linux/drivers/clocksource/dw_apb_timer.c

390 lines
11 KiB
C
Raw Normal View History

/*
* (C) Copyright 2009 Intel Corporation
* Author: Jacob Pan (jacob.jun.pan@intel.com)
*
* Shared with ARM platforms, Jamie Iles, Picochip 2011
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Support for the Synopsys DesignWare APB Timers.
*/
#include <linux/dw_apb_timer.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/slab.h>
#define APBT_MIN_PERIOD 4
#define APBT_MIN_DELTA_USEC 200
#define APBTMR_N_LOAD_COUNT 0x00
#define APBTMR_N_CURRENT_VALUE 0x04
#define APBTMR_N_CONTROL 0x08
#define APBTMR_N_EOI 0x0c
#define APBTMR_N_INT_STATUS 0x10
#define APBTMRS_INT_STATUS 0xa0
#define APBTMRS_EOI 0xa4
#define APBTMRS_RAW_INT_STATUS 0xa8
#define APBTMRS_COMP_VERSION 0xac
#define APBTMR_CONTROL_ENABLE (1 << 0)
/* 1: periodic, 0:free running. */
#define APBTMR_CONTROL_MODE_PERIODIC (1 << 1)
#define APBTMR_CONTROL_INT (1 << 2)
static inline struct dw_apb_clock_event_device *
ced_to_dw_apb_ced(struct clock_event_device *evt)
{
return container_of(evt, struct dw_apb_clock_event_device, ced);
}
static inline struct dw_apb_clocksource *
clocksource_to_dw_apb_clocksource(struct clocksource *cs)
{
return container_of(cs, struct dw_apb_clocksource, cs);
}
static unsigned long apbt_readl(struct dw_apb_timer *timer, unsigned long offs)
{
return readl(timer->base + offs);
}
static void apbt_writel(struct dw_apb_timer *timer, unsigned long val,
unsigned long offs)
{
writel(val, timer->base + offs);
}
static void apbt_disable_int(struct dw_apb_timer *timer)
{
unsigned long ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
ctrl |= APBTMR_CONTROL_INT;
apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
}
/**
* dw_apb_clockevent_pause() - stop the clock_event_device from running
*
* @dw_ced: The APB clock to stop generating events.
*/
void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced)
{
disable_irq(dw_ced->timer.irq);
apbt_disable_int(&dw_ced->timer);
}
static void apbt_eoi(struct dw_apb_timer *timer)
{
apbt_readl(timer, APBTMR_N_EOI);
}
static irqreturn_t dw_apb_clockevent_irq(int irq, void *data)
{
struct clock_event_device *evt = data;
struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
if (!evt->event_handler) {
pr_info("Spurious APBT timer interrupt %d", irq);
return IRQ_NONE;
}
if (dw_ced->eoi)
dw_ced->eoi(&dw_ced->timer);
evt->event_handler(evt);
return IRQ_HANDLED;
}
static void apbt_enable_int(struct dw_apb_timer *timer)
{
unsigned long ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
/* clear pending intr */
apbt_readl(timer, APBTMR_N_EOI);
ctrl &= ~APBTMR_CONTROL_INT;
apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
}
static void apbt_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt)
{
unsigned long ctrl;
unsigned long period;
struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
pr_debug("%s CPU %d mode=%d\n", __func__,
cpumask_first(evt->cpumask),
mode);
switch (mode) {
case CLOCK_EVT_MODE_PERIODIC:
period = DIV_ROUND_UP(dw_ced->timer.freq, HZ);
ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
/*
* DW APB p. 46, have to disable timer before load counter,
* may cause sync problem.
*/
ctrl &= ~APBTMR_CONTROL_ENABLE;
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
udelay(1);
pr_debug("Setting clock period %lu for HZ %d\n", period, HZ);
apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT);
ctrl |= APBTMR_CONTROL_ENABLE;
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
break;
case CLOCK_EVT_MODE_ONESHOT:
ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
/*
* set free running mode, this mode will let timer reload max
* timeout which will give time (3min on 25MHz clock) to rearm
* the next event, therefore emulate the one-shot mode.
*/
ctrl &= ~APBTMR_CONTROL_ENABLE;
ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
/* write again to set free running mode */
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
/*
* DW APB p. 46, load counter with all 1s before starting free
* running mode.
*/
apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT);
ctrl &= ~APBTMR_CONTROL_INT;
ctrl |= APBTMR_CONTROL_ENABLE;
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
break;
case CLOCK_EVT_MODE_UNUSED:
case CLOCK_EVT_MODE_SHUTDOWN:
ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
ctrl &= ~APBTMR_CONTROL_ENABLE;
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
break;
case CLOCK_EVT_MODE_RESUME:
apbt_enable_int(&dw_ced->timer);
break;
}
}
static int apbt_next_event(unsigned long delta,
struct clock_event_device *evt)
{
unsigned long ctrl;
struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
/* Disable timer */
ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
ctrl &= ~APBTMR_CONTROL_ENABLE;
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
/* write new count */
apbt_writel(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT);
ctrl |= APBTMR_CONTROL_ENABLE;
apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
return 0;
}
/**
* dw_apb_clockevent_init() - use an APB timer as a clock_event_device
*
* @cpu: The CPU the events will be targeted at.
* @name: The name used for the timer and the IRQ for it.
* @rating: The rating to give the timer.
* @base: I/O base for the timer registers.
* @irq: The interrupt number to use for the timer.
* @freq: The frequency that the timer counts at.
*
* This creates a clock_event_device for using with the generic clock layer
* but does not start and register it. This should be done with
* dw_apb_clockevent_register() as the next step. If this is the first time
* it has been called for a timer then the IRQ will be requested, if not it
* just be enabled to allow CPU hotplug to avoid repeatedly requesting and
* releasing the IRQ.
*/
struct dw_apb_clock_event_device *
dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
void __iomem *base, int irq, unsigned long freq)
{
struct dw_apb_clock_event_device *dw_ced =
kzalloc(sizeof(*dw_ced), GFP_KERNEL);
int err;
if (!dw_ced)
return NULL;
dw_ced->timer.base = base;
dw_ced->timer.irq = irq;
dw_ced->timer.freq = freq;
clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD);
dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff,
&dw_ced->ced);
dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced);
dw_ced->ced.cpumask = cpumask_of(cpu);
dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
dw_ced->ced.set_mode = apbt_set_mode;
dw_ced->ced.set_next_event = apbt_next_event;
dw_ced->ced.irq = dw_ced->timer.irq;
dw_ced->ced.rating = rating;
dw_ced->ced.name = name;
dw_ced->irqaction.name = dw_ced->ced.name;
dw_ced->irqaction.handler = dw_apb_clockevent_irq;
dw_ced->irqaction.dev_id = &dw_ced->ced;
dw_ced->irqaction.irq = irq;
dw_ced->irqaction.flags = IRQF_TIMER | IRQF_IRQPOLL |
IRQF_NOBALANCING;
dw_ced->eoi = apbt_eoi;
err = setup_irq(irq, &dw_ced->irqaction);
if (err) {
pr_err("failed to request timer irq\n");
kfree(dw_ced);
dw_ced = NULL;
}
return dw_ced;
}
/**
* dw_apb_clockevent_resume() - resume a clock that has been paused.
*
* @dw_ced: The APB clock to resume.
*/
void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced)
{
enable_irq(dw_ced->timer.irq);
}
/**
* dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ.
*
* @dw_ced: The APB clock to stop generating the events.
*/
void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced)
{
free_irq(dw_ced->timer.irq, &dw_ced->ced);
}
/**
* dw_apb_clockevent_register() - register the clock with the generic layer
*
* @dw_ced: The APB clock to register as a clock_event_device.
*/
void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced)
{
apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL);
clockevents_register_device(&dw_ced->ced);
apbt_enable_int(&dw_ced->timer);
}
/**
* dw_apb_clocksource_start() - start the clocksource counting.
*
* @dw_cs: The clocksource to start.
*
* This is used to start the clocksource before registration and can be used
* to enable calibration of timers.
*/
void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs)
{
/*
* start count down from 0xffff_ffff. this is done by toggling the
* enable bit then load initial load count to ~0.
*/
unsigned long ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL);
ctrl &= ~APBTMR_CONTROL_ENABLE;
apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT);
/* enable, mask interrupt */
ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
/* read it once to get cached counter value initialized */
dw_apb_clocksource_read(dw_cs);
}
static cycle_t __apbt_read_clocksource(struct clocksource *cs)
{
unsigned long current_count;
struct dw_apb_clocksource *dw_cs =
clocksource_to_dw_apb_clocksource(cs);
current_count = apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
return (cycle_t)~current_count;
}
static void apbt_restart_clocksource(struct clocksource *cs)
{
struct dw_apb_clocksource *dw_cs =
clocksource_to_dw_apb_clocksource(cs);
dw_apb_clocksource_start(dw_cs);
}
/**
* dw_apb_clocksource_init() - use an APB timer as a clocksource.
*
* @rating: The rating to give the clocksource.
* @name: The name for the clocksource.
* @base: The I/O base for the timer registers.
* @freq: The frequency that the timer counts at.
*
* This creates a clocksource using an APB timer but does not yet register it
* with the clocksource system. This should be done with
* dw_apb_clocksource_register() as the next step.
*/
struct dw_apb_clocksource *
dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base,
unsigned long freq)
{
struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL);
if (!dw_cs)
return NULL;
dw_cs->timer.base = base;
dw_cs->timer.freq = freq;
dw_cs->cs.name = name;
dw_cs->cs.rating = rating;
dw_cs->cs.read = __apbt_read_clocksource;
dw_cs->cs.mask = CLOCKSOURCE_MASK(32);
dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
dw_cs->cs.resume = apbt_restart_clocksource;
return dw_cs;
}
/**
* dw_apb_clocksource_register() - register the APB clocksource.
*
* @dw_cs: The clocksource to register.
*/
void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs)
{
clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq);
}
/**
* dw_apb_clocksource_read() - read the current value of a clocksource.
*
* @dw_cs: The clocksource to read.
*/
cycle_t dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs)
{
return (cycle_t)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
}