = to_intel_output(connector);
if (intel_output->i2c_bus)
intel_i2c_destroy(intel_output->i2c_bus);
drm_sysfs_connector_remove(connector);
drm_connector_cleanup(connector);
kfree(intel_output);
}
static const struct drm_encoder_helper_funcs intel_sdvo_helper_funcs = {
.dpms = intel_sdvo_dpms,
.mode_fixup = intel_sdvo_mode_fixup,
.prepare = intel_encoder_prepare,
.mode_set = intel_sdvo_mode_set,
.commit = intel_encoder_commit,
};
static const struct drm_connector_funcs intel_sdvo_connector_funcs = {
.save = intel_sdvo_save,
.restore = intel_sdvo_restore,
.detect = intel_sdvo_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = intel_sdvo_destroy,
};
static const struct drm_connector_helper_funcs intel_sdvo_connector_helper_funcs = {
.get_modes = intel_sdvo_get_modes,
.mode_valid = intel_sdvo_mode_valid,
.best_encoder = intel_best_encoder,
};
static void intel_sdvo_enc_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
}
static const struct drm_encoder_funcs intel_sdvo_enc_funcs = {
.destroy = intel_sdvo_enc_destroy,
};
bool intel_sdvo_init(struct drm_device *dev, int output_device)
{
struct drm_connector *connector;
struct intel_output *intel_output;
struct intel_sdvo_priv *sdvo_priv;
struct intel_i2c_chan *i2cbus = NULL;
int connector_type;
u8 ch[0x40];
int i;
int encoder_type, output_id;
intel_output = kcalloc(sizeof(struct intel_output)+sizeof(struct intel_sdvo_priv), 1, GFP_KERNEL);
if (!intel_output) {
return false;
}
connector = &intel_output->base;
drm_connector_init(dev, connector, &intel_sdvo_connector_funcs,
DRM_MODE_CONNECTOR_Unknown);
drm_connector_helper_add(connector, &intel_sdvo_connector_helper_funcs);
sdvo_priv = (struct intel_sdvo_priv *)(intel_output + 1);
intel_output->type = INTEL_OUTPUT_SDVO;
connector->interlace_allowed = 0;
connector->doublescan_allowed = 0;
/* setup the DDC bus. */
if (output_device == SDVOB)
i2cbus = intel_i2c_create(dev, GPIOE, "SDVOCTRL_E for SDVOB");
else
i2cbus = intel_i2c_create(dev, GPIOE, "SDVOCTRL_E for SDVOC");
if (!i2cbus)
goto err_connector;
sdvo_priv->i2c_bus = i2cbus;
if (output_device == SDVOB) {
output_id = 1;
sdvo_priv->i2c_bus->slave_addr = 0x38;
} else {
output_id = 2;
sdvo_priv->i2c_bus->slave_addr = 0x39;
}
sdvo_priv->output_device = output_device;
intel_output->i2c_bus = i2cbus;
intel_output->dev_priv = sdvo_priv;
/* Read the regs to test if we can talk to the device */
for (i = 0; i < 0x40; i++) {
if (!intel_sdvo_read_byte(intel_output, i, &ch[i])) {
DRM_DEBUG("No SDVO device found on SDVO%c\n",
output_device == SDVOB ? 'B' : 'C');
goto err_i2c;
}
}
intel_sdvo_get_capabilities(intel_output, &sdvo_priv->caps);
memset(&sdvo_priv->active_outputs, 0, sizeof(sdvo_priv->active_outputs));
/* TODO, CVBS, SVID, YPRPB & SCART outputs. */
if (sdvo_priv->caps.output_flags & SDVO_OUTPUT_RGB0)
{
sdvo_priv->active_outputs = SDVO_OUTPUT_RGB0;
connector->display_info.subpixel_order = SubPixelHorizontalRGB;
encoder_type = DRM_MODE_ENCODER_DAC;
connector_type = DRM_MODE_CONNECTOR_VGA;
}
else if (sdvo_priv->caps.output_flags & SDVO_OUTPUT_RGB1)
{
sdvo_priv->active_outputs = SDVO_OUTPUT_RGB1;
connector->display_info.subpixel_order = SubPixelHorizontalRGB;
encoder_type = DRM_MODE_ENCODER_DAC;
connector_type = DRM_MODE_CONNECTOR_VGA;
}
else if (sdvo_priv->caps.output_flags & SDVO_OUTPUT_TMDS0)
{
sdvo_priv->active_outputs = SDVO_OUTPUT_TMDS0;
connector->display_info.subpixel_order = SubPixelHorizontalRGB;
encoder_type = DRM_MODE_ENCODER_TMDS;
connector_type = DRM_MODE_CONNECTOR_DVID;
}
else if (sdvo_priv->caps.output_flags & SDVO_OUTPUT_TMDS1)
{
sdvo_priv->active_outputs = SDVO_OUTPUT_TMDS1;
connector->display_info.subpixel_order = SubPixelHorizontalRGB;
encoder_type = DRM_MODE_ENCODER_TMDS;
connector_type = DRM_MODE_CONNECTOR_DVID;
}
else
{
unsigned char bytes[2];
memcpy (bytes, &sdvo_priv->caps.output_flags, 2);
DRM_DEBUG("%s: No active RGB or TMDS outputs (0x%02x%02x)\n",
SDVO_NAME(sdvo_priv),
bytes[0], bytes[1]);
goto err_i2c;
}
drm_encoder_init(dev, &intel_output->enc, &intel_sdvo_enc_funcs, encoder_type);
drm_encoder_helper_add(&intel_output->enc, &intel_sdvo_helper_funcs);
connector->connector_type = connector_type;
drm_mode_connector_attach_encoder(&intel_output->base, &intel_output->enc);
drm_sysfs_connector_add(connector);
/* Set the input timing to the screen. Assume always input 0. */
intel_sdvo_set_target_input(intel_output, true, false);
intel_sdvo_get_input_pixel_clock_range(intel_output,
&sdvo_priv->pixel_clock_min,
&sdvo_priv->pixel_clock_max);
DRM_DEBUG("%s device VID/DID: %02X:%02X.%02X, "
"clock range %dMHz - %dMHz, "
"input 1: %c, input 2: %c, "
"output 1: %c, output 2: %c\n",
SDVO_NAME(sdvo_priv),
sdvo_priv->caps.vendor_id, sdvo_priv->caps.device_id,
sdvo_priv->caps.device_rev_id,
sdvo_priv->pixel_clock_min / 1000,
sdvo_priv->pixel_clock_max / 1000,
(sdvo_priv->caps.sdvo_inputs_mask & 0x1) ? 'Y' : 'N',
(sdvo_priv->caps.sdvo_inputs_mask & 0x2) ? 'Y' : 'N',
/* check currently supported outputs */
sdvo_priv->caps.output_flags &
(SDVO_OUTPUT_TMDS0 | SDVO_OUTPUT_RGB0) ? 'Y' : 'N',
sdvo_priv->caps.output_flags &
(SDVO_OUTPUT_TMDS1 | SDVO_OUTPUT_RGB1) ? 'Y' : 'N');
intel_output->ddc_bus = i2cbus;
return true;
err_i2c:
intel_i2c_destroy(intel_output->i2c_bus);
err_connector:
drm_connector_cleanup(connector);
kfree(intel_output);
return false;
}