linux/arch/arm/mach-orion5x/pci.c

602 lines
15 KiB
C
Raw Normal View History

/*
* arch/arm/mach-orion5x/pci.c
*
* PCI and PCIe functions for Marvell Orion System On Chip
*
* Maintainer: Tzachi Perelstein <tzachi@marvell.com>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/kernel.h>
#include <linux/pci.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/mbus.h>
#include <asm/irq.h>
#include <asm/mach/pci.h>
#include <plat/pcie.h>
#include "common.h"
/*****************************************************************************
* Orion has one PCIe controller and one PCI controller.
*
* Note1: The local PCIe bus number is '0'. The local PCI bus number
* follows the scanned PCIe bridged busses, if any.
*
* Note2: It is possible for PCI/PCIe agents to access many subsystem's
* space, by configuring BARs and Address Decode Windows, e.g. flashes on
* device bus, Orion registers, etc. However this code only enable the
* access to DDR banks.
****************************************************************************/
/*****************************************************************************
* PCIe controller
****************************************************************************/
#define PCIE_BASE ((void __iomem *)ORION5X_PCIE_VIRT_BASE)
void __init orion5x_pcie_id(u32 *dev, u32 *rev)
{
*dev = orion_pcie_dev_id(PCIE_BASE);
*rev = orion_pcie_rev(PCIE_BASE);
}
static int pcie_valid_config(int bus, int dev)
{
/*
* Don't go out when trying to access --
* 1. nonexisting device on local bus
* 2. where there's no device connected (no link)
*/
if (bus == 0 && dev == 0)
return 1;
if (!orion_pcie_link_up(PCIE_BASE))
return 0;
if (bus == 0 && dev != 1)
return 0;
return 1;
}
/*
* PCIe config cycles are done by programming the PCIE_CONF_ADDR register
* and then reading the PCIE_CONF_DATA register. Need to make sure these
* transactions are atomic.
*/
static DEFINE_SPINLOCK(orion5x_pcie_lock);
static int pcie_rd_conf(struct pci_bus *bus, u32 devfn, int where,
int size, u32 *val)
{
unsigned long flags;
int ret;
if (pcie_valid_config(bus->number, PCI_SLOT(devfn)) == 0) {
*val = 0xffffffff;
return PCIBIOS_DEVICE_NOT_FOUND;
}
spin_lock_irqsave(&orion5x_pcie_lock, flags);
ret = orion_pcie_rd_conf(PCIE_BASE, bus, devfn, where, size, val);
spin_unlock_irqrestore(&orion5x_pcie_lock, flags);
return ret;
}
static int pcie_rd_conf_wa(struct pci_bus *bus, u32 devfn,
int where, int size, u32 *val)
{
int ret;
if (pcie_valid_config(bus->number, PCI_SLOT(devfn)) == 0) {
*val = 0xffffffff;
return PCIBIOS_DEVICE_NOT_FOUND;
}
/*
* We only support access to the non-extended configuration
* space when using the WA access method (or we would have to
* sacrifice 256M of CPU virtual address space.)
*/
if (where >= 0x100) {
*val = 0xffffffff;
return PCIBIOS_DEVICE_NOT_FOUND;
}
ret = orion_pcie_rd_conf_wa((void __iomem *)ORION5X_PCIE_WA_VIRT_BASE,
bus, devfn, where, size, val);
return ret;
}
static int pcie_wr_conf(struct pci_bus *bus, u32 devfn,
int where, int size, u32 val)
{
unsigned long flags;
int ret;
if (pcie_valid_config(bus->number, PCI_SLOT(devfn)) == 0)
return PCIBIOS_DEVICE_NOT_FOUND;
spin_lock_irqsave(&orion5x_pcie_lock, flags);
ret = orion_pcie_wr_conf(PCIE_BASE, bus, devfn, where, size, val);
spin_unlock_irqrestore(&orion5x_pcie_lock, flags);
return ret;
}
static struct pci_ops pcie_ops = {
.read = pcie_rd_conf,
.write = pcie_wr_conf,
};
static int __init pcie_setup(struct pci_sys_data *sys)
{
struct resource *res;
int dev;
/*
* Generic PCIe unit setup.
*/
orion_pcie_setup(PCIE_BASE, &orion5x_mbus_dram_info);
/*
* Check whether to apply Orion-1/Orion-NAS PCIe config
* read transaction workaround.
*/
dev = orion_pcie_dev_id(PCIE_BASE);
if (dev == MV88F5181_DEV_ID || dev == MV88F5182_DEV_ID) {
printk(KERN_NOTICE "Applying Orion-1/Orion-NAS PCIe config "
"read transaction workaround\n");
orion5x_setup_pcie_wa_win(ORION5X_PCIE_WA_PHYS_BASE,
ORION5X_PCIE_WA_SIZE);
pcie_ops.read = pcie_rd_conf_wa;
}
/*
* Request resources.
*/
res = kzalloc(sizeof(struct resource) * 2, GFP_KERNEL);
if (!res)
panic("pcie_setup unable to alloc resources");
/*
* IORESOURCE_IO
*/
res[0].name = "PCIe I/O Space";
res[0].flags = IORESOURCE_IO;
res[0].start = ORION5X_PCIE_IO_BUS_BASE;
res[0].end = res[0].start + ORION5X_PCIE_IO_SIZE - 1;
if (request_resource(&ioport_resource, &res[0]))
panic("Request PCIe IO resource failed\n");
sys->resource[0] = &res[0];
/*
* IORESOURCE_MEM
*/
res[1].name = "PCIe Memory Space";
res[1].flags = IORESOURCE_MEM;
res[1].start = ORION5X_PCIE_MEM_PHYS_BASE;
res[1].end = res[1].start + ORION5X_PCIE_MEM_SIZE - 1;
if (request_resource(&iomem_resource, &res[1]))
panic("Request PCIe Memory resource failed\n");
sys->resource[1] = &res[1];
sys->resource[2] = NULL;
sys->io_offset = 0;
return 1;
}
/*****************************************************************************
* PCI controller
****************************************************************************/
#define ORION5X_PCI_REG(x) (ORION5X_PCI_VIRT_BASE | (x))
#define PCI_MODE ORION5X_PCI_REG(0xd00)
#define PCI_CMD ORION5X_PCI_REG(0xc00)
#define PCI_P2P_CONF ORION5X_PCI_REG(0x1d14)
#define PCI_CONF_ADDR ORION5X_PCI_REG(0xc78)
#define PCI_CONF_DATA ORION5X_PCI_REG(0xc7c)
/*
* PCI_MODE bits
*/
#define PCI_MODE_64BIT (1 << 2)
#define PCI_MODE_PCIX ((1 << 4) | (1 << 5))
/*
* PCI_CMD bits
*/
#define PCI_CMD_HOST_REORDER (1 << 29)
/*
* PCI_P2P_CONF bits
*/
#define PCI_P2P_BUS_OFFS 16
#define PCI_P2P_BUS_MASK (0xff << PCI_P2P_BUS_OFFS)
#define PCI_P2P_DEV_OFFS 24
#define PCI_P2P_DEV_MASK (0x1f << PCI_P2P_DEV_OFFS)
/*
* PCI_CONF_ADDR bits
*/
#define PCI_CONF_REG(reg) ((reg) & 0xfc)
#define PCI_CONF_FUNC(func) (((func) & 0x3) << 8)
#define PCI_CONF_DEV(dev) (((dev) & 0x1f) << 11)
#define PCI_CONF_BUS(bus) (((bus) & 0xff) << 16)
#define PCI_CONF_ADDR_EN (1 << 31)
/*
* Internal configuration space
*/
#define PCI_CONF_FUNC_STAT_CMD 0
#define PCI_CONF_REG_STAT_CMD 4
#define PCIX_STAT 0x64
#define PCIX_STAT_BUS_OFFS 8
#define PCIX_STAT_BUS_MASK (0xff << PCIX_STAT_BUS_OFFS)
/*
* PCI Address Decode Windows registers
*/
#define PCI_BAR_SIZE_DDR_CS(n) (((n) == 0) ? ORION5X_PCI_REG(0xc08) : \
((n) == 1) ? ORION5X_PCI_REG(0xd08) : \
((n) == 2) ? ORION5X_PCI_REG(0xc0c) : \
((n) == 3) ? ORION5X_PCI_REG(0xd0c) : 0)
#define PCI_BAR_REMAP_DDR_CS(n) (((n) == 0) ? ORION5X_PCI_REG(0xc48) : \
((n) == 1) ? ORION5X_PCI_REG(0xd48) : \
((n) == 2) ? ORION5X_PCI_REG(0xc4c) : \
((n) == 3) ? ORION5X_PCI_REG(0xd4c) : 0)
#define PCI_BAR_ENABLE ORION5X_PCI_REG(0xc3c)
#define PCI_ADDR_DECODE_CTRL ORION5X_PCI_REG(0xd3c)
/*
* PCI configuration helpers for BAR settings
*/
#define PCI_CONF_FUNC_BAR_CS(n) ((n) >> 1)
#define PCI_CONF_REG_BAR_LO_CS(n) (((n) & 1) ? 0x18 : 0x10)
#define PCI_CONF_REG_BAR_HI_CS(n) (((n) & 1) ? 0x1c : 0x14)
/*
* PCI config cycles are done by programming the PCI_CONF_ADDR register
* and then reading the PCI_CONF_DATA register. Need to make sure these
* transactions are atomic.
*/
static DEFINE_SPINLOCK(orion5x_pci_lock);
static int orion5x_pci_cardbus_mode;
static int orion5x_pci_local_bus_nr(void)
{
u32 conf = readl(PCI_P2P_CONF);
return((conf & PCI_P2P_BUS_MASK) >> PCI_P2P_BUS_OFFS);
}
static int orion5x_pci_hw_rd_conf(int bus, int dev, u32 func,
u32 where, u32 size, u32 *val)
{
unsigned long flags;
spin_lock_irqsave(&orion5x_pci_lock, flags);
writel(PCI_CONF_BUS(bus) |
PCI_CONF_DEV(dev) | PCI_CONF_REG(where) |
PCI_CONF_FUNC(func) | PCI_CONF_ADDR_EN, PCI_CONF_ADDR);
*val = readl(PCI_CONF_DATA);
if (size == 1)
*val = (*val >> (8*(where & 0x3))) & 0xff;
else if (size == 2)
*val = (*val >> (8*(where & 0x3))) & 0xffff;
spin_unlock_irqrestore(&orion5x_pci_lock, flags);
return PCIBIOS_SUCCESSFUL;
}
static int orion5x_pci_hw_wr_conf(int bus, int dev, u32 func,
u32 where, u32 size, u32 val)
{
unsigned long flags;
int ret = PCIBIOS_SUCCESSFUL;
spin_lock_irqsave(&orion5x_pci_lock, flags);
writel(PCI_CONF_BUS(bus) |
PCI_CONF_DEV(dev) | PCI_CONF_REG(where) |
PCI_CONF_FUNC(func) | PCI_CONF_ADDR_EN, PCI_CONF_ADDR);
if (size == 4) {
__raw_writel(val, PCI_CONF_DATA);
} else if (size == 2) {
__raw_writew(val, PCI_CONF_DATA + (where & 0x3));
} else if (size == 1) {
__raw_writeb(val, PCI_CONF_DATA + (where & 0x3));
} else {
ret = PCIBIOS_BAD_REGISTER_NUMBER;
}
spin_unlock_irqrestore(&orion5x_pci_lock, flags);
return ret;
}
static int orion5x_pci_valid_config(int bus, u32 devfn)
{
if (bus == orion5x_pci_local_bus_nr()) {
/*
* Don't go out for local device
*/
if (PCI_SLOT(devfn) == 0 && PCI_FUNC(devfn) != 0)
return 0;
/*
* When the PCI signals are directly connected to a
* Cardbus slot, ignore all but device IDs 0 and 1.
*/
if (orion5x_pci_cardbus_mode && PCI_SLOT(devfn) > 1)
return 0;
}
return 1;
}
static int orion5x_pci_rd_conf(struct pci_bus *bus, u32 devfn,
int where, int size, u32 *val)
{
if (!orion5x_pci_valid_config(bus->number, devfn)) {
*val = 0xffffffff;
return PCIBIOS_DEVICE_NOT_FOUND;
}
return orion5x_pci_hw_rd_conf(bus->number, PCI_SLOT(devfn),
PCI_FUNC(devfn), where, size, val);
}
static int orion5x_pci_wr_conf(struct pci_bus *bus, u32 devfn,
int where, int size, u32 val)
{
if (!orion5x_pci_valid_config(bus->number, devfn))
return PCIBIOS_DEVICE_NOT_FOUND;
return orion5x_pci_hw_wr_conf(bus->number, PCI_SLOT(devfn),
PCI_FUNC(devfn), where, size, val);
}
static struct pci_ops pci_ops = {
.read = orion5x_pci_rd_conf,
.write = orion5x_pci_wr_conf,
};
static void __init orion5x_pci_set_bus_nr(int nr)
{
u32 p2p = readl(PCI_P2P_CONF);
if (readl(PCI_MODE) & PCI_MODE_PCIX) {
/*
* PCI-X mode
*/
u32 pcix_status, bus, dev;
bus = (p2p & PCI_P2P_BUS_MASK) >> PCI_P2P_BUS_OFFS;
dev = (p2p & PCI_P2P_DEV_MASK) >> PCI_P2P_DEV_OFFS;
orion5x_pci_hw_rd_conf(bus, dev, 0, PCIX_STAT, 4, &pcix_status);
pcix_status &= ~PCIX_STAT_BUS_MASK;
pcix_status |= (nr << PCIX_STAT_BUS_OFFS);
orion5x_pci_hw_wr_conf(bus, dev, 0, PCIX_STAT, 4, pcix_status);
} else {
/*
* PCI Conventional mode
*/
p2p &= ~PCI_P2P_BUS_MASK;
p2p |= (nr << PCI_P2P_BUS_OFFS);
writel(p2p, PCI_P2P_CONF);
}
}
static void __init orion5x_pci_master_slave_enable(void)
{
int bus_nr, func, reg;
u32 val;
bus_nr = orion5x_pci_local_bus_nr();
func = PCI_CONF_FUNC_STAT_CMD;
reg = PCI_CONF_REG_STAT_CMD;
orion5x_pci_hw_rd_conf(bus_nr, 0, func, reg, 4, &val);
val |= (PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
orion5x_pci_hw_wr_conf(bus_nr, 0, func, reg, 4, val | 0x7);
}
static void __init orion5x_setup_pci_wins(struct mbus_dram_target_info *dram)
{
u32 win_enable;
int bus;
int i;
/*
* First, disable windows.
*/
win_enable = 0xffffffff;
writel(win_enable, PCI_BAR_ENABLE);
/*
* Setup windows for DDR banks.
*/
bus = orion5x_pci_local_bus_nr();
for (i = 0; i < dram->num_cs; i++) {
struct mbus_dram_window *cs = dram->cs + i;
u32 func = PCI_CONF_FUNC_BAR_CS(cs->cs_index);
u32 reg;
u32 val;
/*
* Write DRAM bank base address register.
*/
reg = PCI_CONF_REG_BAR_LO_CS(cs->cs_index);
orion5x_pci_hw_rd_conf(bus, 0, func, reg, 4, &val);
val = (cs->base & 0xfffff000) | (val & 0xfff);
orion5x_pci_hw_wr_conf(bus, 0, func, reg, 4, val);
/*
* Write DRAM bank size register.
*/
reg = PCI_CONF_REG_BAR_HI_CS(cs->cs_index);
orion5x_pci_hw_wr_conf(bus, 0, func, reg, 4, 0);
writel((cs->size - 1) & 0xfffff000,
PCI_BAR_SIZE_DDR_CS(cs->cs_index));
writel(cs->base & 0xfffff000,
PCI_BAR_REMAP_DDR_CS(cs->cs_index));
/*
* Enable decode window for this chip select.
*/
win_enable &= ~(1 << cs->cs_index);
}
/*
* Re-enable decode windows.
*/
writel(win_enable, PCI_BAR_ENABLE);
/*
* Disable automatic update of address remapping when writing to BARs.
*/
orion5x_setbits(PCI_ADDR_DECODE_CTRL, 1);
}
static int __init pci_setup(struct pci_sys_data *sys)
{
struct resource *res;
/*
* Point PCI unit MBUS decode windows to DRAM space.
*/
orion5x_setup_pci_wins(&orion5x_mbus_dram_info);
/*
* Master + Slave enable
*/
orion5x_pci_master_slave_enable();
/*
* Force ordering
*/
orion5x_setbits(PCI_CMD, PCI_CMD_HOST_REORDER);
/*
* Request resources
*/
res = kzalloc(sizeof(struct resource) * 2, GFP_KERNEL);
if (!res)
panic("pci_setup unable to alloc resources");
/*
* IORESOURCE_IO
*/
res[0].name = "PCI I/O Space";
res[0].flags = IORESOURCE_IO;
res[0].start = ORION5X_PCI_IO_BUS_BASE;
res[0].end = res[0].start + ORION5X_PCI_IO_SIZE - 1;
if (request_resource(&ioport_resource, &res[0]))
panic("Request PCI IO resource failed\n");
sys->resource[0] = &res[0];
/*
* IORESOURCE_MEM
*/
res[1].name = "PCI Memory Space";
res[1].flags = IORESOURCE_MEM;
res[1].start = ORION5X_PCI_MEM_PHYS_BASE;
res[1].end = res[1].start + ORION5X_PCI_MEM_SIZE - 1;
if (request_resource(&iomem_resource, &res[1]))
panic("Request PCI Memory resource failed\n");
sys->resource[1] = &res[1];
sys->resource[2] = NULL;
sys->io_offset = 0;
return 1;
}
/*****************************************************************************
* General PCIe + PCI
****************************************************************************/
static void __devinit rc_pci_fixup(struct pci_dev *dev)
{
/*
* Prevent enumeration of root complex.
*/
if (dev->bus->parent == NULL && dev->devfn == 0) {
int i;
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
dev->resource[i].start = 0;
dev->resource[i].end = 0;
dev->resource[i].flags = 0;
}
}
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MARVELL, PCI_ANY_ID, rc_pci_fixup);
static int orion5x_pci_disabled __initdata;
void __init orion5x_pci_disable(void)
{
orion5x_pci_disabled = 1;
}
void __init orion5x_pci_set_cardbus_mode(void)
{
orion5x_pci_cardbus_mode = 1;
}
int __init orion5x_pci_sys_setup(int nr, struct pci_sys_data *sys)
{
int ret = 0;
if (nr == 0) {
orion_pcie_set_local_bus_nr(PCIE_BASE, sys->busnr);
ret = pcie_setup(sys);
} else if (nr == 1 && !orion5x_pci_disabled) {
orion5x_pci_set_bus_nr(sys->busnr);
ret = pci_setup(sys);
}
return ret;
}
struct pci_bus __init *orion5x_pci_sys_scan_bus(int nr, struct pci_sys_data *sys)
{
struct pci_bus *bus;
if (nr == 0) {
bus = pci_scan_bus(sys->busnr, &pcie_ops, sys);
} else if (nr == 1 && !orion5x_pci_disabled) {
bus = pci_scan_bus(sys->busnr, &pci_ops, sys);
} else {
bus = NULL;
BUG();
}
return bus;
}
int __init orion5x_pci_map_irq(struct pci_dev *dev, u8 slot, u8 pin)
{
int bus = dev->bus->number;
/*
* PCIe endpoint?
*/
if (orion5x_pci_disabled || bus < orion5x_pci_local_bus_nr())
return IRQ_ORION5X_PCIE0_INT;
return -1;
}