2005-04-17 06:20:36 +08:00
|
|
|
/*
|
2009-03-26 22:23:52 +08:00
|
|
|
* This file handles the architecture dependent parts of process handling.
|
2005-04-17 06:20:36 +08:00
|
|
|
*
|
2009-03-26 22:23:52 +08:00
|
|
|
* Copyright IBM Corp. 1999,2009
|
|
|
|
* Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
|
|
|
|
* Hartmut Penner <hp@de.ibm.com>,
|
|
|
|
* Denis Joseph Barrow,
|
2005-04-17 06:20:36 +08:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/compiler.h>
|
|
|
|
#include <linux/cpu.h>
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/sched.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/mm.h>
|
2007-07-30 06:36:13 +08:00
|
|
|
#include <linux/fs.h>
|
2005-04-17 06:20:36 +08:00
|
|
|
#include <linux/smp.h>
|
|
|
|
#include <linux/stddef.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
|
|
|
#include <linux/slab.h>
|
2005-04-17 06:20:36 +08:00
|
|
|
#include <linux/unistd.h>
|
|
|
|
#include <linux/ptrace.h>
|
|
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include <linux/user.h>
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/delay.h>
|
|
|
|
#include <linux/reboot.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/notifier.h>
|
2008-04-17 13:46:25 +08:00
|
|
|
#include <linux/tick.h>
|
2008-04-17 13:46:26 +08:00
|
|
|
#include <linux/elfcore.h>
|
2008-12-31 22:11:40 +08:00
|
|
|
#include <linux/kernel_stat.h>
|
2009-01-14 21:14:36 +08:00
|
|
|
#include <linux/syscalls.h>
|
2009-09-23 04:58:42 +08:00
|
|
|
#include <linux/compat.h>
|
2009-06-12 16:26:25 +08:00
|
|
|
#include <asm/compat.h>
|
2005-04-17 06:20:36 +08:00
|
|
|
#include <asm/uaccess.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
|
|
#include <asm/system.h>
|
|
|
|
#include <asm/io.h>
|
|
|
|
#include <asm/processor.h>
|
|
|
|
#include <asm/irq.h>
|
|
|
|
#include <asm/timer.h>
|
2009-03-26 22:24:01 +08:00
|
|
|
#include <asm/nmi.h>
|
2008-04-17 13:46:26 +08:00
|
|
|
#include "entry.h"
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2006-09-28 22:56:43 +08:00
|
|
|
asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Return saved PC of a blocked thread. used in kernel/sched.
|
|
|
|
* resume in entry.S does not create a new stack frame, it
|
|
|
|
* just stores the registers %r6-%r15 to the frame given by
|
|
|
|
* schedule. We want to return the address of the caller of
|
|
|
|
* schedule, so we have to walk the backchain one time to
|
|
|
|
* find the frame schedule() store its return address.
|
|
|
|
*/
|
|
|
|
unsigned long thread_saved_pc(struct task_struct *tsk)
|
|
|
|
{
|
2006-01-15 05:20:57 +08:00
|
|
|
struct stack_frame *sf, *low, *high;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2006-01-15 05:20:57 +08:00
|
|
|
if (!tsk || !task_stack_page(tsk))
|
|
|
|
return 0;
|
|
|
|
low = task_stack_page(tsk);
|
|
|
|
high = (struct stack_frame *) task_pt_regs(tsk);
|
|
|
|
sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
|
|
|
|
if (sf <= low || sf > high)
|
|
|
|
return 0;
|
|
|
|
sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
|
|
|
|
if (sf <= low || sf > high)
|
|
|
|
return 0;
|
2005-04-17 06:20:36 +08:00
|
|
|
return sf->gprs[8];
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The idle loop on a S390...
|
|
|
|
*/
|
2006-03-24 19:15:57 +08:00
|
|
|
static void default_idle(void)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
[PATCH] sched: resched and cpu_idle rework
Make some changes to the NEED_RESCHED and POLLING_NRFLAG to reduce
confusion, and make their semantics rigid. Improves efficiency of
resched_task and some cpu_idle routines.
* In resched_task:
- TIF_NEED_RESCHED is only cleared with the task's runqueue lock held,
and as we hold it during resched_task, then there is no need for an
atomic test and set there. The only other time this should be set is
when the task's quantum expires, in the timer interrupt - this is
protected against because the rq lock is irq-safe.
- If TIF_NEED_RESCHED is set, then we don't need to do anything. It
won't get unset until the task get's schedule()d off.
- If we are running on the same CPU as the task we resched, then set
TIF_NEED_RESCHED and no further action is required.
- If we are running on another CPU, and TIF_POLLING_NRFLAG is *not* set
after TIF_NEED_RESCHED has been set, then we need to send an IPI.
Using these rules, we are able to remove the test and set operation in
resched_task, and make clear the previously vague semantics of
POLLING_NRFLAG.
* In idle routines:
- Enter cpu_idle with preempt disabled. When the need_resched() condition
becomes true, explicitly call schedule(). This makes things a bit clearer
(IMO), but haven't updated all architectures yet.
- Many do a test and clear of TIF_NEED_RESCHED for some reason. According
to the resched_task rules, this isn't needed (and actually breaks the
assumption that TIF_NEED_RESCHED is only cleared with the runqueue lock
held). So remove that. Generally one less locked memory op when switching
to the idle thread.
- Many idle routines clear TIF_POLLING_NRFLAG, and only set it in the inner
most polling idle loops. The above resched_task semantics allow it to be
set until before the last time need_resched() is checked before going into
a halt requiring interrupt wakeup.
Many idle routines simply never enter such a halt, and so POLLING_NRFLAG
can be always left set, completely eliminating resched IPIs when rescheduling
the idle task.
POLLING_NRFLAG width can be increased, to reduce the chance of resched IPIs.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Con Kolivas <kernel@kolivas.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-09 13:39:04 +08:00
|
|
|
/* CPU is going idle. */
|
2005-04-17 06:20:36 +08:00
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
2008-04-17 13:46:23 +08:00
|
|
|
if (cpu_is_offline(smp_processor_id())) {
|
2006-02-18 05:52:46 +08:00
|
|
|
preempt_enable_no_resched();
|
2005-04-17 06:20:36 +08:00
|
|
|
cpu_die();
|
2006-02-18 05:52:46 +08:00
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
#endif
|
2010-10-25 22:10:12 +08:00
|
|
|
local_irq_disable();
|
|
|
|
if (need_resched()) {
|
|
|
|
local_irq_enable();
|
|
|
|
return;
|
|
|
|
}
|
2005-06-26 05:55:30 +08:00
|
|
|
local_mcck_disable();
|
|
|
|
if (test_thread_flag(TIF_MCCK_PENDING)) {
|
|
|
|
local_mcck_enable();
|
|
|
|
local_irq_enable();
|
|
|
|
s390_handle_mcck();
|
|
|
|
return;
|
|
|
|
}
|
2006-07-03 15:24:46 +08:00
|
|
|
trace_hardirqs_on();
|
2008-11-15 01:18:04 +08:00
|
|
|
/* Don't trace preempt off for idle. */
|
|
|
|
stop_critical_timings();
|
2008-12-31 22:11:41 +08:00
|
|
|
/* Stop virtual timer and halt the cpu. */
|
|
|
|
vtime_stop_cpu();
|
|
|
|
/* Reenable preemption tracer. */
|
2008-11-15 01:18:04 +08:00
|
|
|
start_critical_timings();
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void cpu_idle(void)
|
|
|
|
{
|
2005-11-09 13:39:01 +08:00
|
|
|
for (;;) {
|
2008-07-19 15:33:21 +08:00
|
|
|
tick_nohz_stop_sched_tick(1);
|
2005-11-09 13:39:01 +08:00
|
|
|
while (!need_resched())
|
|
|
|
default_idle();
|
2008-04-17 13:46:25 +08:00
|
|
|
tick_nohz_restart_sched_tick();
|
2005-11-09 13:39:01 +08:00
|
|
|
preempt_enable_no_resched();
|
|
|
|
schedule();
|
|
|
|
preempt_disable();
|
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
extern void kernel_thread_starter(void);
|
|
|
|
|
2006-09-28 22:56:43 +08:00
|
|
|
asm(
|
|
|
|
".align 4\n"
|
2005-04-17 06:20:36 +08:00
|
|
|
"kernel_thread_starter:\n"
|
|
|
|
" la 2,0(10)\n"
|
|
|
|
" basr 14,9\n"
|
|
|
|
" la 2,0\n"
|
|
|
|
" br 11\n");
|
|
|
|
|
|
|
|
int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
|
|
|
|
{
|
|
|
|
struct pt_regs regs;
|
|
|
|
|
|
|
|
memset(®s, 0, sizeof(regs));
|
2007-02-06 04:18:17 +08:00
|
|
|
regs.psw.mask = psw_kernel_bits | PSW_MASK_IO | PSW_MASK_EXT;
|
2005-04-17 06:20:36 +08:00
|
|
|
regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE;
|
|
|
|
regs.gprs[9] = (unsigned long) fn;
|
|
|
|
regs.gprs[10] = (unsigned long) arg;
|
|
|
|
regs.gprs[11] = (unsigned long) do_exit;
|
|
|
|
regs.orig_gpr2 = -1;
|
|
|
|
|
|
|
|
/* Ok, create the new process.. */
|
|
|
|
return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
|
|
|
|
0, ®s, 0, NULL, NULL);
|
|
|
|
}
|
2009-03-26 22:24:04 +08:00
|
|
|
EXPORT_SYMBOL(kernel_thread);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Free current thread data structures etc..
|
|
|
|
*/
|
|
|
|
void exit_thread(void)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
void flush_thread(void)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
void release_thread(struct task_struct *dead_task)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2009-04-03 07:56:59 +08:00
|
|
|
int copy_thread(unsigned long clone_flags, unsigned long new_stackp,
|
2009-03-26 22:23:52 +08:00
|
|
|
unsigned long unused,
|
|
|
|
struct task_struct *p, struct pt_regs *regs)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2009-03-26 22:23:53 +08:00
|
|
|
struct thread_info *ti;
|
2009-03-26 22:23:52 +08:00
|
|
|
struct fake_frame
|
|
|
|
{
|
|
|
|
struct stack_frame sf;
|
|
|
|
struct pt_regs childregs;
|
|
|
|
} *frame;
|
|
|
|
|
|
|
|
frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
|
|
|
|
p->thread.ksp = (unsigned long) frame;
|
2005-04-17 06:20:36 +08:00
|
|
|
/* Store access registers to kernel stack of new process. */
|
2009-03-26 22:23:52 +08:00
|
|
|
frame->childregs = *regs;
|
2005-04-17 06:20:36 +08:00
|
|
|
frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */
|
2009-03-26 22:23:52 +08:00
|
|
|
frame->childregs.gprs[15] = new_stackp;
|
|
|
|
frame->sf.back_chain = 0;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2009-03-26 22:23:52 +08:00
|
|
|
/* new return point is ret_from_fork */
|
|
|
|
frame->sf.gprs[8] = (unsigned long) ret_from_fork;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2009-03-26 22:23:52 +08:00
|
|
|
/* fake return stack for resume(), don't go back to schedule */
|
|
|
|
frame->sf.gprs[9] = (unsigned long) frame;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
/* Save access registers to new thread structure. */
|
|
|
|
save_access_regs(&p->thread.acrs[0]);
|
|
|
|
|
2006-01-06 16:19:28 +08:00
|
|
|
#ifndef CONFIG_64BIT
|
2009-03-26 22:23:52 +08:00
|
|
|
/*
|
2005-04-17 06:20:36 +08:00
|
|
|
* save fprs to current->thread.fp_regs to merge them with
|
|
|
|
* the emulated registers and then copy the result to the child.
|
|
|
|
*/
|
|
|
|
save_fp_regs(¤t->thread.fp_regs);
|
|
|
|
memcpy(&p->thread.fp_regs, ¤t->thread.fp_regs,
|
|
|
|
sizeof(s390_fp_regs));
|
|
|
|
/* Set a new TLS ? */
|
|
|
|
if (clone_flags & CLONE_SETTLS)
|
|
|
|
p->thread.acrs[0] = regs->gprs[6];
|
2006-01-06 16:19:28 +08:00
|
|
|
#else /* CONFIG_64BIT */
|
2005-04-17 06:20:36 +08:00
|
|
|
/* Save the fpu registers to new thread structure. */
|
|
|
|
save_fp_regs(&p->thread.fp_regs);
|
|
|
|
/* Set a new TLS ? */
|
|
|
|
if (clone_flags & CLONE_SETTLS) {
|
2009-06-12 16:26:25 +08:00
|
|
|
if (is_compat_task()) {
|
2005-04-17 06:20:36 +08:00
|
|
|
p->thread.acrs[0] = (unsigned int) regs->gprs[6];
|
|
|
|
} else {
|
|
|
|
p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
|
|
|
|
p->thread.acrs[1] = (unsigned int) regs->gprs[6];
|
|
|
|
}
|
|
|
|
}
|
2006-01-06 16:19:28 +08:00
|
|
|
#endif /* CONFIG_64BIT */
|
2005-04-17 06:20:36 +08:00
|
|
|
/* start new process with ar4 pointing to the correct address space */
|
|
|
|
p->thread.mm_segment = get_fs();
|
2009-03-26 22:23:52 +08:00
|
|
|
/* Don't copy debug registers */
|
|
|
|
memset(&p->thread.per_info, 0, sizeof(p->thread.per_info));
|
2010-01-14 03:44:26 +08:00
|
|
|
clear_tsk_thread_flag(p, TIF_SINGLE_STEP);
|
2009-03-26 22:23:53 +08:00
|
|
|
/* Initialize per thread user and system timer values */
|
|
|
|
ti = task_thread_info(p);
|
|
|
|
ti->user_timer = 0;
|
|
|
|
ti->system_timer = 0;
|
2009-03-26 22:23:52 +08:00
|
|
|
return 0;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2009-01-14 21:14:36 +08:00
|
|
|
SYSCALL_DEFINE0(fork)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2007-04-27 22:01:40 +08:00
|
|
|
struct pt_regs *regs = task_pt_regs(current);
|
|
|
|
return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2009-09-23 04:58:41 +08:00
|
|
|
SYSCALL_DEFINE4(clone, unsigned long, newsp, unsigned long, clone_flags,
|
|
|
|
int __user *, parent_tidptr, int __user *, child_tidptr)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2007-04-27 22:01:40 +08:00
|
|
|
struct pt_regs *regs = task_pt_regs(current);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2007-04-27 22:01:40 +08:00
|
|
|
if (!newsp)
|
|
|
|
newsp = regs->gprs[15];
|
|
|
|
return do_fork(clone_flags, newsp, regs, 0,
|
2005-04-17 06:20:36 +08:00
|
|
|
parent_tidptr, child_tidptr);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is trivial, and on the face of it looks like it
|
|
|
|
* could equally well be done in user mode.
|
|
|
|
*
|
|
|
|
* Not so, for quite unobvious reasons - register pressure.
|
|
|
|
* In user mode vfork() cannot have a stack frame, and if
|
|
|
|
* done by calling the "clone()" system call directly, you
|
|
|
|
* do not have enough call-clobbered registers to hold all
|
|
|
|
* the information you need.
|
|
|
|
*/
|
2009-01-14 21:14:36 +08:00
|
|
|
SYSCALL_DEFINE0(vfork)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2007-04-27 22:01:40 +08:00
|
|
|
struct pt_regs *regs = task_pt_regs(current);
|
2005-04-17 06:20:36 +08:00
|
|
|
return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
|
2007-04-27 22:01:40 +08:00
|
|
|
regs->gprs[15], regs, 0, NULL, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
asmlinkage void execve_tail(void)
|
|
|
|
{
|
|
|
|
current->thread.fp_regs.fpc = 0;
|
|
|
|
if (MACHINE_HAS_IEEE)
|
|
|
|
asm volatile("sfpc %0,%0" : : "d" (0));
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* sys_execve() executes a new program.
|
|
|
|
*/
|
2010-08-18 06:52:56 +08:00
|
|
|
SYSCALL_DEFINE3(execve, const char __user *, name,
|
|
|
|
const char __user *const __user *, argv,
|
|
|
|
const char __user *const __user *, envp)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2007-04-27 22:01:40 +08:00
|
|
|
struct pt_regs *regs = task_pt_regs(current);
|
|
|
|
char *filename;
|
2009-09-23 04:58:42 +08:00
|
|
|
long rc;
|
2007-04-27 22:01:40 +08:00
|
|
|
|
2009-09-23 04:58:42 +08:00
|
|
|
filename = getname(name);
|
|
|
|
rc = PTR_ERR(filename);
|
|
|
|
if (IS_ERR(filename))
|
|
|
|
return rc;
|
|
|
|
rc = do_execve(filename, argv, envp, regs);
|
|
|
|
if (rc)
|
2007-04-27 22:01:40 +08:00
|
|
|
goto out;
|
|
|
|
execve_tail();
|
2009-09-23 04:58:42 +08:00
|
|
|
rc = regs->gprs[2];
|
2005-04-17 06:20:36 +08:00
|
|
|
out:
|
2009-09-23 04:58:42 +08:00
|
|
|
putname(filename);
|
|
|
|
return rc;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* fill in the FPU structure for a core dump.
|
|
|
|
*/
|
|
|
|
int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
|
|
|
|
{
|
2006-01-06 16:19:28 +08:00
|
|
|
#ifndef CONFIG_64BIT
|
2009-03-26 22:23:52 +08:00
|
|
|
/*
|
2005-04-17 06:20:36 +08:00
|
|
|
* save fprs to current->thread.fp_regs to merge them with
|
|
|
|
* the emulated registers and then copy the result to the dump.
|
|
|
|
*/
|
|
|
|
save_fp_regs(¤t->thread.fp_regs);
|
|
|
|
memcpy(fpregs, ¤t->thread.fp_regs, sizeof(s390_fp_regs));
|
2006-01-06 16:19:28 +08:00
|
|
|
#else /* CONFIG_64BIT */
|
2005-04-17 06:20:36 +08:00
|
|
|
save_fp_regs(fpregs);
|
2006-01-06 16:19:28 +08:00
|
|
|
#endif /* CONFIG_64BIT */
|
2005-04-17 06:20:36 +08:00
|
|
|
return 1;
|
|
|
|
}
|
2009-03-26 22:24:04 +08:00
|
|
|
EXPORT_SYMBOL(dump_fpu);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
unsigned long get_wchan(struct task_struct *p)
|
|
|
|
{
|
|
|
|
struct stack_frame *sf, *low, *high;
|
|
|
|
unsigned long return_address;
|
|
|
|
int count;
|
|
|
|
|
2006-01-12 17:05:50 +08:00
|
|
|
if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
|
2005-04-17 06:20:36 +08:00
|
|
|
return 0;
|
2006-01-12 17:05:50 +08:00
|
|
|
low = task_stack_page(p);
|
|
|
|
high = (struct stack_frame *) task_pt_regs(p);
|
2005-04-17 06:20:36 +08:00
|
|
|
sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
|
|
|
|
if (sf <= low || sf > high)
|
|
|
|
return 0;
|
|
|
|
for (count = 0; count < 16; count++) {
|
|
|
|
sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
|
|
|
|
if (sf <= low || sf > high)
|
|
|
|
return 0;
|
|
|
|
return_address = sf->gprs[8] & PSW_ADDR_INSN;
|
|
|
|
if (!in_sched_functions(return_address))
|
|
|
|
return return_address;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|