linux/arch/powerpc/kernel/smp.c

1156 lines
26 KiB
C
Raw Normal View History

/*
* SMP support for ppc.
*
* Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
* deal of code from the sparc and intel versions.
*
* Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
*
* PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
* Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#undef DEBUG
#include <linux/kernel.h>
#include <linux/export.h>
sched/headers: Move task->mm handling methods to <linux/sched/mm.h> Move the following task->mm helper APIs into a new header file, <linux/sched/mm.h>, to further reduce the size and complexity of <linux/sched.h>. Here are how the APIs are used in various kernel files: # mm_alloc(): arch/arm/mach-rpc/ecard.c fs/exec.c include/linux/sched/mm.h kernel/fork.c # __mmdrop(): arch/arc/include/asm/mmu_context.h include/linux/sched/mm.h kernel/fork.c # mmdrop(): arch/arm/mach-rpc/ecard.c arch/m68k/sun3/mmu_emu.c arch/x86/mm/tlb.c drivers/gpu/drm/amd/amdkfd/kfd_process.c drivers/gpu/drm/i915/i915_gem_userptr.c drivers/infiniband/hw/hfi1/file_ops.c drivers/vfio/vfio_iommu_spapr_tce.c fs/exec.c fs/proc/base.c fs/proc/task_mmu.c fs/proc/task_nommu.c fs/userfaultfd.c include/linux/mmu_notifier.h include/linux/sched/mm.h kernel/fork.c kernel/futex.c kernel/sched/core.c mm/khugepaged.c mm/ksm.c mm/mmu_context.c mm/mmu_notifier.c mm/oom_kill.c virt/kvm/kvm_main.c # mmdrop_async_fn(): include/linux/sched/mm.h # mmdrop_async(): include/linux/sched/mm.h kernel/fork.c # mmget_not_zero(): fs/userfaultfd.c include/linux/sched/mm.h mm/oom_kill.c # mmput(): arch/arc/include/asm/mmu_context.h arch/arc/kernel/troubleshoot.c arch/frv/mm/mmu-context.c arch/powerpc/platforms/cell/spufs/context.c arch/sparc/include/asm/mmu_context_32.h drivers/android/binder.c drivers/gpu/drm/etnaviv/etnaviv_gem.c drivers/gpu/drm/i915/i915_gem_userptr.c drivers/infiniband/core/umem.c drivers/infiniband/core/umem_odp.c drivers/infiniband/core/uverbs_main.c drivers/infiniband/hw/mlx4/main.c drivers/infiniband/hw/mlx5/main.c drivers/infiniband/hw/usnic/usnic_uiom.c drivers/iommu/amd_iommu_v2.c drivers/iommu/intel-svm.c drivers/lguest/lguest_user.c drivers/misc/cxl/fault.c drivers/misc/mic/scif/scif_rma.c drivers/oprofile/buffer_sync.c drivers/vfio/vfio_iommu_type1.c drivers/vhost/vhost.c drivers/xen/gntdev.c fs/exec.c fs/proc/array.c fs/proc/base.c fs/proc/task_mmu.c fs/proc/task_nommu.c fs/userfaultfd.c include/linux/sched/mm.h kernel/cpuset.c kernel/events/core.c kernel/events/uprobes.c kernel/exit.c kernel/fork.c kernel/ptrace.c kernel/sys.c kernel/trace/trace_output.c kernel/tsacct.c mm/memcontrol.c mm/memory.c mm/mempolicy.c mm/migrate.c mm/mmu_notifier.c mm/nommu.c mm/oom_kill.c mm/process_vm_access.c mm/rmap.c mm/swapfile.c mm/util.c virt/kvm/async_pf.c # mmput_async(): include/linux/sched/mm.h kernel/fork.c mm/oom_kill.c # get_task_mm(): arch/arc/kernel/troubleshoot.c arch/powerpc/platforms/cell/spufs/context.c drivers/android/binder.c drivers/gpu/drm/etnaviv/etnaviv_gem.c drivers/infiniband/core/umem.c drivers/infiniband/core/umem_odp.c drivers/infiniband/hw/mlx4/main.c drivers/infiniband/hw/mlx5/main.c drivers/infiniband/hw/usnic/usnic_uiom.c drivers/iommu/amd_iommu_v2.c drivers/iommu/intel-svm.c drivers/lguest/lguest_user.c drivers/misc/cxl/fault.c drivers/misc/mic/scif/scif_rma.c drivers/oprofile/buffer_sync.c drivers/vfio/vfio_iommu_type1.c drivers/vhost/vhost.c drivers/xen/gntdev.c fs/proc/array.c fs/proc/base.c fs/proc/task_mmu.c include/linux/sched/mm.h kernel/cpuset.c kernel/events/core.c kernel/exit.c kernel/fork.c kernel/ptrace.c kernel/sys.c kernel/trace/trace_output.c kernel/tsacct.c mm/memcontrol.c mm/memory.c mm/mempolicy.c mm/migrate.c mm/mmu_notifier.c mm/nommu.c mm/util.c # mm_access(): fs/proc/base.c include/linux/sched/mm.h kernel/fork.c mm/process_vm_access.c # mm_release(): arch/arc/include/asm/mmu_context.h fs/exec.c include/linux/sched/mm.h include/uapi/linux/sched.h kernel/exit.c kernel/fork.c Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-02-02 02:08:20 +08:00
#include <linux/sched/mm.h>
#include <linux/sched/topology.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/cache.h>
#include <linux/err.h>
cpu: convert 'cpu' and 'machinecheck' sysdev_class to a regular subsystem This moves the 'cpu sysdev_class' over to a regular 'cpu' subsystem and converts the devices to regular devices. The sysdev drivers are implemented as subsystem interfaces now. After all sysdev classes are ported to regular driver core entities, the sysdev implementation will be entirely removed from the kernel. Userspace relies on events and generic sysfs subsystem infrastructure from sysdev devices, which are made available with this conversion. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Borislav Petkov <bp@amd64.org> Cc: Tigran Aivazian <tigran@aivazian.fsnet.co.uk> Cc: Len Brown <lenb@kernel.org> Cc: Zhang Rui <rui.zhang@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King <rmk+kernel@arm.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: "Srivatsa S. Bhat" <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-12-22 06:29:42 +08:00
#include <linux/device.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/profile.h>
#include <linux/processor.h>
#include <asm/ptrace.h>
#include <linux/atomic.h>
#include <asm/irq.h>
#include <asm/hw_irq.h>
#include <asm/kvm_ppc.h>
#include <asm/dbell.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/prom.h>
#include <asm/smp.h>
#include <asm/time.h>
#include <asm/machdep.h>
#include <asm/cputhreads.h>
#include <asm/cputable.h>
#include <asm/mpic.h>
#include <asm/vdso_datapage.h>
#ifdef CONFIG_PPC64
#include <asm/paca.h>
#endif
#include <asm/vdso.h>
#include <asm/debug.h>
#include <asm/kexec.h>
#include <asm/asm-prototypes.h>
#include <asm/cpu_has_feature.h>
#ifdef DEBUG
#include <asm/udbg.h>
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif
#ifdef CONFIG_HOTPLUG_CPU
/* State of each CPU during hotplug phases */
static DEFINE_PER_CPU(int, cpu_state) = { 0 };
#endif
struct thread_info *secondary_ti;
DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
EXPORT_PER_CPU_SYMBOL(cpu_core_map);
/* SMP operations for this machine */
struct smp_ops_t *smp_ops;
/* Can't be static due to PowerMac hackery */
volatile unsigned int cpu_callin_map[NR_CPUS];
int smt_enabled_at_boot = 1;
/*
* Returns 1 if the specified cpu should be brought up during boot.
* Used to inhibit booting threads if they've been disabled or
* limited on the command line
*/
int smp_generic_cpu_bootable(unsigned int nr)
{
/* Special case - we inhibit secondary thread startup
* during boot if the user requests it.
*/
if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
return 0;
if (smt_enabled_at_boot
&& cpu_thread_in_core(nr) >= smt_enabled_at_boot)
return 0;
}
return 1;
}
#ifdef CONFIG_PPC64
int smp_generic_kick_cpu(int nr)
{
if (nr < 0 || nr >= nr_cpu_ids)
return -EINVAL;
/*
* The processor is currently spinning, waiting for the
* cpu_start field to become non-zero After we set cpu_start,
* the processor will continue on to secondary_start
*/
if (!paca_ptrs[nr]->cpu_start) {
paca_ptrs[nr]->cpu_start = 1;
smp_mb();
return 0;
}
#ifdef CONFIG_HOTPLUG_CPU
/*
* Ok it's not there, so it might be soft-unplugged, let's
* try to bring it back
*/
generic_set_cpu_up(nr);
smp_wmb();
smp_send_reschedule(nr);
#endif /* CONFIG_HOTPLUG_CPU */
return 0;
}
#endif /* CONFIG_PPC64 */
static irqreturn_t call_function_action(int irq, void *data)
{
generic_smp_call_function_interrupt();
return IRQ_HANDLED;
}
static irqreturn_t reschedule_action(int irq, void *data)
{
scheduler_ipi();
return IRQ_HANDLED;
}
static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
{
tick_broadcast_ipi_handler();
return IRQ_HANDLED;
}
#ifdef CONFIG_NMI_IPI
static irqreturn_t nmi_ipi_action(int irq, void *data)
{
smp_handle_nmi_ipi(get_irq_regs());
return IRQ_HANDLED;
}
#endif
static irq_handler_t smp_ipi_action[] = {
[PPC_MSG_CALL_FUNCTION] = call_function_action,
[PPC_MSG_RESCHEDULE] = reschedule_action,
[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
#ifdef CONFIG_NMI_IPI
[PPC_MSG_NMI_IPI] = nmi_ipi_action,
#endif
};
/*
* The NMI IPI is a fallback and not truly non-maskable. It is simpler
* than going through the call function infrastructure, and strongly
* serialized, so it is more appropriate for debugging.
*/
const char *smp_ipi_name[] = {
[PPC_MSG_CALL_FUNCTION] = "ipi call function",
[PPC_MSG_RESCHEDULE] = "ipi reschedule",
[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
[PPC_MSG_NMI_IPI] = "nmi ipi",
};
/* optional function to request ipi, for controllers with >= 4 ipis */
int smp_request_message_ipi(int virq, int msg)
{
int err;
if (msg < 0 || msg > PPC_MSG_NMI_IPI)
return -EINVAL;
#ifndef CONFIG_NMI_IPI
if (msg == PPC_MSG_NMI_IPI)
return 1;
#endif
err = request_irq(virq, smp_ipi_action[msg],
IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
smp_ipi_name[msg], NULL);
WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
virq, smp_ipi_name[msg], err);
return err;
}
#ifdef CONFIG_PPC_SMP_MUXED_IPI
powerpc: Consolidate ipi message mux and demux Consolidate the mux and demux of ipi messages into smp.c and call a new smp_ops callback to actually trigger the ipi. The powerpc architecture code is optimised for having 4 distinct ipi triggers, which are mapped to 4 distinct messages (ipi many, ipi single, scheduler ipi, and enter debugger). However, several interrupt controllers only provide a single software triggered interrupt that can be delivered to each cpu. To resolve this limitation, each smp_ops implementation created a per-cpu variable that is manipulated with atomic bitops. Since these lines will be contended they are optimialy marked as shared_aligned and take a full cache line for each cpu. Distro kernels may have 2 or 3 of these in their config, each taking per-cpu space even though at most one will be in use. This consolidation removes smp_message_recv and replaces the single call actions cases with direct calls from the common message recognition loop. The complicated debugger ipi case with its muxed crash handling code is moved to debug_ipi_action which is now called from the demux code (instead of the multi-message action calling smp_message_recv). I put a call to reschedule_action to increase the likelyhood of correctly merging the anticipated scheduler_ipi() hook coming from the scheduler tree; that single required call can be inlined later. The actual message decode is a copy of the old pseries xics code with its memory barriers and cache line spacing, augmented with a per-cpu unsigned long based on the book-e doorbell code. The optional data is set via a callback from the implementation and is passed to the new cause-ipi hook along with the logical cpu number. While currently only the doorbell implemntation uses this data it should be almost zero cost to retrieve and pass it -- it adds a single register load for the argument from the same cache line to which we just completed a store and the register is dead on return from the call. I extended the data element from unsigned int to unsigned long in case some other code wanted to associate a pointer. The doorbell check_self is replaced by a call to smp_muxed_ipi_resend, conditioned on the CPU_DBELL feature. The ifdef guard could be relaxed to CONFIG_SMP but I left it with BOOKE for now. Also, the doorbell interrupt vector for book-e was not calling irq_enter and irq_exit, which throws off cpu accounting and causes code to not realize it is running in interrupt context. Add the missing calls. Signed-off-by: Milton Miller <miltonm@bga.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-05-11 03:29:39 +08:00
struct cpu_messages {
long messages; /* current messages */
powerpc: Consolidate ipi message mux and demux Consolidate the mux and demux of ipi messages into smp.c and call a new smp_ops callback to actually trigger the ipi. The powerpc architecture code is optimised for having 4 distinct ipi triggers, which are mapped to 4 distinct messages (ipi many, ipi single, scheduler ipi, and enter debugger). However, several interrupt controllers only provide a single software triggered interrupt that can be delivered to each cpu. To resolve this limitation, each smp_ops implementation created a per-cpu variable that is manipulated with atomic bitops. Since these lines will be contended they are optimialy marked as shared_aligned and take a full cache line for each cpu. Distro kernels may have 2 or 3 of these in their config, each taking per-cpu space even though at most one will be in use. This consolidation removes smp_message_recv and replaces the single call actions cases with direct calls from the common message recognition loop. The complicated debugger ipi case with its muxed crash handling code is moved to debug_ipi_action which is now called from the demux code (instead of the multi-message action calling smp_message_recv). I put a call to reschedule_action to increase the likelyhood of correctly merging the anticipated scheduler_ipi() hook coming from the scheduler tree; that single required call can be inlined later. The actual message decode is a copy of the old pseries xics code with its memory barriers and cache line spacing, augmented with a per-cpu unsigned long based on the book-e doorbell code. The optional data is set via a callback from the implementation and is passed to the new cause-ipi hook along with the logical cpu number. While currently only the doorbell implemntation uses this data it should be almost zero cost to retrieve and pass it -- it adds a single register load for the argument from the same cache line to which we just completed a store and the register is dead on return from the call. I extended the data element from unsigned int to unsigned long in case some other code wanted to associate a pointer. The doorbell check_self is replaced by a call to smp_muxed_ipi_resend, conditioned on the CPU_DBELL feature. The ifdef guard could be relaxed to CONFIG_SMP but I left it with BOOKE for now. Also, the doorbell interrupt vector for book-e was not calling irq_enter and irq_exit, which throws off cpu accounting and causes code to not realize it is running in interrupt context. Add the missing calls. Signed-off-by: Milton Miller <miltonm@bga.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-05-11 03:29:39 +08:00
};
static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
void smp_muxed_ipi_set_message(int cpu, int msg)
powerpc: Consolidate ipi message mux and demux Consolidate the mux and demux of ipi messages into smp.c and call a new smp_ops callback to actually trigger the ipi. The powerpc architecture code is optimised for having 4 distinct ipi triggers, which are mapped to 4 distinct messages (ipi many, ipi single, scheduler ipi, and enter debugger). However, several interrupt controllers only provide a single software triggered interrupt that can be delivered to each cpu. To resolve this limitation, each smp_ops implementation created a per-cpu variable that is manipulated with atomic bitops. Since these lines will be contended they are optimialy marked as shared_aligned and take a full cache line for each cpu. Distro kernels may have 2 or 3 of these in their config, each taking per-cpu space even though at most one will be in use. This consolidation removes smp_message_recv and replaces the single call actions cases with direct calls from the common message recognition loop. The complicated debugger ipi case with its muxed crash handling code is moved to debug_ipi_action which is now called from the demux code (instead of the multi-message action calling smp_message_recv). I put a call to reschedule_action to increase the likelyhood of correctly merging the anticipated scheduler_ipi() hook coming from the scheduler tree; that single required call can be inlined later. The actual message decode is a copy of the old pseries xics code with its memory barriers and cache line spacing, augmented with a per-cpu unsigned long based on the book-e doorbell code. The optional data is set via a callback from the implementation and is passed to the new cause-ipi hook along with the logical cpu number. While currently only the doorbell implemntation uses this data it should be almost zero cost to retrieve and pass it -- it adds a single register load for the argument from the same cache line to which we just completed a store and the register is dead on return from the call. I extended the data element from unsigned int to unsigned long in case some other code wanted to associate a pointer. The doorbell check_self is replaced by a call to smp_muxed_ipi_resend, conditioned on the CPU_DBELL feature. The ifdef guard could be relaxed to CONFIG_SMP but I left it with BOOKE for now. Also, the doorbell interrupt vector for book-e was not calling irq_enter and irq_exit, which throws off cpu accounting and causes code to not realize it is running in interrupt context. Add the missing calls. Signed-off-by: Milton Miller <miltonm@bga.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-05-11 03:29:39 +08:00
{
struct cpu_messages *info = &per_cpu(ipi_message, cpu);
char *message = (char *)&info->messages;
powerpc: Consolidate ipi message mux and demux Consolidate the mux and demux of ipi messages into smp.c and call a new smp_ops callback to actually trigger the ipi. The powerpc architecture code is optimised for having 4 distinct ipi triggers, which are mapped to 4 distinct messages (ipi many, ipi single, scheduler ipi, and enter debugger). However, several interrupt controllers only provide a single software triggered interrupt that can be delivered to each cpu. To resolve this limitation, each smp_ops implementation created a per-cpu variable that is manipulated with atomic bitops. Since these lines will be contended they are optimialy marked as shared_aligned and take a full cache line for each cpu. Distro kernels may have 2 or 3 of these in their config, each taking per-cpu space even though at most one will be in use. This consolidation removes smp_message_recv and replaces the single call actions cases with direct calls from the common message recognition loop. The complicated debugger ipi case with its muxed crash handling code is moved to debug_ipi_action which is now called from the demux code (instead of the multi-message action calling smp_message_recv). I put a call to reschedule_action to increase the likelyhood of correctly merging the anticipated scheduler_ipi() hook coming from the scheduler tree; that single required call can be inlined later. The actual message decode is a copy of the old pseries xics code with its memory barriers and cache line spacing, augmented with a per-cpu unsigned long based on the book-e doorbell code. The optional data is set via a callback from the implementation and is passed to the new cause-ipi hook along with the logical cpu number. While currently only the doorbell implemntation uses this data it should be almost zero cost to retrieve and pass it -- it adds a single register load for the argument from the same cache line to which we just completed a store and the register is dead on return from the call. I extended the data element from unsigned int to unsigned long in case some other code wanted to associate a pointer. The doorbell check_self is replaced by a call to smp_muxed_ipi_resend, conditioned on the CPU_DBELL feature. The ifdef guard could be relaxed to CONFIG_SMP but I left it with BOOKE for now. Also, the doorbell interrupt vector for book-e was not calling irq_enter and irq_exit, which throws off cpu accounting and causes code to not realize it is running in interrupt context. Add the missing calls. Signed-off-by: Milton Miller <miltonm@bga.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-05-11 03:29:39 +08:00
powerpc: Make sure IPI handlers see data written by IPI senders We have been observing hangs, both of KVM guest vcpu tasks and more generally, where a process that is woken doesn't properly wake up and continue to run, but instead sticks in TASK_WAKING state. This happens because the update of rq->wake_list in ttwu_queue_remote() is not ordered with the update of ipi_message in smp_muxed_ipi_message_pass(), and the reading of rq->wake_list in scheduler_ipi() is not ordered with the reading of ipi_message in smp_ipi_demux(). Thus it is possible for the IPI receiver not to see the updated rq->wake_list and therefore conclude that there is nothing for it to do. In order to make sure that anything done before smp_send_reschedule() is ordered before anything done in the resulting call to scheduler_ipi(), this adds barriers in smp_muxed_message_pass() and smp_ipi_demux(). The barrier in smp_muxed_message_pass() is a full barrier to ensure that there is a full ordering between the smp_send_reschedule() caller and scheduler_ipi(). In smp_ipi_demux(), we use xchg() rather than xchg_local() because xchg() includes release and acquire barriers. Using xchg() rather than xchg_local() makes sense given that ipi_message is not just accessed locally. This moves the barrier between setting the message and calling the cause_ipi() function into the individual cause_ipi implementations. Most of them -- those that used outb, out_8 or similar -- already had a full barrier because out_8 etc. include a sync before the MMIO store. This adds an explicit barrier in the two remaining cases. These changes made no measurable difference to the speed of IPIs as measured using a simple ping-pong latency test across two CPUs on different cores of a POWER7 machine. The analysis of the reason why processes were not waking up properly is due to Milton Miller. Cc: stable@vger.kernel.org # v3.0+ Reported-by: Milton Miller <miltonm@bga.com> Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-09-05 02:33:08 +08:00
/*
* Order previous accesses before accesses in the IPI handler.
*/
smp_mb();
message[msg] = 1;
}
void smp_muxed_ipi_message_pass(int cpu, int msg)
{
smp_muxed_ipi_set_message(cpu, msg);
powerpc: Make sure IPI handlers see data written by IPI senders We have been observing hangs, both of KVM guest vcpu tasks and more generally, where a process that is woken doesn't properly wake up and continue to run, but instead sticks in TASK_WAKING state. This happens because the update of rq->wake_list in ttwu_queue_remote() is not ordered with the update of ipi_message in smp_muxed_ipi_message_pass(), and the reading of rq->wake_list in scheduler_ipi() is not ordered with the reading of ipi_message in smp_ipi_demux(). Thus it is possible for the IPI receiver not to see the updated rq->wake_list and therefore conclude that there is nothing for it to do. In order to make sure that anything done before smp_send_reschedule() is ordered before anything done in the resulting call to scheduler_ipi(), this adds barriers in smp_muxed_message_pass() and smp_ipi_demux(). The barrier in smp_muxed_message_pass() is a full barrier to ensure that there is a full ordering between the smp_send_reschedule() caller and scheduler_ipi(). In smp_ipi_demux(), we use xchg() rather than xchg_local() because xchg() includes release and acquire barriers. Using xchg() rather than xchg_local() makes sense given that ipi_message is not just accessed locally. This moves the barrier between setting the message and calling the cause_ipi() function into the individual cause_ipi implementations. Most of them -- those that used outb, out_8 or similar -- already had a full barrier because out_8 etc. include a sync before the MMIO store. This adds an explicit barrier in the two remaining cases. These changes made no measurable difference to the speed of IPIs as measured using a simple ping-pong latency test across two CPUs on different cores of a POWER7 machine. The analysis of the reason why processes were not waking up properly is due to Milton Miller. Cc: stable@vger.kernel.org # v3.0+ Reported-by: Milton Miller <miltonm@bga.com> Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-09-05 02:33:08 +08:00
/*
* cause_ipi functions are required to include a full barrier
* before doing whatever causes the IPI.
*/
smp_ops->cause_ipi(cpu);
powerpc: Consolidate ipi message mux and demux Consolidate the mux and demux of ipi messages into smp.c and call a new smp_ops callback to actually trigger the ipi. The powerpc architecture code is optimised for having 4 distinct ipi triggers, which are mapped to 4 distinct messages (ipi many, ipi single, scheduler ipi, and enter debugger). However, several interrupt controllers only provide a single software triggered interrupt that can be delivered to each cpu. To resolve this limitation, each smp_ops implementation created a per-cpu variable that is manipulated with atomic bitops. Since these lines will be contended they are optimialy marked as shared_aligned and take a full cache line for each cpu. Distro kernels may have 2 or 3 of these in their config, each taking per-cpu space even though at most one will be in use. This consolidation removes smp_message_recv and replaces the single call actions cases with direct calls from the common message recognition loop. The complicated debugger ipi case with its muxed crash handling code is moved to debug_ipi_action which is now called from the demux code (instead of the multi-message action calling smp_message_recv). I put a call to reschedule_action to increase the likelyhood of correctly merging the anticipated scheduler_ipi() hook coming from the scheduler tree; that single required call can be inlined later. The actual message decode is a copy of the old pseries xics code with its memory barriers and cache line spacing, augmented with a per-cpu unsigned long based on the book-e doorbell code. The optional data is set via a callback from the implementation and is passed to the new cause-ipi hook along with the logical cpu number. While currently only the doorbell implemntation uses this data it should be almost zero cost to retrieve and pass it -- it adds a single register load for the argument from the same cache line to which we just completed a store and the register is dead on return from the call. I extended the data element from unsigned int to unsigned long in case some other code wanted to associate a pointer. The doorbell check_self is replaced by a call to smp_muxed_ipi_resend, conditioned on the CPU_DBELL feature. The ifdef guard could be relaxed to CONFIG_SMP but I left it with BOOKE for now. Also, the doorbell interrupt vector for book-e was not calling irq_enter and irq_exit, which throws off cpu accounting and causes code to not realize it is running in interrupt context. Add the missing calls. Signed-off-by: Milton Miller <miltonm@bga.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-05-11 03:29:39 +08:00
}
#ifdef __BIG_ENDIAN__
#define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
#else
#define IPI_MESSAGE(A) (1uL << (8 * (A)))
#endif
powerpc: Consolidate ipi message mux and demux Consolidate the mux and demux of ipi messages into smp.c and call a new smp_ops callback to actually trigger the ipi. The powerpc architecture code is optimised for having 4 distinct ipi triggers, which are mapped to 4 distinct messages (ipi many, ipi single, scheduler ipi, and enter debugger). However, several interrupt controllers only provide a single software triggered interrupt that can be delivered to each cpu. To resolve this limitation, each smp_ops implementation created a per-cpu variable that is manipulated with atomic bitops. Since these lines will be contended they are optimialy marked as shared_aligned and take a full cache line for each cpu. Distro kernels may have 2 or 3 of these in their config, each taking per-cpu space even though at most one will be in use. This consolidation removes smp_message_recv and replaces the single call actions cases with direct calls from the common message recognition loop. The complicated debugger ipi case with its muxed crash handling code is moved to debug_ipi_action which is now called from the demux code (instead of the multi-message action calling smp_message_recv). I put a call to reschedule_action to increase the likelyhood of correctly merging the anticipated scheduler_ipi() hook coming from the scheduler tree; that single required call can be inlined later. The actual message decode is a copy of the old pseries xics code with its memory barriers and cache line spacing, augmented with a per-cpu unsigned long based on the book-e doorbell code. The optional data is set via a callback from the implementation and is passed to the new cause-ipi hook along with the logical cpu number. While currently only the doorbell implemntation uses this data it should be almost zero cost to retrieve and pass it -- it adds a single register load for the argument from the same cache line to which we just completed a store and the register is dead on return from the call. I extended the data element from unsigned int to unsigned long in case some other code wanted to associate a pointer. The doorbell check_self is replaced by a call to smp_muxed_ipi_resend, conditioned on the CPU_DBELL feature. The ifdef guard could be relaxed to CONFIG_SMP but I left it with BOOKE for now. Also, the doorbell interrupt vector for book-e was not calling irq_enter and irq_exit, which throws off cpu accounting and causes code to not realize it is running in interrupt context. Add the missing calls. Signed-off-by: Milton Miller <miltonm@bga.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-05-11 03:29:39 +08:00
irqreturn_t smp_ipi_demux(void)
{
mb(); /* order any irq clear */
return smp_ipi_demux_relaxed();
}
/* sync-free variant. Callers should ensure synchronization */
irqreturn_t smp_ipi_demux_relaxed(void)
powerpc: Consolidate ipi message mux and demux Consolidate the mux and demux of ipi messages into smp.c and call a new smp_ops callback to actually trigger the ipi. The powerpc architecture code is optimised for having 4 distinct ipi triggers, which are mapped to 4 distinct messages (ipi many, ipi single, scheduler ipi, and enter debugger). However, several interrupt controllers only provide a single software triggered interrupt that can be delivered to each cpu. To resolve this limitation, each smp_ops implementation created a per-cpu variable that is manipulated with atomic bitops. Since these lines will be contended they are optimialy marked as shared_aligned and take a full cache line for each cpu. Distro kernels may have 2 or 3 of these in their config, each taking per-cpu space even though at most one will be in use. This consolidation removes smp_message_recv and replaces the single call actions cases with direct calls from the common message recognition loop. The complicated debugger ipi case with its muxed crash handling code is moved to debug_ipi_action which is now called from the demux code (instead of the multi-message action calling smp_message_recv). I put a call to reschedule_action to increase the likelyhood of correctly merging the anticipated scheduler_ipi() hook coming from the scheduler tree; that single required call can be inlined later. The actual message decode is a copy of the old pseries xics code with its memory barriers and cache line spacing, augmented with a per-cpu unsigned long based on the book-e doorbell code. The optional data is set via a callback from the implementation and is passed to the new cause-ipi hook along with the logical cpu number. While currently only the doorbell implemntation uses this data it should be almost zero cost to retrieve and pass it -- it adds a single register load for the argument from the same cache line to which we just completed a store and the register is dead on return from the call. I extended the data element from unsigned int to unsigned long in case some other code wanted to associate a pointer. The doorbell check_self is replaced by a call to smp_muxed_ipi_resend, conditioned on the CPU_DBELL feature. The ifdef guard could be relaxed to CONFIG_SMP but I left it with BOOKE for now. Also, the doorbell interrupt vector for book-e was not calling irq_enter and irq_exit, which throws off cpu accounting and causes code to not realize it is running in interrupt context. Add the missing calls. Signed-off-by: Milton Miller <miltonm@bga.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-05-11 03:29:39 +08:00
{
struct cpu_messages *info;
unsigned long all;
powerpc: Consolidate ipi message mux and demux Consolidate the mux and demux of ipi messages into smp.c and call a new smp_ops callback to actually trigger the ipi. The powerpc architecture code is optimised for having 4 distinct ipi triggers, which are mapped to 4 distinct messages (ipi many, ipi single, scheduler ipi, and enter debugger). However, several interrupt controllers only provide a single software triggered interrupt that can be delivered to each cpu. To resolve this limitation, each smp_ops implementation created a per-cpu variable that is manipulated with atomic bitops. Since these lines will be contended they are optimialy marked as shared_aligned and take a full cache line for each cpu. Distro kernels may have 2 or 3 of these in their config, each taking per-cpu space even though at most one will be in use. This consolidation removes smp_message_recv and replaces the single call actions cases with direct calls from the common message recognition loop. The complicated debugger ipi case with its muxed crash handling code is moved to debug_ipi_action which is now called from the demux code (instead of the multi-message action calling smp_message_recv). I put a call to reschedule_action to increase the likelyhood of correctly merging the anticipated scheduler_ipi() hook coming from the scheduler tree; that single required call can be inlined later. The actual message decode is a copy of the old pseries xics code with its memory barriers and cache line spacing, augmented with a per-cpu unsigned long based on the book-e doorbell code. The optional data is set via a callback from the implementation and is passed to the new cause-ipi hook along with the logical cpu number. While currently only the doorbell implemntation uses this data it should be almost zero cost to retrieve and pass it -- it adds a single register load for the argument from the same cache line to which we just completed a store and the register is dead on return from the call. I extended the data element from unsigned int to unsigned long in case some other code wanted to associate a pointer. The doorbell check_self is replaced by a call to smp_muxed_ipi_resend, conditioned on the CPU_DBELL feature. The ifdef guard could be relaxed to CONFIG_SMP but I left it with BOOKE for now. Also, the doorbell interrupt vector for book-e was not calling irq_enter and irq_exit, which throws off cpu accounting and causes code to not realize it is running in interrupt context. Add the missing calls. Signed-off-by: Milton Miller <miltonm@bga.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-05-11 03:29:39 +08:00
info = this_cpu_ptr(&ipi_message);
do {
powerpc: Make sure IPI handlers see data written by IPI senders We have been observing hangs, both of KVM guest vcpu tasks and more generally, where a process that is woken doesn't properly wake up and continue to run, but instead sticks in TASK_WAKING state. This happens because the update of rq->wake_list in ttwu_queue_remote() is not ordered with the update of ipi_message in smp_muxed_ipi_message_pass(), and the reading of rq->wake_list in scheduler_ipi() is not ordered with the reading of ipi_message in smp_ipi_demux(). Thus it is possible for the IPI receiver not to see the updated rq->wake_list and therefore conclude that there is nothing for it to do. In order to make sure that anything done before smp_send_reschedule() is ordered before anything done in the resulting call to scheduler_ipi(), this adds barriers in smp_muxed_message_pass() and smp_ipi_demux(). The barrier in smp_muxed_message_pass() is a full barrier to ensure that there is a full ordering between the smp_send_reschedule() caller and scheduler_ipi(). In smp_ipi_demux(), we use xchg() rather than xchg_local() because xchg() includes release and acquire barriers. Using xchg() rather than xchg_local() makes sense given that ipi_message is not just accessed locally. This moves the barrier between setting the message and calling the cause_ipi() function into the individual cause_ipi implementations. Most of them -- those that used outb, out_8 or similar -- already had a full barrier because out_8 etc. include a sync before the MMIO store. This adds an explicit barrier in the two remaining cases. These changes made no measurable difference to the speed of IPIs as measured using a simple ping-pong latency test across two CPUs on different cores of a POWER7 machine. The analysis of the reason why processes were not waking up properly is due to Milton Miller. Cc: stable@vger.kernel.org # v3.0+ Reported-by: Milton Miller <miltonm@bga.com> Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-09-05 02:33:08 +08:00
all = xchg(&info->messages, 0);
#if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
/*
* Must check for PPC_MSG_RM_HOST_ACTION messages
* before PPC_MSG_CALL_FUNCTION messages because when
* a VM is destroyed, we call kick_all_cpus_sync()
* to ensure that any pending PPC_MSG_RM_HOST_ACTION
* messages have completed before we free any VCPUs.
*/
if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
kvmppc_xics_ipi_action();
#endif
if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
powerpc: Consolidate ipi message mux and demux Consolidate the mux and demux of ipi messages into smp.c and call a new smp_ops callback to actually trigger the ipi. The powerpc architecture code is optimised for having 4 distinct ipi triggers, which are mapped to 4 distinct messages (ipi many, ipi single, scheduler ipi, and enter debugger). However, several interrupt controllers only provide a single software triggered interrupt that can be delivered to each cpu. To resolve this limitation, each smp_ops implementation created a per-cpu variable that is manipulated with atomic bitops. Since these lines will be contended they are optimialy marked as shared_aligned and take a full cache line for each cpu. Distro kernels may have 2 or 3 of these in their config, each taking per-cpu space even though at most one will be in use. This consolidation removes smp_message_recv and replaces the single call actions cases with direct calls from the common message recognition loop. The complicated debugger ipi case with its muxed crash handling code is moved to debug_ipi_action which is now called from the demux code (instead of the multi-message action calling smp_message_recv). I put a call to reschedule_action to increase the likelyhood of correctly merging the anticipated scheduler_ipi() hook coming from the scheduler tree; that single required call can be inlined later. The actual message decode is a copy of the old pseries xics code with its memory barriers and cache line spacing, augmented with a per-cpu unsigned long based on the book-e doorbell code. The optional data is set via a callback from the implementation and is passed to the new cause-ipi hook along with the logical cpu number. While currently only the doorbell implemntation uses this data it should be almost zero cost to retrieve and pass it -- it adds a single register load for the argument from the same cache line to which we just completed a store and the register is dead on return from the call. I extended the data element from unsigned int to unsigned long in case some other code wanted to associate a pointer. The doorbell check_self is replaced by a call to smp_muxed_ipi_resend, conditioned on the CPU_DBELL feature. The ifdef guard could be relaxed to CONFIG_SMP but I left it with BOOKE for now. Also, the doorbell interrupt vector for book-e was not calling irq_enter and irq_exit, which throws off cpu accounting and causes code to not realize it is running in interrupt context. Add the missing calls. Signed-off-by: Milton Miller <miltonm@bga.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-05-11 03:29:39 +08:00
generic_smp_call_function_interrupt();
if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
scheduler_ipi();
if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
tick_broadcast_ipi_handler();
#ifdef CONFIG_NMI_IPI
if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
nmi_ipi_action(0, NULL);
#endif
} while (info->messages);
powerpc: Consolidate ipi message mux and demux Consolidate the mux and demux of ipi messages into smp.c and call a new smp_ops callback to actually trigger the ipi. The powerpc architecture code is optimised for having 4 distinct ipi triggers, which are mapped to 4 distinct messages (ipi many, ipi single, scheduler ipi, and enter debugger). However, several interrupt controllers only provide a single software triggered interrupt that can be delivered to each cpu. To resolve this limitation, each smp_ops implementation created a per-cpu variable that is manipulated with atomic bitops. Since these lines will be contended they are optimialy marked as shared_aligned and take a full cache line for each cpu. Distro kernels may have 2 or 3 of these in their config, each taking per-cpu space even though at most one will be in use. This consolidation removes smp_message_recv and replaces the single call actions cases with direct calls from the common message recognition loop. The complicated debugger ipi case with its muxed crash handling code is moved to debug_ipi_action which is now called from the demux code (instead of the multi-message action calling smp_message_recv). I put a call to reschedule_action to increase the likelyhood of correctly merging the anticipated scheduler_ipi() hook coming from the scheduler tree; that single required call can be inlined later. The actual message decode is a copy of the old pseries xics code with its memory barriers and cache line spacing, augmented with a per-cpu unsigned long based on the book-e doorbell code. The optional data is set via a callback from the implementation and is passed to the new cause-ipi hook along with the logical cpu number. While currently only the doorbell implemntation uses this data it should be almost zero cost to retrieve and pass it -- it adds a single register load for the argument from the same cache line to which we just completed a store and the register is dead on return from the call. I extended the data element from unsigned int to unsigned long in case some other code wanted to associate a pointer. The doorbell check_self is replaced by a call to smp_muxed_ipi_resend, conditioned on the CPU_DBELL feature. The ifdef guard could be relaxed to CONFIG_SMP but I left it with BOOKE for now. Also, the doorbell interrupt vector for book-e was not calling irq_enter and irq_exit, which throws off cpu accounting and causes code to not realize it is running in interrupt context. Add the missing calls. Signed-off-by: Milton Miller <miltonm@bga.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-05-11 03:29:39 +08:00
return IRQ_HANDLED;
}
#endif /* CONFIG_PPC_SMP_MUXED_IPI */
powerpc: Consolidate ipi message mux and demux Consolidate the mux and demux of ipi messages into smp.c and call a new smp_ops callback to actually trigger the ipi. The powerpc architecture code is optimised for having 4 distinct ipi triggers, which are mapped to 4 distinct messages (ipi many, ipi single, scheduler ipi, and enter debugger). However, several interrupt controllers only provide a single software triggered interrupt that can be delivered to each cpu. To resolve this limitation, each smp_ops implementation created a per-cpu variable that is manipulated with atomic bitops. Since these lines will be contended they are optimialy marked as shared_aligned and take a full cache line for each cpu. Distro kernels may have 2 or 3 of these in their config, each taking per-cpu space even though at most one will be in use. This consolidation removes smp_message_recv and replaces the single call actions cases with direct calls from the common message recognition loop. The complicated debugger ipi case with its muxed crash handling code is moved to debug_ipi_action which is now called from the demux code (instead of the multi-message action calling smp_message_recv). I put a call to reschedule_action to increase the likelyhood of correctly merging the anticipated scheduler_ipi() hook coming from the scheduler tree; that single required call can be inlined later. The actual message decode is a copy of the old pseries xics code with its memory barriers and cache line spacing, augmented with a per-cpu unsigned long based on the book-e doorbell code. The optional data is set via a callback from the implementation and is passed to the new cause-ipi hook along with the logical cpu number. While currently only the doorbell implemntation uses this data it should be almost zero cost to retrieve and pass it -- it adds a single register load for the argument from the same cache line to which we just completed a store and the register is dead on return from the call. I extended the data element from unsigned int to unsigned long in case some other code wanted to associate a pointer. The doorbell check_self is replaced by a call to smp_muxed_ipi_resend, conditioned on the CPU_DBELL feature. The ifdef guard could be relaxed to CONFIG_SMP but I left it with BOOKE for now. Also, the doorbell interrupt vector for book-e was not calling irq_enter and irq_exit, which throws off cpu accounting and causes code to not realize it is running in interrupt context. Add the missing calls. Signed-off-by: Milton Miller <miltonm@bga.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-05-11 03:29:39 +08:00
static inline void do_message_pass(int cpu, int msg)
{
if (smp_ops->message_pass)
smp_ops->message_pass(cpu, msg);
#ifdef CONFIG_PPC_SMP_MUXED_IPI
else
smp_muxed_ipi_message_pass(cpu, msg);
#endif
}
void smp_send_reschedule(int cpu)
{
if (likely(smp_ops))
do_message_pass(cpu, PPC_MSG_RESCHEDULE);
}
KVM: PPC: Add support for Book3S processors in hypervisor mode This adds support for KVM running on 64-bit Book 3S processors, specifically POWER7, in hypervisor mode. Using hypervisor mode means that the guest can use the processor's supervisor mode. That means that the guest can execute privileged instructions and access privileged registers itself without trapping to the host. This gives excellent performance, but does mean that KVM cannot emulate a processor architecture other than the one that the hardware implements. This code assumes that the guest is running paravirtualized using the PAPR (Power Architecture Platform Requirements) interface, which is the interface that IBM's PowerVM hypervisor uses. That means that existing Linux distributions that run on IBM pSeries machines will also run under KVM without modification. In order to communicate the PAPR hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code to include/linux/kvm.h. Currently the choice between book3s_hv support and book3s_pr support (i.e. the existing code, which runs the guest in user mode) has to be made at kernel configuration time, so a given kernel binary can only do one or the other. This new book3s_hv code doesn't support MMIO emulation at present. Since we are running paravirtualized guests, this isn't a serious restriction. With the guest running in supervisor mode, most exceptions go straight to the guest. We will never get data or instruction storage or segment interrupts, alignment interrupts, decrementer interrupts, program interrupts, single-step interrupts, etc., coming to the hypervisor from the guest. Therefore this introduces a new KVMTEST_NONHV macro for the exception entry path so that we don't have to do the KVM test on entry to those exception handlers. We do however get hypervisor decrementer, hypervisor data storage, hypervisor instruction storage, and hypervisor emulation assist interrupts, so we have to handle those. In hypervisor mode, real-mode accesses can access all of RAM, not just a limited amount. Therefore we put all the guest state in the vcpu.arch and use the shadow_vcpu in the PACA only for temporary scratch space. We allocate the vcpu with kzalloc rather than vzalloc, and we don't use anything in the kvmppc_vcpu_book3s struct, so we don't allocate it. We don't have a shared page with the guest, but we still need a kvm_vcpu_arch_shared struct to store the values of various registers, so we include one in the vcpu_arch struct. The POWER7 processor has a restriction that all threads in a core have to be in the same partition. MMU-on kernel code counts as a partition (partition 0), so we have to do a partition switch on every entry to and exit from the guest. At present we require the host and guest to run in single-thread mode because of this hardware restriction. This code allocates a hashed page table for the guest and initializes it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We require that the guest memory is allocated using 16MB huge pages, in order to simplify the low-level memory management. This also means that we can get away without tracking paging activity in the host for now, since huge pages can't be paged or swapped. This also adds a few new exports needed by the book3s_hv code. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
EXPORT_SYMBOL_GPL(smp_send_reschedule);
void arch_send_call_function_single_ipi(int cpu)
{
do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
}
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
{
unsigned int cpu;
for_each_cpu(cpu, mask)
do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
}
#ifdef CONFIG_NMI_IPI
/*
* "NMI IPI" system.
*
* NMI IPIs may not be recoverable, so should not be used as ongoing part of
* a running system. They can be used for crash, debug, halt/reboot, etc.
*
* NMI IPIs are globally single threaded. No more than one in progress at
* any time.
*
* The IPI call waits with interrupts disabled until all targets enter the
* NMI handler, then the call returns.
*
* No new NMI can be initiated until targets exit the handler.
*
* The IPI call may time out without all targets entering the NMI handler.
* In that case, there is some logic to recover (and ignore subsequent
* NMI interrupts that may eventually be raised), but the platform interrupt
* handler may not be able to distinguish this from other exception causes,
* which may cause a crash.
*/
static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
static struct cpumask nmi_ipi_pending_mask;
static int nmi_ipi_busy_count = 0;
static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
static void nmi_ipi_lock_start(unsigned long *flags)
{
raw_local_irq_save(*flags);
hard_irq_disable();
while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
raw_local_irq_restore(*flags);
spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
raw_local_irq_save(*flags);
hard_irq_disable();
}
}
static void nmi_ipi_lock(void)
{
while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
}
static void nmi_ipi_unlock(void)
{
smp_mb();
WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
atomic_set(&__nmi_ipi_lock, 0);
}
static void nmi_ipi_unlock_end(unsigned long *flags)
{
nmi_ipi_unlock();
raw_local_irq_restore(*flags);
}
/*
* Platform NMI handler calls this to ack
*/
int smp_handle_nmi_ipi(struct pt_regs *regs)
{
void (*fn)(struct pt_regs *);
unsigned long flags;
int me = raw_smp_processor_id();
int ret = 0;
/*
* Unexpected NMIs are possible here because the interrupt may not
* be able to distinguish NMI IPIs from other types of NMIs, or
* because the caller may have timed out.
*/
nmi_ipi_lock_start(&flags);
if (!nmi_ipi_busy_count)
goto out;
if (!cpumask_test_cpu(me, &nmi_ipi_pending_mask))
goto out;
fn = nmi_ipi_function;
if (!fn)
goto out;
cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
nmi_ipi_busy_count++;
nmi_ipi_unlock();
ret = 1;
fn(regs);
nmi_ipi_lock();
nmi_ipi_busy_count--;
out:
nmi_ipi_unlock_end(&flags);
return ret;
}
static void do_smp_send_nmi_ipi(int cpu)
{
if (smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
return;
if (cpu >= 0) {
do_message_pass(cpu, PPC_MSG_NMI_IPI);
} else {
int c;
for_each_online_cpu(c) {
if (c == raw_smp_processor_id())
continue;
do_message_pass(c, PPC_MSG_NMI_IPI);
}
}
}
powerpc/64s: implement arch-specific hardlockup watchdog Implement an arch-speicfic watchdog rather than use the perf-based hardlockup detector. The new watchdog takes the soft-NMI directly, rather than going through perf. Perf interrupts are to be made maskable in future, so that would prevent the perf detector from working in those regions. Additionally, implement a SMP based detector where all CPUs watch one another by pinging a shared cpumask. This is because powerpc Book3S does not have a true periodic local NMI, but some platforms do implement a true NMI IPI. If a CPU is stuck with interrupts hard disabled, the soft-NMI watchdog does not work, but the SMP watchdog will. Even on platforms without a true NMI IPI to get a good trace from the stuck CPU, other CPUs will notice the lockup sufficiently to report it and panic. [npiggin@gmail.com: honor watchdog disable at boot/hotplug] Link: http://lkml.kernel.org/r/20170621001346.5bb337c9@roar.ozlabs.ibm.com [npiggin@gmail.com: fix false positive warning at CPU unplug] Link: http://lkml.kernel.org/r/20170630080740.20766-1-npiggin@gmail.com [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/20170616065715.18390-6-npiggin@gmail.com Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Reviewed-by: Don Zickus <dzickus@redhat.com> Tested-by: Babu Moger <babu.moger@oracle.com> [sparc] Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-13 05:35:52 +08:00
void smp_flush_nmi_ipi(u64 delay_us)
{
unsigned long flags;
nmi_ipi_lock_start(&flags);
while (nmi_ipi_busy_count) {
nmi_ipi_unlock_end(&flags);
udelay(1);
if (delay_us) {
delay_us--;
if (!delay_us)
return;
}
nmi_ipi_lock_start(&flags);
}
nmi_ipi_unlock_end(&flags);
}
/*
* - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
* - fn is the target callback function.
* - delay_us > 0 is the delay before giving up waiting for targets to
* enter the handler, == 0 specifies indefinite delay.
*/
powerpc/64s: implement arch-specific hardlockup watchdog Implement an arch-speicfic watchdog rather than use the perf-based hardlockup detector. The new watchdog takes the soft-NMI directly, rather than going through perf. Perf interrupts are to be made maskable in future, so that would prevent the perf detector from working in those regions. Additionally, implement a SMP based detector where all CPUs watch one another by pinging a shared cpumask. This is because powerpc Book3S does not have a true periodic local NMI, but some platforms do implement a true NMI IPI. If a CPU is stuck with interrupts hard disabled, the soft-NMI watchdog does not work, but the SMP watchdog will. Even on platforms without a true NMI IPI to get a good trace from the stuck CPU, other CPUs will notice the lockup sufficiently to report it and panic. [npiggin@gmail.com: honor watchdog disable at boot/hotplug] Link: http://lkml.kernel.org/r/20170621001346.5bb337c9@roar.ozlabs.ibm.com [npiggin@gmail.com: fix false positive warning at CPU unplug] Link: http://lkml.kernel.org/r/20170630080740.20766-1-npiggin@gmail.com [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/20170616065715.18390-6-npiggin@gmail.com Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Reviewed-by: Don Zickus <dzickus@redhat.com> Tested-by: Babu Moger <babu.moger@oracle.com> [sparc] Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-13 05:35:52 +08:00
int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
{
unsigned long flags;
int me = raw_smp_processor_id();
int ret = 1;
BUG_ON(cpu == me);
BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
if (unlikely(!smp_ops))
return 0;
/* Take the nmi_ipi_busy count/lock with interrupts hard disabled */
nmi_ipi_lock_start(&flags);
while (nmi_ipi_busy_count) {
nmi_ipi_unlock_end(&flags);
spin_until_cond(nmi_ipi_busy_count == 0);
nmi_ipi_lock_start(&flags);
}
nmi_ipi_function = fn;
if (cpu < 0) {
/* ALL_OTHERS */
cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
} else {
/* cpumask starts clear */
cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
}
nmi_ipi_busy_count++;
nmi_ipi_unlock();
do_smp_send_nmi_ipi(cpu);
while (!cpumask_empty(&nmi_ipi_pending_mask)) {
udelay(1);
if (delay_us) {
delay_us--;
if (!delay_us)
break;
}
}
nmi_ipi_lock();
if (!cpumask_empty(&nmi_ipi_pending_mask)) {
/* Could not gather all CPUs */
ret = 0;
cpumask_clear(&nmi_ipi_pending_mask);
}
nmi_ipi_busy_count--;
nmi_ipi_unlock_end(&flags);
return ret;
}
#endif /* CONFIG_NMI_IPI */
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
void tick_broadcast(const struct cpumask *mask)
{
unsigned int cpu;
for_each_cpu(cpu, mask)
do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
}
#endif
#ifdef CONFIG_DEBUGGER
void debugger_ipi_callback(struct pt_regs *regs)
{
debugger_ipi(regs);
}
void smp_send_debugger_break(void)
{
smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
}
#endif
#ifdef CONFIG_KEXEC_CORE
void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
{
int cpu;
smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
if (kdump_in_progress() && crash_wake_offline) {
for_each_present_cpu(cpu) {
if (cpu_online(cpu))
continue;
/*
* crash_ipi_callback will wait for
* all cpus, including offline CPUs.
* We don't care about nmi_ipi_function.
* Offline cpus will jump straight into
* crash_ipi_callback, we can skip the
* entire NMI dance and waiting for
* cpus to clear pending mask, etc.
*/
do_smp_send_nmi_ipi(cpu);
}
}
}
#endif
#ifdef CONFIG_NMI_IPI
static void stop_this_cpu(struct pt_regs *regs)
#else
static void stop_this_cpu(void *dummy)
#endif
{
/* Remove this CPU */
set_cpu_online(smp_processor_id(), false);
hard_irq_disable();
spin_begin();
while (1)
spin_cpu_relax();
}
void smp_send_stop(void)
{
#ifdef CONFIG_NMI_IPI
smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, stop_this_cpu, 1000000);
#else
smp_call_function(stop_this_cpu, NULL, 0);
#endif
}
struct thread_info *current_set[NR_CPUS];
static void smp_store_cpu_info(int id)
{
per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
#ifdef CONFIG_PPC_FSL_BOOK3E
per_cpu(next_tlbcam_idx, id)
= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
#endif
}
/*
* Relationships between CPUs are maintained in a set of per-cpu cpumasks so
* rather than just passing around the cpumask we pass around a function that
* returns the that cpumask for the given CPU.
*/
static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
{
cpumask_set_cpu(i, get_cpumask(j));
cpumask_set_cpu(j, get_cpumask(i));
}
#ifdef CONFIG_HOTPLUG_CPU
static void set_cpus_unrelated(int i, int j,
struct cpumask *(*get_cpumask)(int))
{
cpumask_clear_cpu(i, get_cpumask(j));
cpumask_clear_cpu(j, get_cpumask(i));
}
#endif
void __init smp_prepare_cpus(unsigned int max_cpus)
{
unsigned int cpu;
DBG("smp_prepare_cpus\n");
/*
* setup_cpu may need to be called on the boot cpu. We havent
* spun any cpus up but lets be paranoid.
*/
BUG_ON(boot_cpuid != smp_processor_id());
/* Fixup boot cpu */
smp_store_cpu_info(boot_cpuid);
cpu_callin_map[boot_cpuid] = 1;
for_each_possible_cpu(cpu) {
zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
GFP_KERNEL, cpu_to_node(cpu));
zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
GFP_KERNEL, cpu_to_node(cpu));
zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
GFP_KERNEL, cpu_to_node(cpu));
powerpc: reorder per-cpu NUMA information's initialization There is an issue currently where NUMA information is used on powerpc (and possibly ia64) before it has been read from the device-tree, which leads to large slab consumption with CONFIG_SLUB and memoryless nodes. NUMA powerpc non-boot CPU's cpu_to_node/cpu_to_mem is only accurate after start_secondary(), similar to ia64, which is invoked via smp_init(). Commit 6ee0578b4daae ("workqueue: mark init_workqueues() as early_initcall()") made init_workqueues() be invoked via do_pre_smp_initcalls(), which is obviously before the secondary processors are online. Additionally, the following commits changed init_workqueues() to use cpu_to_node to determine the node to use for kthread_create_on_node: bce903809ab3f ("workqueue: add wq_numa_tbl_len and wq_numa_possible_cpumask[]") f3f90ad469342 ("workqueue: determine NUMA node of workers accourding to the allowed cpumask") Therefore, when init_workqueues() runs, it sees all CPUs as being on Node 0. On LPARs or KVM guests where Node 0 is memoryless, this leads to a high number of slab deactivations (http://www.spinics.net/lists/linux-mm/msg67489.html). Fix this by initializing the powerpc-specific CPU<->node/local memory node mapping as early as possible, which on powerpc is do_init_bootmem(). Currently that function initializes the mapping for the boot CPU, but we extend it to setup the mapping for all possible CPUs. Then, in smp_prepare_cpus(), we can correspondingly set the per-cpu values for all possible CPUs. That ensures that before the early_initcalls run (and really as early as possible), the per-cpu NUMA mapping is accurate. While testing memoryless nodes on PowerKVM guests with a fix to the workqueue logic to use cpu_to_mem() instead of cpu_to_node(), with a guest topology of: available: 2 nodes (0-1) node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 node 0 size: 0 MB node 0 free: 0 MB node 1 cpus: 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 node 1 size: 16336 MB node 1 free: 15329 MB node distances: node 0 1 0: 10 40 1: 40 10 the slab consumption decreases from Slab: 932416 kB SUnreclaim: 902336 kB to Slab: 395264 kB SUnreclaim: 359424 kB And we a corresponding increase in the slab efficiency from slab mem objs slabs used active active ------------------------------------------------------------ kmalloc-16384 337 MB 11.28% 100.00% task_struct 288 MB 9.93% 100.00% to slab mem objs slabs used active active ------------------------------------------------------------ kmalloc-16384 37 MB 100.00% 100.00% task_struct 31 MB 100.00% 100.00% Powerpc didn't support memoryless nodes until recently (64bb80d87f01 "powerpc/numa: Enable CONFIG_HAVE_MEMORYLESS_NODES" and 8c272261194d "powerpc/numa: Enable USE_PERCPU_NUMA_NODE_ID"). Those commits also helped improve memory consumption with these kind of environments. Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-07-18 07:15:12 +08:00
/*
* numa_node_id() works after this.
*/
if (cpu_present(cpu)) {
set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
set_cpu_numa_mem(cpu,
local_memory_node(numa_cpu_lookup_table[cpu]));
}
}
/* Init the cpumasks so the boot CPU is related to itself */
cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
if (smp_ops && smp_ops->probe)
smp_ops->probe();
}
void smp_prepare_boot_cpu(void)
{
BUG_ON(smp_processor_id() != boot_cpuid);
#ifdef CONFIG_PPC64
paca_ptrs[boot_cpuid]->__current = current;
#endif
set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
current_set[boot_cpuid] = task_thread_info(current);
}
#ifdef CONFIG_HOTPLUG_CPU
int generic_cpu_disable(void)
{
unsigned int cpu = smp_processor_id();
if (cpu == boot_cpuid)
return -EBUSY;
set_cpu_online(cpu, false);
#ifdef CONFIG_PPC64
vdso_data->processorCount--;
#endif
/* Update affinity of all IRQs previously aimed at this CPU */
irq_migrate_all_off_this_cpu();
/*
* Depending on the details of the interrupt controller, it's possible
* that one of the interrupts we just migrated away from this CPU is
* actually already pending on this CPU. If we leave it in that state
* the interrupt will never be EOI'ed, and will never fire again. So
* temporarily enable interrupts here, to allow any pending interrupt to
* be received (and EOI'ed), before we take this CPU offline.
*/
local_irq_enable();
mdelay(1);
local_irq_disable();
return 0;
}
void generic_cpu_die(unsigned int cpu)
{
int i;
for (i = 0; i < 100; i++) {
smp_rmb();
if (is_cpu_dead(cpu))
return;
msleep(100);
}
printk(KERN_ERR "CPU%d didn't die...\n", cpu);
}
void generic_set_cpu_dead(unsigned int cpu)
{
per_cpu(cpu_state, cpu) = CPU_DEAD;
}
/*
* The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
* the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
* which makes the delay in generic_cpu_die() not happen.
*/
void generic_set_cpu_up(unsigned int cpu)
{
per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
}
int generic_check_cpu_restart(unsigned int cpu)
{
return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
}
int is_cpu_dead(unsigned int cpu)
{
return per_cpu(cpu_state, cpu) == CPU_DEAD;
}
static bool secondaries_inhibited(void)
{
return kvm_hv_mode_active();
}
#else /* HOTPLUG_CPU */
#define secondaries_inhibited() 0
#endif
static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
{
struct thread_info *ti = task_thread_info(idle);
#ifdef CONFIG_PPC64
paca_ptrs[cpu]->__current = idle;
paca_ptrs[cpu]->kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD;
#endif
ti->cpu = cpu;
secondary_ti = current_set[cpu] = ti;
}
int __cpu_up(unsigned int cpu, struct task_struct *tidle)
{
int rc, c;
/*
* Don't allow secondary threads to come online if inhibited
*/
if (threads_per_core > 1 && secondaries_inhibited() &&
cpu_thread_in_subcore(cpu))
return -EBUSY;
if (smp_ops == NULL ||
(smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
return -EINVAL;
cpu_idle_thread_init(cpu, tidle);
/*
* The platform might need to allocate resources prior to bringing
* up the CPU
*/
if (smp_ops->prepare_cpu) {
rc = smp_ops->prepare_cpu(cpu);
if (rc)
return rc;
}
/* Make sure callin-map entry is 0 (can be leftover a CPU
* hotplug
*/
cpu_callin_map[cpu] = 0;
/* The information for processor bringup must
* be written out to main store before we release
* the processor.
*/
smp_mb();
/* wake up cpus */
DBG("smp: kicking cpu %d\n", cpu);
rc = smp_ops->kick_cpu(cpu);
if (rc) {
pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
return rc;
}
/*
* wait to see if the cpu made a callin (is actually up).
* use this value that I found through experimentation.
* -- Cort
*/
if (system_state < SYSTEM_RUNNING)
for (c = 50000; c && !cpu_callin_map[cpu]; c--)
udelay(100);
#ifdef CONFIG_HOTPLUG_CPU
else
/*
* CPUs can take much longer to come up in the
* hotplug case. Wait five seconds.
*/
for (c = 5000; c && !cpu_callin_map[cpu]; c--)
msleep(1);
#endif
if (!cpu_callin_map[cpu]) {
printk(KERN_ERR "Processor %u is stuck.\n", cpu);
return -ENOENT;
}
DBG("Processor %u found.\n", cpu);
if (smp_ops->give_timebase)
smp_ops->give_timebase();
powerpc/smp: Wait until secondaries are active & online Anton has a busy ppc64le KVM box where guests sometimes hit the infamous "kernel BUG at kernel/smpboot.c:134!" issue during boot: BUG_ON(td->cpu != smp_processor_id()); Basically a per CPU hotplug thread scheduled on the wrong CPU. The oops output confirms it: CPU: 0 Comm: watchdog/130 The problem is that we aren't ensuring the CPU active bit is set for the secondary before allowing the master to continue on. The master unparks the secondary CPU's kthreads and the scheduler looks for a CPU to run on. It calls select_task_rq() and realises the suggested CPU is not in the cpus_allowed mask. It then ends up in select_fallback_rq(), and since the active bit isnt't set we choose some other CPU to run on. This seems to have been introduced by 6acbfb96976f "sched: Fix hotplug vs. set_cpus_allowed_ptr()", which changed from setting active before online to setting active after online. However that was in turn fixing a bug where other code assumed an active CPU was also online, so we can't just revert that fix. The simplest fix is just to spin waiting for both active & online to be set. We already have a barrier prior to set_cpu_online() (which also sets active), to ensure all other setup is completed before online & active are set. Fixes: 6acbfb96976f ("sched: Fix hotplug vs. set_cpus_allowed_ptr()") Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Anton Blanchard <anton@samba.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-02-24 14:58:02 +08:00
/* Wait until cpu puts itself in the online & active maps */
spin_until_cond(cpu_online(cpu));
return 0;
}
/* Return the value of the reg property corresponding to the given
* logical cpu.
*/
int cpu_to_core_id(int cpu)
{
struct device_node *np;
const __be32 *reg;
int id = -1;
np = of_get_cpu_node(cpu, NULL);
if (!np)
goto out;
reg = of_get_property(np, "reg", NULL);
if (!reg)
goto out;
id = be32_to_cpup(reg);
out:
of_node_put(np);
return id;
}
EXPORT_SYMBOL_GPL(cpu_to_core_id);
powerpc: Cleanup APIs for cpu/thread/core mappings These APIs take logical cpu number as input Change cpu_first_thread_in_core() to cpu_first_thread_sibling() Change cpu_last_thread_in_core() to cpu_last_thread_sibling() These APIs convert core number (index) to logical cpu/thread numbers Add cpu_first_thread_of_core(int core) Changed cpu_thread_to_core() to cpu_core_index_of_thread(int cpu) The goal is to make 'threads_per_core' accessible to the pseries_energy module. Instead of making an API to read threads_per_core, this is a higher level wrapper function to convert from logical cpu number to core number. The current APIs cpu_first_thread_in_core() and cpu_last_thread_in_core() returns logical CPU number while cpu_thread_to_core() returns core number or index which is not a logical CPU number. The new APIs are now clearly named to distinguish 'core number' versus first and last 'logical cpu number' in that core. The new APIs cpu_{first,last}_thread_sibling() work on logical cpu numbers. While cpu_first_thread_of_core() and cpu_core_index_of_thread() work on core index. Example usage: (4 threads per core system) cpu_first_thread_sibling(5) = 4 cpu_last_thread_sibling(5) = 7 cpu_core_index_of_thread(5) = 1 cpu_first_thread_of_core(1) = 4 cpu_core_index_of_thread() is used in cpu_to_drc_index() in the module and cpu_first_thread_of_core() is used in drc_index_to_cpu() in the module. Make API changes to few callers. Export symbols for use in modules. Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-10-06 16:36:59 +08:00
/* Helper routines for cpu to core mapping */
int cpu_core_index_of_thread(int cpu)
{
return cpu >> threads_shift;
}
EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
int cpu_first_thread_of_core(int core)
{
return core << threads_shift;
}
EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
/* Must be called when no change can occur to cpu_present_mask,
* i.e. during cpu online or offline.
*/
static struct device_node *cpu_to_l2cache(int cpu)
{
struct device_node *np;
struct device_node *cache;
if (!cpu_present(cpu))
return NULL;
np = of_get_cpu_node(cpu, NULL);
if (np == NULL)
return NULL;
cache = of_find_next_cache_node(np);
of_node_put(np);
return cache;
}
static bool update_mask_by_l2(int cpu, struct cpumask *(*mask_fn)(int))
{
struct device_node *l2_cache, *np;
int i;
l2_cache = cpu_to_l2cache(cpu);
if (!l2_cache)
return false;
for_each_cpu(i, cpu_online_mask) {
/*
* when updating the marks the current CPU has not been marked
* online, but we need to update the cache masks
*/
np = cpu_to_l2cache(i);
if (!np)
continue;
if (np == l2_cache)
set_cpus_related(cpu, i, mask_fn);
of_node_put(np);
}
of_node_put(l2_cache);
return true;
}
#ifdef CONFIG_HOTPLUG_CPU
static void remove_cpu_from_masks(int cpu)
{
int i;
/* NB: cpu_core_mask is a superset of the others */
for_each_cpu(i, cpu_core_mask(cpu)) {
set_cpus_unrelated(cpu, i, cpu_core_mask);
set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
set_cpus_unrelated(cpu, i, cpu_sibling_mask);
}
}
#endif
static void add_cpu_to_masks(int cpu)
{
int first_thread = cpu_first_thread_sibling(cpu);
int chipid = cpu_to_chip_id(cpu);
int i;
/*
* This CPU will not be in the online mask yet so we need to manually
* add it to it's own thread sibling mask.
*/
cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
for (i = first_thread; i < first_thread + threads_per_core; i++)
if (cpu_online(i))
set_cpus_related(i, cpu, cpu_sibling_mask);
/*
* Copy the thread sibling mask into the cache sibling mask
* and mark any CPUs that share an L2 with this CPU.
*/
for_each_cpu(i, cpu_sibling_mask(cpu))
set_cpus_related(cpu, i, cpu_l2_cache_mask);
update_mask_by_l2(cpu, cpu_l2_cache_mask);
/*
* Copy the cache sibling mask into core sibling mask and mark
* any CPUs on the same chip as this CPU.
*/
for_each_cpu(i, cpu_l2_cache_mask(cpu))
set_cpus_related(cpu, i, cpu_core_mask);
if (chipid == -1)
return;
for_each_cpu(i, cpu_online_mask)
if (cpu_to_chip_id(i) == chipid)
set_cpus_related(cpu, i, cpu_core_mask);
}
static bool shared_caches;
/* Activate a secondary processor. */
void start_secondary(void *unused)
{
unsigned int cpu = smp_processor_id();
mmgrab(&init_mm);
current->active_mm = &init_mm;
smp_store_cpu_info(cpu);
set_dec(tb_ticks_per_jiffy);
preempt_disable();
cpu_callin_map[cpu] = 1;
if (smp_ops->setup_cpu)
smp_ops->setup_cpu(cpu);
if (smp_ops->take_timebase)
smp_ops->take_timebase();
secondary_cpu_time_init();
#ifdef CONFIG_PPC64
if (system_state == SYSTEM_RUNNING)
vdso_data->processorCount++;
vdso_getcpu_init();
#endif
/* Update topology CPU masks */
add_cpu_to_masks(cpu);
/*
* Check for any shared caches. Note that this must be done on a
* per-core basis because one core in the pair might be disabled.
*/
if (!cpumask_equal(cpu_l2_cache_mask(cpu), cpu_sibling_mask(cpu)))
shared_caches = true;
set_numa_node(numa_cpu_lookup_table[cpu]);
set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
powerpc: Set cpu sibling mask before online cpu It seems following race is possible: cpu0 cpux smp_init->cpu_up->_cpu_up __cpu_up kick_cpu(1) ------------------------------------------------------------------------- waiting online ... ... notify CPU_STARTING set cpux active set cpux online ------------------------------------------------------------------------- finish waiting online ... sched_init_smp init_sched_domains(cpu_active_mask) build_sched_domains set cpux sibling info ------------------------------------------------------------------------- Execution of cpu0 and cpux could be concurrent between two separator lines. So if the cpux sibling information was set too late (normally impossible, but could be triggered by adding some delay in start_secondary, after setting cpu online), build_sched_domains() running on cpu0 might see cpux active, with an empty sibling mask, then cause some bad address accessing like following: [ 0.099855] Unable to handle kernel paging request for data at address 0xc00000038518078f [ 0.099868] Faulting instruction address: 0xc0000000000b7a64 [ 0.099883] Oops: Kernel access of bad area, sig: 11 [#1] [ 0.099895] PREEMPT SMP NR_CPUS=16 DEBUG_PAGEALLOC NUMA pSeries [ 0.099922] Modules linked in: [ 0.099940] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 3.10.0-rc1-00120-gb973425-dirty #16 [ 0.099956] task: c0000001fed80000 ti: c0000001fed7c000 task.ti: c0000001fed7c000 [ 0.099971] NIP: c0000000000b7a64 LR: c0000000000b7a40 CTR: c0000000000b4934 [ 0.099985] REGS: c0000001fed7f760 TRAP: 0300 Not tainted (3.10.0-rc1-00120-gb973425-dirty) [ 0.099997] MSR: 8000000000009032 <SF,EE,ME,IR,DR,RI> CR: 24272828 XER: 20000003 [ 0.100045] SOFTE: 1 [ 0.100053] CFAR: c000000000445ee8 [ 0.100064] DAR: c00000038518078f, DSISR: 40000000 [ 0.100073] GPR00: 0000000000000080 c0000001fed7f9e0 c000000000c84d48 0000000000000010 GPR04: 0000000000000010 0000000000000000 c0000001fc55e090 0000000000000000 GPR08: ffffffffffffffff c000000000b80b30 c000000000c962d8 00000003845ffc5f GPR12: 0000000000000000 c00000000f33d000 c00000000000b9e4 0000000000000000 GPR16: 0000000000000000 0000000000000000 0000000000000001 0000000000000000 GPR20: c000000000ccf750 0000000000000000 c000000000c94d48 c0000001fc504000 GPR24: c0000001fc504000 c0000001fecef848 c000000000c94d48 c000000000ccf000 GPR28: c0000001fc522090 0000000000000010 c0000001fecef848 c0000001fed7fae0 [ 0.100293] NIP [c0000000000b7a64] .get_group+0x84/0xc4 [ 0.100307] LR [c0000000000b7a40] .get_group+0x60/0xc4 [ 0.100318] Call Trace: [ 0.100332] [c0000001fed7f9e0] [c0000000000dbce4] .lock_is_held+0xa8/0xd0 (unreliable) [ 0.100354] [c0000001fed7fa70] [c0000000000bf62c] .build_sched_domains+0x728/0xd14 [ 0.100375] [c0000001fed7fbe0] [c000000000af67bc] .sched_init_smp+0x4fc/0x654 [ 0.100394] [c0000001fed7fce0] [c000000000adce24] .kernel_init_freeable+0x17c/0x30c [ 0.100413] [c0000001fed7fdb0] [c00000000000ba08] .kernel_init+0x24/0x12c [ 0.100431] [c0000001fed7fe30] [c000000000009f74] .ret_from_kernel_thread+0x5c/0x68 [ 0.100445] Instruction dump: [ 0.100456] 38800010 38a00000 4838e3f5 60000000 7c6307b4 2fbf0000 419e0040 3d220001 [ 0.100496] 78601f24 39491590 e93e0008 7d6a002a <7d69582a> f97f0000 7d4a002a e93e0010 [ 0.100559] ---[ end trace 31fd0ba7d8756001 ]--- This patch tries to move the sibling maps updating before notify_cpu_starting() and cpu online, and a write barrier there to make sure sibling maps are updated before active and online mask. Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com> Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-05-16 18:20:26 +08:00
smp_wmb();
notify_cpu_starting(cpu);
set_cpu_online(cpu, true);
local_irq_enable();
cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
BUG();
}
int setup_profiling_timer(unsigned int multiplier)
{
return 0;
}
#ifdef CONFIG_SCHED_SMT
/* cpumask of CPUs with asymetric SMT dependancy */
sched: Fix compiler warnings Commit 143e1e28cb (sched: Rework sched_domain topology definition) introduced a number of functions with a return value of 'const int'. gcc doesn't know what to do with that and, if the kernel is compiled with W=1, complains with the following warnings whenever sched.h is included. include/linux/sched.h:875:25: warning: type qualifiers ignored on function return type include/linux/sched.h:882:25: warning: type qualifiers ignored on function return type include/linux/sched.h:889:25: warning: type qualifiers ignored on function return type include/linux/sched.h:1002:21: warning: type qualifiers ignored on function return type Commits fb2aa855 (sched, ARM: Create a dedicated scheduler topology table) and 607b45e9a (sched, powerpc: Create a dedicated topology table) introduce the same warning in the arm and powerpc code. Drop 'const' from the function declarations to fix the problem. The fix for all three patches has to be applied together to avoid compilation failures for the affected architectures. Acked-by: Vincent Guittot <vincent.guittot@linaro.org> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Guenter Roeck <linux@roeck-us.net> Cc: Russell King <linux@arm.linux.org.uk> Cc: Paul Mackerras <paulus@samba.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1403658329-13196-1-git-send-email-linux@roeck-us.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-25 09:05:29 +08:00
static int powerpc_smt_flags(void)
{
sched: Rename capacity related flags It is better not to think about compute capacity as being equivalent to "CPU power". The upcoming "power aware" scheduler work may create confusion with the notion of energy consumption if "power" is used too liberally. Let's rename the following feature flags since they do relate to capacity: SD_SHARE_CPUPOWER -> SD_SHARE_CPUCAPACITY ARCH_POWER -> ARCH_CAPACITY NONTASK_POWER -> NONTASK_CAPACITY Signed-off-by: Nicolas Pitre <nico@linaro.org> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: linaro-kernel@lists.linaro.org Cc: Andy Fleming <afleming@freescale.com> Cc: Anton Blanchard <anton@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Grant Likely <grant.likely@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com> Cc: Rob Herring <robh+dt@kernel.org> Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Vasant Hegde <hegdevasant@linux.vnet.ibm.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: devicetree@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: linuxppc-dev@lists.ozlabs.org Link: http://lkml.kernel.org/n/tip-e93lpnxb87owfievqatey6b5@git.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-05-28 01:50:41 +08:00
int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
flags |= SD_ASYM_PACKING;
}
return flags;
}
#endif
static struct sched_domain_topology_level powerpc_topology[] = {
#ifdef CONFIG_SCHED_SMT
{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
#endif
{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
{ NULL, },
};
/*
* P9 has a slightly odd architecture where pairs of cores share an L2 cache.
* This topology makes it *much* cheaper to migrate tasks between adjacent cores
* since the migrated task remains cache hot. We want to take advantage of this
* at the scheduler level so an extra topology level is required.
*/
static int powerpc_shared_cache_flags(void)
{
return SD_SHARE_PKG_RESOURCES;
}
/*
* We can't just pass cpu_l2_cache_mask() directly because
* returns a non-const pointer and the compiler barfs on that.
*/
static const struct cpumask *shared_cache_mask(int cpu)
{
return cpu_l2_cache_mask(cpu);
}
static struct sched_domain_topology_level power9_topology[] = {
#ifdef CONFIG_SCHED_SMT
{ cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
#endif
{ shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
{ NULL, },
};
powerpc/smp: Replace open coded task affinity logic Init task invokes smp_ops->setup_cpu() from smp_cpus_done(). Init task can run on any online CPU at this point, but the setup_cpu() callback requires to be invoked on the boot CPU. This is achieved by temporarily setting the affinity of the calling user space thread to the requested CPU and reset it to the original affinity afterwards. That's racy vs. CPU hotplug and concurrent affinity settings for that thread resulting in code executing on the wrong CPU and overwriting the new affinity setting. That's actually not a problem in this context as neither CPU hotplug nor affinity settings can happen, but the access to task_struct::cpus_allowed is about to restricted. Replace it with a call to work_on_cpu_safe() which achieves the same result. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Michael Ellerman <mpe@ellerman.id.au> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: Tejun Heo <tj@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: linuxppc-dev@lists.ozlabs.org Cc: "David S. Miller" <davem@davemloft.net> Cc: Len Brown <lenb@kernel.org> Link: http://lkml.kernel.org/r/20170412201042.518053336@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-04-13 04:07:31 +08:00
void __init smp_cpus_done(unsigned int max_cpus)
{
/*
powerpc/smp: Call smp_ops->setup_cpu() directly on the boot CPU In smp_cpus_done() we need to call smp_ops->setup_cpu() for the boot CPU, which means it has to run *on* the boot CPU. In the past we ensured it ran on the boot CPU by changing the CPU affinity mask of current directly. That was removed in commit 6d11b87d55eb ("powerpc/smp: Replace open coded task affinity logic"), and replaced with a work queue call. Unfortunately using a work queue leads to a lockdep warning, now that the CPU hotplug lock is a regular semaphore: ====================================================== WARNING: possible circular locking dependency detected ... kworker/0:1/971 is trying to acquire lock: (cpu_hotplug_lock.rw_sem){++++++}, at: [<c000000000100974>] apply_workqueue_attrs+0x34/0xa0 but task is already holding lock: ((&wfc.work)){+.+.+.}, at: [<c0000000000fdb2c>] process_one_work+0x25c/0x800 ... CPU0 CPU1 ---- ---- lock((&wfc.work)); lock(cpu_hotplug_lock.rw_sem); lock((&wfc.work)); lock(cpu_hotplug_lock.rw_sem); Although the deadlock can't happen in practice, because smp_cpus_done() only runs in early boot before CPU hotplug is allowed, lockdep can't tell that. Luckily in commit 8fb12156b8db ("init: Pin init task to the boot CPU, initially") tglx changed the generic code to pin init to the boot CPU to begin with. The unpinning of init from the boot CPU happens in sched_init_smp(), which is called after smp_cpus_done(). So smp_cpus_done() is always called on the boot CPU, which means we don't need the work queue call at all - and the lockdep warning goes away. Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2017-07-27 21:23:37 +08:00
* We are running pinned to the boot CPU, see rest_init().
*/
if (smp_ops && smp_ops->setup_cpu)
powerpc/smp: Call smp_ops->setup_cpu() directly on the boot CPU In smp_cpus_done() we need to call smp_ops->setup_cpu() for the boot CPU, which means it has to run *on* the boot CPU. In the past we ensured it ran on the boot CPU by changing the CPU affinity mask of current directly. That was removed in commit 6d11b87d55eb ("powerpc/smp: Replace open coded task affinity logic"), and replaced with a work queue call. Unfortunately using a work queue leads to a lockdep warning, now that the CPU hotplug lock is a regular semaphore: ====================================================== WARNING: possible circular locking dependency detected ... kworker/0:1/971 is trying to acquire lock: (cpu_hotplug_lock.rw_sem){++++++}, at: [<c000000000100974>] apply_workqueue_attrs+0x34/0xa0 but task is already holding lock: ((&wfc.work)){+.+.+.}, at: [<c0000000000fdb2c>] process_one_work+0x25c/0x800 ... CPU0 CPU1 ---- ---- lock((&wfc.work)); lock(cpu_hotplug_lock.rw_sem); lock((&wfc.work)); lock(cpu_hotplug_lock.rw_sem); Although the deadlock can't happen in practice, because smp_cpus_done() only runs in early boot before CPU hotplug is allowed, lockdep can't tell that. Luckily in commit 8fb12156b8db ("init: Pin init task to the boot CPU, initially") tglx changed the generic code to pin init to the boot CPU to begin with. The unpinning of init from the boot CPU happens in sched_init_smp(), which is called after smp_cpus_done(). So smp_cpus_done() is always called on the boot CPU, which means we don't need the work queue call at all - and the lockdep warning goes away. Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2017-07-27 21:23:37 +08:00
smp_ops->setup_cpu(boot_cpuid);
if (smp_ops && smp_ops->bringup_done)
smp_ops->bringup_done();
dump_numa_cpu_topology();
/*
* If any CPU detects that it's sharing a cache with another CPU then
* use the deeper topology that is aware of this sharing.
*/
if (shared_caches) {
pr_info("Using shared cache scheduler topology\n");
set_sched_topology(power9_topology);
} else {
pr_info("Using standard scheduler topology\n");
set_sched_topology(powerpc_topology);
}
}
#ifdef CONFIG_HOTPLUG_CPU
int __cpu_disable(void)
{
int cpu = smp_processor_id();
int err;
if (!smp_ops->cpu_disable)
return -ENOSYS;
err = smp_ops->cpu_disable();
if (err)
return err;
/* Update sibling maps */
remove_cpu_from_masks(cpu);
return 0;
}
void __cpu_die(unsigned int cpu)
{
if (smp_ops->cpu_die)
smp_ops->cpu_die(cpu);
}
void cpu_die(void)
{
if (ppc_md.cpu_die)
ppc_md.cpu_die();
/* If we return, we re-enter start_secondary */
start_secondary_resume();
}
#endif