2018-09-20 08:42:55 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/* Copyright (c) 2018, Intel Corporation. */
|
|
|
|
|
|
|
|
#include "ice.h"
|
|
|
|
#include "ice_lib.h"
|
|
|
|
|
2018-09-20 08:42:57 +08:00
|
|
|
/**
|
|
|
|
* ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
|
|
|
|
* @pf: pointer to the PF structure
|
|
|
|
* @v_opcode: operation code
|
|
|
|
* @v_retval: return value
|
|
|
|
* @msg: pointer to the msg buffer
|
|
|
|
* @msglen: msg length
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
|
|
|
|
enum ice_status v_retval, u8 *msg, u16 msglen)
|
|
|
|
{
|
|
|
|
struct ice_hw *hw = &pf->hw;
|
|
|
|
struct ice_vf *vf = pf->vf;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < pf->num_alloc_vfs; i++, vf++) {
|
|
|
|
/* Not all vfs are enabled so skip the ones that are not */
|
|
|
|
if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
|
|
|
|
!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/* Ignore return value on purpose - a given VF may fail, but
|
|
|
|
* we need to keep going and send to all of them
|
|
|
|
*/
|
|
|
|
ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
|
|
|
|
msglen, NULL);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-09-20 08:42:58 +08:00
|
|
|
/**
|
|
|
|
* ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
|
|
|
|
* @vf: pointer to the VF structure
|
|
|
|
* @pfe: pointer to the virtchnl_pf_event to set link speed/status for
|
|
|
|
* @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
|
|
|
|
* @link_up: whether or not to set the link up/down
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
|
|
|
|
int ice_link_speed, bool link_up)
|
|
|
|
{
|
|
|
|
if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
|
|
|
|
pfe->event_data.link_event_adv.link_status = link_up;
|
|
|
|
/* Speed in Mbps */
|
|
|
|
pfe->event_data.link_event_adv.link_speed =
|
|
|
|
ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
|
|
|
|
} else {
|
|
|
|
pfe->event_data.link_event.link_status = link_up;
|
|
|
|
/* Legacy method for virtchnl link speeds */
|
|
|
|
pfe->event_data.link_event.link_speed =
|
|
|
|
(enum virtchnl_link_speed)
|
|
|
|
ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ice_set_pfe_link_forced - Force the virtchnl_pf_event link speed/status
|
|
|
|
* @vf: pointer to the VF structure
|
|
|
|
* @pfe: pointer to the virtchnl_pf_event to set link speed/status for
|
|
|
|
* @link_up: whether or not to set the link up/down
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
ice_set_pfe_link_forced(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
|
|
|
|
bool link_up)
|
|
|
|
{
|
|
|
|
u16 link_speed;
|
|
|
|
|
|
|
|
if (link_up)
|
|
|
|
link_speed = ICE_AQ_LINK_SPEED_40GB;
|
|
|
|
else
|
|
|
|
link_speed = ICE_AQ_LINK_SPEED_UNKNOWN;
|
|
|
|
|
|
|
|
ice_set_pfe_link(vf, pfe, link_speed, link_up);
|
|
|
|
}
|
|
|
|
|
2018-09-20 08:42:55 +08:00
|
|
|
/**
|
|
|
|
* ice_get_vf_vector - get VF interrupt vector register offset
|
|
|
|
* @vf_msix: number of MSIx vector per VF on a PF
|
|
|
|
* @vf_id: VF identifier
|
|
|
|
* @i: index of MSIx vector
|
|
|
|
*/
|
|
|
|
static u32 ice_get_vf_vector(int vf_msix, int vf_id, int i)
|
|
|
|
{
|
|
|
|
return ((i == 0) ? VFINT_DYN_CTLN(vf_id) :
|
|
|
|
VFINT_DYN_CTLN(((vf_msix - 1) * (vf_id)) + (i - 1)));
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ice_free_vf_res - Free a VF's resources
|
|
|
|
* @vf: pointer to the VF info
|
|
|
|
*/
|
|
|
|
static void ice_free_vf_res(struct ice_vf *vf)
|
|
|
|
{
|
|
|
|
struct ice_pf *pf = vf->pf;
|
|
|
|
int i, pf_vf_msix;
|
|
|
|
|
|
|
|
/* First, disable VF's configuration API to prevent OS from
|
|
|
|
* accessing the VF's VSI after it's freed or invalidated.
|
|
|
|
*/
|
|
|
|
clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
|
|
|
|
|
|
|
|
/* free vsi & disconnect it from the parent uplink */
|
|
|
|
if (vf->lan_vsi_idx) {
|
|
|
|
ice_vsi_release(pf->vsi[vf->lan_vsi_idx]);
|
|
|
|
vf->lan_vsi_idx = 0;
|
|
|
|
vf->lan_vsi_num = 0;
|
|
|
|
vf->num_mac = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
pf_vf_msix = pf->num_vf_msix;
|
|
|
|
/* Disable interrupts so that VF starts in a known state */
|
|
|
|
for (i = 0; i < pf_vf_msix; i++) {
|
|
|
|
u32 reg_idx;
|
|
|
|
|
|
|
|
reg_idx = ice_get_vf_vector(pf_vf_msix, vf->vf_id, i);
|
|
|
|
wr32(&pf->hw, reg_idx, VFINT_DYN_CTLN_CLEARPBA_M);
|
|
|
|
ice_flush(&pf->hw);
|
|
|
|
}
|
|
|
|
/* reset some of the state variables keeping track of the resources */
|
|
|
|
clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
|
|
|
|
clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
|
|
|
|
}
|
|
|
|
|
|
|
|
/***********************enable_vf routines*****************************/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ice_dis_vf_mappings
|
|
|
|
* @vf: pointer to the VF structure
|
|
|
|
*/
|
|
|
|
static void ice_dis_vf_mappings(struct ice_vf *vf)
|
|
|
|
{
|
|
|
|
struct ice_pf *pf = vf->pf;
|
|
|
|
struct ice_vsi *vsi;
|
|
|
|
int first, last, v;
|
|
|
|
struct ice_hw *hw;
|
|
|
|
|
|
|
|
hw = &pf->hw;
|
|
|
|
vsi = pf->vsi[vf->lan_vsi_idx];
|
|
|
|
|
|
|
|
wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
|
|
|
|
|
|
|
|
first = vf->first_vector_idx;
|
|
|
|
last = first + pf->num_vf_msix - 1;
|
|
|
|
for (v = first; v <= last; v++) {
|
|
|
|
u32 reg;
|
|
|
|
|
|
|
|
reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) &
|
|
|
|
GLINT_VECT2FUNC_IS_PF_M) |
|
|
|
|
((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
|
|
|
|
GLINT_VECT2FUNC_PF_NUM_M));
|
|
|
|
wr32(hw, GLINT_VECT2FUNC(v), reg);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
|
|
|
|
wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
|
|
|
|
else
|
|
|
|
dev_err(&pf->pdev->dev,
|
|
|
|
"Scattered mode for VF Tx queues is not yet implemented\n");
|
|
|
|
|
|
|
|
if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
|
|
|
|
wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
|
|
|
|
else
|
|
|
|
dev_err(&pf->pdev->dev,
|
|
|
|
"Scattered mode for VF Rx queues is not yet implemented\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ice_free_vfs - Free all VFs
|
|
|
|
* @pf: pointer to the PF structure
|
|
|
|
*/
|
|
|
|
void ice_free_vfs(struct ice_pf *pf)
|
|
|
|
{
|
|
|
|
struct ice_hw *hw = &pf->hw;
|
|
|
|
int tmp, i;
|
|
|
|
|
|
|
|
if (!pf->vf)
|
|
|
|
return;
|
|
|
|
|
|
|
|
while (test_and_set_bit(__ICE_VF_DIS, pf->state))
|
|
|
|
usleep_range(1000, 2000);
|
|
|
|
|
|
|
|
/* Avoid wait time by stopping all VFs at the same time */
|
|
|
|
for (i = 0; i < pf->num_alloc_vfs; i++) {
|
|
|
|
if (!test_bit(ICE_VF_STATE_ENA, pf->vf[i].vf_states))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/* stop rings without wait time */
|
|
|
|
ice_vsi_stop_tx_rings(pf->vsi[pf->vf[i].lan_vsi_idx],
|
|
|
|
ICE_NO_RESET, i);
|
|
|
|
ice_vsi_stop_rx_rings(pf->vsi[pf->vf[i].lan_vsi_idx]);
|
|
|
|
|
|
|
|
clear_bit(ICE_VF_STATE_ENA, pf->vf[i].vf_states);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Disable IOV before freeing resources. This lets any VF drivers
|
|
|
|
* running in the host get themselves cleaned up before we yank
|
|
|
|
* the carpet out from underneath their feet.
|
|
|
|
*/
|
|
|
|
if (!pci_vfs_assigned(pf->pdev))
|
|
|
|
pci_disable_sriov(pf->pdev);
|
|
|
|
else
|
|
|
|
dev_warn(&pf->pdev->dev, "VFs are assigned - not disabling SR-IOV\n");
|
|
|
|
|
|
|
|
tmp = pf->num_alloc_vfs;
|
|
|
|
pf->num_vf_qps = 0;
|
|
|
|
pf->num_alloc_vfs = 0;
|
|
|
|
for (i = 0; i < tmp; i++) {
|
|
|
|
if (test_bit(ICE_VF_STATE_INIT, pf->vf[i].vf_states)) {
|
|
|
|
/* disable VF qp mappings */
|
|
|
|
ice_dis_vf_mappings(&pf->vf[i]);
|
|
|
|
|
|
|
|
/* Set this state so that assigned VF vectors can be
|
|
|
|
* reclaimed by PF for reuse in ice_vsi_release(). No
|
|
|
|
* need to clear this bit since pf->vf array is being
|
|
|
|
* freed anyways after this for loop
|
|
|
|
*/
|
|
|
|
set_bit(ICE_VF_STATE_CFG_INTR, pf->vf[i].vf_states);
|
|
|
|
ice_free_vf_res(&pf->vf[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
devm_kfree(&pf->pdev->dev, pf->vf);
|
|
|
|
pf->vf = NULL;
|
|
|
|
|
|
|
|
/* This check is for when the driver is unloaded while VFs are
|
|
|
|
* assigned. Setting the number of VFs to 0 through sysfs is caught
|
|
|
|
* before this function ever gets called.
|
|
|
|
*/
|
|
|
|
if (!pci_vfs_assigned(pf->pdev)) {
|
|
|
|
int vf_id;
|
|
|
|
|
|
|
|
/* Acknowledge VFLR for all VFs. Without this, VFs will fail to
|
|
|
|
* work correctly when SR-IOV gets re-enabled.
|
|
|
|
*/
|
|
|
|
for (vf_id = 0; vf_id < tmp; vf_id++) {
|
|
|
|
u32 reg_idx, bit_idx;
|
|
|
|
|
|
|
|
reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32;
|
|
|
|
bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32;
|
|
|
|
wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
clear_bit(__ICE_VF_DIS, pf->state);
|
|
|
|
clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ice_trigger_vf_reset - Reset a VF on HW
|
|
|
|
* @vf: pointer to the VF structure
|
|
|
|
* @is_vflr: true if VFLR was issued, false if not
|
|
|
|
*
|
|
|
|
* Trigger hardware to start a reset for a particular VF. Expects the caller
|
|
|
|
* to wait the proper amount of time to allow hardware to reset the VF before
|
|
|
|
* it cleans up and restores VF functionality.
|
|
|
|
*/
|
|
|
|
static void ice_trigger_vf_reset(struct ice_vf *vf, bool is_vflr)
|
|
|
|
{
|
|
|
|
struct ice_pf *pf = vf->pf;
|
|
|
|
u32 reg, reg_idx, bit_idx;
|
|
|
|
struct ice_hw *hw;
|
|
|
|
int vf_abs_id, i;
|
|
|
|
|
|
|
|
hw = &pf->hw;
|
|
|
|
vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
|
|
|
|
|
|
|
|
/* Inform VF that it is no longer active, as a warning */
|
|
|
|
clear_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
|
|
|
|
|
|
|
|
/* Disable VF's configuration API during reset. The flag is re-enabled
|
|
|
|
* in ice_alloc_vf_res(), when it's safe again to access VF's VSI.
|
|
|
|
* It's normally disabled in ice_free_vf_res(), but it's safer
|
|
|
|
* to do it earlier to give some time to finish to any VF config
|
|
|
|
* functions that may still be running at this point.
|
|
|
|
*/
|
|
|
|
clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
|
|
|
|
|
|
|
|
/* In the case of a VFLR, the HW has already reset the VF and we
|
|
|
|
* just need to clean up, so don't hit the VFRTRIG register.
|
|
|
|
*/
|
|
|
|
if (!is_vflr) {
|
|
|
|
/* reset VF using VPGEN_VFRTRIG reg */
|
|
|
|
reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
|
|
|
|
reg |= VPGEN_VFRTRIG_VFSWR_M;
|
|
|
|
wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
|
|
|
|
}
|
|
|
|
/* clear the VFLR bit in GLGEN_VFLRSTAT */
|
|
|
|
reg_idx = (vf_abs_id) / 32;
|
|
|
|
bit_idx = (vf_abs_id) % 32;
|
|
|
|
wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
|
|
|
|
ice_flush(hw);
|
|
|
|
|
|
|
|
wr32(hw, PF_PCI_CIAA,
|
|
|
|
VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
|
|
reg = rd32(hw, PF_PCI_CIAD);
|
|
|
|
if ((reg & VF_TRANS_PENDING_M) != 0)
|
|
|
|
dev_err(&pf->pdev->dev,
|
|
|
|
"VF %d PCI transactions stuck\n", vf->vf_id);
|
|
|
|
udelay(1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ice_vsi_set_pvid - Set port VLAN id for the VSI
|
|
|
|
* @vsi: the VSI being changed
|
|
|
|
* @vid: the VLAN id to set as a PVID
|
|
|
|
*/
|
|
|
|
static int ice_vsi_set_pvid(struct ice_vsi *vsi, u16 vid)
|
|
|
|
{
|
|
|
|
struct device *dev = &vsi->back->pdev->dev;
|
|
|
|
struct ice_hw *hw = &vsi->back->hw;
|
|
|
|
struct ice_vsi_ctx ctxt = { 0 };
|
|
|
|
enum ice_status status;
|
|
|
|
|
|
|
|
ctxt.info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_TAGGED |
|
|
|
|
ICE_AQ_VSI_PVLAN_INSERT_PVID |
|
|
|
|
ICE_AQ_VSI_VLAN_EMOD_STR;
|
|
|
|
ctxt.info.pvid = cpu_to_le16(vid);
|
|
|
|
ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
|
|
|
|
|
|
|
|
status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL);
|
|
|
|
if (status) {
|
|
|
|
dev_info(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n",
|
|
|
|
status, hw->adminq.sq_last_status);
|
|
|
|
return -EIO;
|
|
|
|
}
|
|
|
|
|
|
|
|
vsi->info.pvid = ctxt.info.pvid;
|
|
|
|
vsi->info.vlan_flags = ctxt.info.vlan_flags;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-09-20 08:42:58 +08:00
|
|
|
/**
|
|
|
|
* ice_vsi_kill_pvid - Remove port VLAN id from the VSI
|
|
|
|
* @vsi: the VSI being changed
|
|
|
|
*/
|
|
|
|
static int ice_vsi_kill_pvid(struct ice_vsi *vsi)
|
|
|
|
{
|
|
|
|
struct ice_pf *pf = vsi->back;
|
|
|
|
|
|
|
|
if (ice_vsi_manage_vlan_stripping(vsi, false)) {
|
|
|
|
dev_err(&pf->pdev->dev, "Error removing Port VLAN on VSI %i\n",
|
|
|
|
vsi->vsi_num);
|
|
|
|
return -ENODEV;
|
|
|
|
}
|
|
|
|
|
|
|
|
vsi->info.pvid = 0;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-09-20 08:42:55 +08:00
|
|
|
/**
|
|
|
|
* ice_vf_vsi_setup - Set up a VF VSI
|
|
|
|
* @pf: board private structure
|
|
|
|
* @pi: pointer to the port_info instance
|
|
|
|
* @vf_id: defines VF id to which this VSI connects.
|
|
|
|
*
|
|
|
|
* Returns pointer to the successfully allocated VSI struct on success,
|
|
|
|
* otherwise returns NULL on failure.
|
|
|
|
*/
|
|
|
|
static struct ice_vsi *
|
|
|
|
ice_vf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, u16 vf_id)
|
|
|
|
{
|
|
|
|
return ice_vsi_setup(pf, pi, ICE_VSI_VF, vf_id);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ice_alloc_vsi_res - Setup VF VSI and its resources
|
|
|
|
* @vf: pointer to the VF structure
|
|
|
|
*
|
|
|
|
* Returns 0 on success, negative value on failure
|
|
|
|
*/
|
|
|
|
static int ice_alloc_vsi_res(struct ice_vf *vf)
|
|
|
|
{
|
|
|
|
struct ice_pf *pf = vf->pf;
|
|
|
|
LIST_HEAD(tmp_add_list);
|
|
|
|
u8 broadcast[ETH_ALEN];
|
|
|
|
struct ice_vsi *vsi;
|
|
|
|
int status = 0;
|
|
|
|
|
|
|
|
vsi = ice_vf_vsi_setup(pf, pf->hw.port_info, vf->vf_id);
|
|
|
|
|
|
|
|
if (!vsi) {
|
|
|
|
dev_err(&pf->pdev->dev, "Failed to create VF VSI\n");
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
vf->lan_vsi_idx = vsi->idx;
|
|
|
|
vf->lan_vsi_num = vsi->vsi_num;
|
|
|
|
|
|
|
|
/* first vector index is the VFs OICR index */
|
|
|
|
vf->first_vector_idx = vsi->hw_base_vector;
|
|
|
|
/* Since hw_base_vector holds the vector where data queue interrupts
|
|
|
|
* starts, increment by 1 since VFs allocated vectors include OICR intr
|
|
|
|
* as well.
|
|
|
|
*/
|
|
|
|
vsi->hw_base_vector += 1;
|
|
|
|
|
|
|
|
/* Check if port VLAN exist before, and restore it accordingly */
|
|
|
|
if (vf->port_vlan_id)
|
|
|
|
ice_vsi_set_pvid(vsi, vf->port_vlan_id);
|
|
|
|
|
|
|
|
eth_broadcast_addr(broadcast);
|
|
|
|
|
|
|
|
status = ice_add_mac_to_list(vsi, &tmp_add_list, broadcast);
|
|
|
|
if (status)
|
|
|
|
goto ice_alloc_vsi_res_exit;
|
|
|
|
|
|
|
|
if (is_valid_ether_addr(vf->dflt_lan_addr.addr)) {
|
|
|
|
status = ice_add_mac_to_list(vsi, &tmp_add_list,
|
|
|
|
vf->dflt_lan_addr.addr);
|
|
|
|
if (status)
|
|
|
|
goto ice_alloc_vsi_res_exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
status = ice_add_mac(&pf->hw, &tmp_add_list);
|
|
|
|
if (status)
|
|
|
|
dev_err(&pf->pdev->dev, "could not add mac filters\n");
|
|
|
|
|
|
|
|
/* Clear this bit after VF initialization since we shouldn't reclaim
|
|
|
|
* and reassign interrupts for synchronous or asynchronous VFR events.
|
|
|
|
* We don't want to reconfigure interrupts since AVF driver doesn't
|
|
|
|
* expect vector assignment to be changed unless there is a request for
|
|
|
|
* more vectors.
|
|
|
|
*/
|
|
|
|
clear_bit(ICE_VF_STATE_CFG_INTR, vf->vf_states);
|
|
|
|
ice_alloc_vsi_res_exit:
|
|
|
|
ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ice_alloc_vf_res - Allocate VF resources
|
|
|
|
* @vf: pointer to the VF structure
|
|
|
|
*/
|
|
|
|
static int ice_alloc_vf_res(struct ice_vf *vf)
|
|
|
|
{
|
|
|
|
int status;
|
|
|
|
|
|
|
|
/* setup VF VSI and necessary resources */
|
|
|
|
status = ice_alloc_vsi_res(vf);
|
|
|
|
if (status)
|
|
|
|
goto ice_alloc_vf_res_exit;
|
|
|
|
|
|
|
|
if (vf->trusted)
|
|
|
|
set_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
|
|
|
|
else
|
|
|
|
clear_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
|
|
|
|
|
|
|
|
/* VF is now completely initialized */
|
|
|
|
set_bit(ICE_VF_STATE_INIT, vf->vf_states);
|
|
|
|
|
|
|
|
return status;
|
|
|
|
|
|
|
|
ice_alloc_vf_res_exit:
|
|
|
|
ice_free_vf_res(vf);
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ice_ena_vf_mappings
|
|
|
|
* @vf: pointer to the VF structure
|
|
|
|
*
|
|
|
|
* Enable VF vectors and queues allocation by writing the details into
|
|
|
|
* respective registers.
|
|
|
|
*/
|
|
|
|
static void ice_ena_vf_mappings(struct ice_vf *vf)
|
|
|
|
{
|
|
|
|
struct ice_pf *pf = vf->pf;
|
|
|
|
struct ice_vsi *vsi;
|
|
|
|
int first, last, v;
|
|
|
|
struct ice_hw *hw;
|
|
|
|
int abs_vf_id;
|
|
|
|
u32 reg;
|
|
|
|
|
|
|
|
hw = &pf->hw;
|
|
|
|
vsi = pf->vsi[vf->lan_vsi_idx];
|
|
|
|
first = vf->first_vector_idx;
|
|
|
|
last = (first + pf->num_vf_msix) - 1;
|
|
|
|
abs_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
|
|
|
|
|
|
|
|
/* VF Vector allocation */
|
|
|
|
reg = (((first << VPINT_ALLOC_FIRST_S) & VPINT_ALLOC_FIRST_M) |
|
|
|
|
((last << VPINT_ALLOC_LAST_S) & VPINT_ALLOC_LAST_M) |
|
|
|
|
VPINT_ALLOC_VALID_M);
|
|
|
|
wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
|
|
|
|
|
|
|
|
/* map the interrupts to its functions */
|
|
|
|
for (v = first; v <= last; v++) {
|
|
|
|
reg = (((abs_vf_id << GLINT_VECT2FUNC_VF_NUM_S) &
|
|
|
|
GLINT_VECT2FUNC_VF_NUM_M) |
|
|
|
|
((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
|
|
|
|
GLINT_VECT2FUNC_PF_NUM_M));
|
|
|
|
wr32(hw, GLINT_VECT2FUNC(v), reg);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* VF Tx queues allocation */
|
|
|
|
if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
|
|
|
|
wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id),
|
|
|
|
VPLAN_TXQ_MAPENA_TX_ENA_M);
|
|
|
|
/* set the VF PF Tx queue range
|
|
|
|
* VFNUMQ value should be set to (number of queues - 1). A value
|
|
|
|
* of 0 means 1 queue and a value of 255 means 256 queues
|
|
|
|
*/
|
|
|
|
reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) &
|
|
|
|
VPLAN_TX_QBASE_VFFIRSTQ_M) |
|
|
|
|
(((vsi->alloc_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) &
|
|
|
|
VPLAN_TX_QBASE_VFNUMQ_M));
|
|
|
|
wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
|
|
|
|
} else {
|
|
|
|
dev_err(&pf->pdev->dev,
|
|
|
|
"Scattered mode for VF Tx queues is not yet implemented\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
/* VF Rx queues allocation */
|
|
|
|
if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
|
|
|
|
wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id),
|
|
|
|
VPLAN_RXQ_MAPENA_RX_ENA_M);
|
|
|
|
/* set the VF PF Rx queue range
|
|
|
|
* VFNUMQ value should be set to (number of queues - 1). A value
|
|
|
|
* of 0 means 1 queue and a value of 255 means 256 queues
|
|
|
|
*/
|
|
|
|
reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) &
|
|
|
|
VPLAN_RX_QBASE_VFFIRSTQ_M) |
|
|
|
|
(((vsi->alloc_txq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) &
|
|
|
|
VPLAN_RX_QBASE_VFNUMQ_M));
|
|
|
|
wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
|
|
|
|
} else {
|
|
|
|
dev_err(&pf->pdev->dev,
|
|
|
|
"Scattered mode for VF Rx queues is not yet implemented\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ice_determine_res
|
|
|
|
* @pf: pointer to the PF structure
|
|
|
|
* @avail_res: available resources in the PF structure
|
|
|
|
* @max_res: maximum resources that can be given per VF
|
|
|
|
* @min_res: minimum resources that can be given per VF
|
|
|
|
*
|
|
|
|
* Returns non-zero value if resources (queues/vectors) are available or
|
|
|
|
* returns zero if PF cannot accommodate for all num_alloc_vfs.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
ice_determine_res(struct ice_pf *pf, u16 avail_res, u16 max_res, u16 min_res)
|
|
|
|
{
|
|
|
|
bool checked_min_res = false;
|
|
|
|
int res;
|
|
|
|
|
|
|
|
/* start by checking if PF can assign max number of resources for
|
|
|
|
* all num_alloc_vfs.
|
|
|
|
* if yes, return number per VF
|
|
|
|
* If no, divide by 2 and roundup, check again
|
|
|
|
* repeat the loop till we reach a point where even minimum resources
|
|
|
|
* are not available, in that case return 0
|
|
|
|
*/
|
|
|
|
res = max_res;
|
|
|
|
while ((res >= min_res) && !checked_min_res) {
|
|
|
|
int num_all_res;
|
|
|
|
|
|
|
|
num_all_res = pf->num_alloc_vfs * res;
|
|
|
|
if (num_all_res <= avail_res)
|
|
|
|
return res;
|
|
|
|
|
|
|
|
if (res == min_res)
|
|
|
|
checked_min_res = true;
|
|
|
|
|
|
|
|
res = DIV_ROUND_UP(res, 2);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ice_check_avail_res - check if vectors and queues are available
|
|
|
|
* @pf: pointer to the PF structure
|
|
|
|
*
|
|
|
|
* This function is where we calculate actual number of resources for VF VSIs,
|
|
|
|
* we don't reserve ahead of time during probe. Returns success if vectors and
|
|
|
|
* queues resources are available, otherwise returns error code
|
|
|
|
*/
|
|
|
|
static int ice_check_avail_res(struct ice_pf *pf)
|
|
|
|
{
|
|
|
|
u16 num_msix, num_txq, num_rxq;
|
|
|
|
|
|
|
|
if (!pf->num_alloc_vfs)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/* Grab from HW interrupts common pool
|
|
|
|
* Note: By the time the user decides it needs more vectors in a VF
|
|
|
|
* its already too late since one must decide this prior to creating the
|
|
|
|
* VF interface. So the best we can do is take a guess as to what the
|
|
|
|
* user might want.
|
|
|
|
*
|
|
|
|
* We have two policies for vector allocation:
|
|
|
|
* 1. if num_alloc_vfs is from 1 to 16, then we consider this as small
|
|
|
|
* number of NFV VFs used for NFV appliances, since this is a special
|
|
|
|
* case, we try to assign maximum vectors per VF (65) as much as
|
|
|
|
* possible, based on determine_resources algorithm.
|
|
|
|
* 2. if num_alloc_vfs is from 17 to 256, then its large number of
|
|
|
|
* regular VFs which are not used for any special purpose. Hence try to
|
|
|
|
* grab default interrupt vectors (5 as supported by AVF driver).
|
|
|
|
*/
|
|
|
|
if (pf->num_alloc_vfs <= 16) {
|
|
|
|
num_msix = ice_determine_res(pf, pf->num_avail_hw_msix,
|
|
|
|
ICE_MAX_INTR_PER_VF,
|
|
|
|
ICE_MIN_INTR_PER_VF);
|
|
|
|
} else if (pf->num_alloc_vfs <= ICE_MAX_VF_COUNT) {
|
|
|
|
num_msix = ice_determine_res(pf, pf->num_avail_hw_msix,
|
|
|
|
ICE_DFLT_INTR_PER_VF,
|
|
|
|
ICE_MIN_INTR_PER_VF);
|
|
|
|
} else {
|
|
|
|
dev_err(&pf->pdev->dev,
|
|
|
|
"Number of VFs %d exceeds max VF count %d\n",
|
|
|
|
pf->num_alloc_vfs, ICE_MAX_VF_COUNT);
|
|
|
|
return -EIO;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!num_msix)
|
|
|
|
return -EIO;
|
|
|
|
|
|
|
|
/* Grab from the common pool
|
|
|
|
* start by requesting Default queues (4 as supported by AVF driver),
|
|
|
|
* Note that, the main difference between queues and vectors is, latter
|
|
|
|
* can only be reserved at init time but queues can be requested by VF
|
|
|
|
* at runtime through Virtchnl, that is the reason we start by reserving
|
|
|
|
* few queues.
|
|
|
|
*/
|
|
|
|
num_txq = ice_determine_res(pf, pf->q_left_tx, ICE_DFLT_QS_PER_VF,
|
|
|
|
ICE_MIN_QS_PER_VF);
|
|
|
|
|
|
|
|
num_rxq = ice_determine_res(pf, pf->q_left_rx, ICE_DFLT_QS_PER_VF,
|
|
|
|
ICE_MIN_QS_PER_VF);
|
|
|
|
|
|
|
|
if (!num_txq || !num_rxq)
|
|
|
|
return -EIO;
|
|
|
|
|
|
|
|
/* since AVF driver works with only queue pairs which means, it expects
|
|
|
|
* to have equal number of Rx and Tx queues, so take the minimum of
|
|
|
|
* available Tx or Rx queues
|
|
|
|
*/
|
|
|
|
pf->num_vf_qps = min_t(int, num_txq, num_rxq);
|
|
|
|
pf->num_vf_msix = num_msix;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ice_cleanup_and_realloc_vf - Clean up VF and reallocate resources after reset
|
|
|
|
* @vf: pointer to the VF structure
|
|
|
|
*
|
|
|
|
* Cleanup a VF after the hardware reset is finished. Expects the caller to
|
|
|
|
* have verified whether the reset is finished properly, and ensure the
|
|
|
|
* minimum amount of wait time has passed. Reallocate VF resources back to make
|
|
|
|
* VF state active
|
|
|
|
*/
|
|
|
|
static void ice_cleanup_and_realloc_vf(struct ice_vf *vf)
|
|
|
|
{
|
|
|
|
struct ice_pf *pf = vf->pf;
|
|
|
|
struct ice_hw *hw;
|
|
|
|
u32 reg;
|
|
|
|
|
|
|
|
hw = &pf->hw;
|
|
|
|
|
|
|
|
/* PF software completes the flow by notifying VF that reset flow is
|
|
|
|
* completed. This is done by enabling hardware by clearing the reset
|
|
|
|
* bit in the VPGEN_VFRTRIG reg and setting VFR_STATE in the VFGEN_RSTAT
|
|
|
|
* register to VFR completed (done at the end of this function)
|
|
|
|
* By doing this we allow HW to access VF memory at any point. If we
|
|
|
|
* did it any sooner, HW could access memory while it was being freed
|
|
|
|
* in ice_free_vf_res(), causing an IOMMU fault.
|
|
|
|
*
|
|
|
|
* On the other hand, this needs to be done ASAP, because the VF driver
|
|
|
|
* is waiting for this to happen and may report a timeout. It's
|
|
|
|
* harmless, but it gets logged into Guest OS kernel log, so best avoid
|
|
|
|
* it.
|
|
|
|
*/
|
|
|
|
reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
|
|
|
|
reg &= ~VPGEN_VFRTRIG_VFSWR_M;
|
|
|
|
wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
|
|
|
|
|
|
|
|
/* reallocate VF resources to finish resetting the VSI state */
|
|
|
|
if (!ice_alloc_vf_res(vf)) {
|
|
|
|
ice_ena_vf_mappings(vf);
|
|
|
|
set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
|
|
|
|
clear_bit(ICE_VF_STATE_DIS, vf->vf_states);
|
|
|
|
vf->num_vlan = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Tell the VF driver the reset is done. This needs to be done only
|
|
|
|
* after VF has been fully initialized, because the VF driver may
|
|
|
|
* request resources immediately after setting this flag.
|
|
|
|
*/
|
|
|
|
wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ice_reset_all_vfs - reset all allocated VFs in one go
|
|
|
|
* @pf: pointer to the PF structure
|
|
|
|
* @is_vflr: true if VFLR was issued, false if not
|
|
|
|
*
|
|
|
|
* First, tell the hardware to reset each VF, then do all the waiting in one
|
|
|
|
* chunk, and finally finish restoring each VF after the wait. This is useful
|
|
|
|
* during PF routines which need to reset all VFs, as otherwise it must perform
|
|
|
|
* these resets in a serialized fashion.
|
|
|
|
*
|
|
|
|
* Returns true if any VFs were reset, and false otherwise.
|
|
|
|
*/
|
|
|
|
bool ice_reset_all_vfs(struct ice_pf *pf, bool is_vflr)
|
|
|
|
{
|
|
|
|
struct ice_hw *hw = &pf->hw;
|
|
|
|
int v, i;
|
|
|
|
|
|
|
|
/* If we don't have any VFs, then there is nothing to reset */
|
|
|
|
if (!pf->num_alloc_vfs)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
/* If VFs have been disabled, there is no need to reset */
|
|
|
|
if (test_and_set_bit(__ICE_VF_DIS, pf->state))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
/* Begin reset on all VFs at once */
|
|
|
|
for (v = 0; v < pf->num_alloc_vfs; v++)
|
|
|
|
ice_trigger_vf_reset(&pf->vf[v], is_vflr);
|
|
|
|
|
|
|
|
/* Call Disable LAN Tx queue AQ call with VFR bit set and 0
|
|
|
|
* queues to inform Firmware about VF reset.
|
|
|
|
*/
|
|
|
|
for (v = 0; v < pf->num_alloc_vfs; v++)
|
|
|
|
ice_dis_vsi_txq(pf->vsi[0]->port_info, 0, NULL, NULL,
|
|
|
|
ICE_VF_RESET, v, NULL);
|
|
|
|
|
|
|
|
/* HW requires some time to make sure it can flush the FIFO for a VF
|
|
|
|
* when it resets it. Poll the VPGEN_VFRSTAT register for each VF in
|
|
|
|
* sequence to make sure that it has completed. We'll keep track of
|
|
|
|
* the VFs using a simple iterator that increments once that VF has
|
|
|
|
* finished resetting.
|
|
|
|
*/
|
|
|
|
for (i = 0, v = 0; i < 10 && v < pf->num_alloc_vfs; i++) {
|
|
|
|
usleep_range(10000, 20000);
|
|
|
|
|
|
|
|
/* Check each VF in sequence */
|
|
|
|
while (v < pf->num_alloc_vfs) {
|
|
|
|
struct ice_vf *vf = &pf->vf[v];
|
|
|
|
u32 reg;
|
|
|
|
|
|
|
|
reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id));
|
|
|
|
if (!(reg & VPGEN_VFRSTAT_VFRD_M))
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* If the current VF has finished resetting, move on
|
|
|
|
* to the next VF in sequence.
|
|
|
|
*/
|
|
|
|
v++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Display a warning if at least one VF didn't manage to reset in
|
|
|
|
* time, but continue on with the operation.
|
|
|
|
*/
|
|
|
|
if (v < pf->num_alloc_vfs)
|
|
|
|
dev_warn(&pf->pdev->dev, "VF reset check timeout\n");
|
|
|
|
usleep_range(10000, 20000);
|
|
|
|
|
|
|
|
/* free VF resources to begin resetting the VSI state */
|
|
|
|
for (v = 0; v < pf->num_alloc_vfs; v++)
|
|
|
|
ice_free_vf_res(&pf->vf[v]);
|
|
|
|
|
|
|
|
if (ice_check_avail_res(pf)) {
|
|
|
|
dev_err(&pf->pdev->dev,
|
|
|
|
"Cannot allocate VF resources, try with fewer number of VFs\n");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Finish the reset on each VF */
|
|
|
|
for (v = 0; v < pf->num_alloc_vfs; v++)
|
|
|
|
ice_cleanup_and_realloc_vf(&pf->vf[v]);
|
|
|
|
|
|
|
|
ice_flush(hw);
|
|
|
|
clear_bit(__ICE_VF_DIS, pf->state);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2018-09-20 08:42:57 +08:00
|
|
|
/**
|
|
|
|
* ice_reset_vf - Reset a particular VF
|
|
|
|
* @vf: pointer to the VF structure
|
|
|
|
* @is_vflr: true if VFLR was issued, false if not
|
|
|
|
*
|
|
|
|
* Returns true if the VF is reset, false otherwise.
|
|
|
|
*/
|
|
|
|
static bool ice_reset_vf(struct ice_vf *vf, bool is_vflr)
|
|
|
|
{
|
|
|
|
struct ice_pf *pf = vf->pf;
|
|
|
|
struct ice_hw *hw = &pf->hw;
|
|
|
|
bool rsd = false;
|
|
|
|
u32 reg;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* If the VFs have been disabled, this means something else is
|
|
|
|
* resetting the VF, so we shouldn't continue.
|
|
|
|
*/
|
|
|
|
if (test_and_set_bit(__ICE_VF_DIS, pf->state))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
ice_trigger_vf_reset(vf, is_vflr);
|
|
|
|
|
|
|
|
if (test_bit(ICE_VF_STATE_ENA, vf->vf_states)) {
|
|
|
|
ice_vsi_stop_tx_rings(pf->vsi[vf->lan_vsi_idx], ICE_VF_RESET,
|
|
|
|
vf->vf_id);
|
|
|
|
ice_vsi_stop_rx_rings(pf->vsi[vf->lan_vsi_idx]);
|
|
|
|
clear_bit(ICE_VF_STATE_ENA, vf->vf_states);
|
|
|
|
} else {
|
|
|
|
/* Call Disable LAN Tx queue AQ call even when queues are not
|
|
|
|
* enabled. This is needed for successful completiom of VFR
|
|
|
|
*/
|
|
|
|
ice_dis_vsi_txq(pf->vsi[vf->lan_vsi_idx]->port_info, 0,
|
|
|
|
NULL, NULL, ICE_VF_RESET, vf->vf_id, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* poll VPGEN_VFRSTAT reg to make sure
|
|
|
|
* that reset is complete
|
|
|
|
*/
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
|
|
/* VF reset requires driver to first reset the VF and then
|
|
|
|
* poll the status register to make sure that the reset
|
|
|
|
* completed successfully.
|
|
|
|
*/
|
|
|
|
usleep_range(10000, 20000);
|
|
|
|
reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id));
|
|
|
|
if (reg & VPGEN_VFRSTAT_VFRD_M) {
|
|
|
|
rsd = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Display a warning if VF didn't manage to reset in time, but need to
|
|
|
|
* continue on with the operation.
|
|
|
|
*/
|
|
|
|
if (!rsd)
|
|
|
|
dev_warn(&pf->pdev->dev, "VF reset check timeout on VF %d\n",
|
|
|
|
vf->vf_id);
|
|
|
|
|
|
|
|
usleep_range(10000, 20000);
|
|
|
|
|
|
|
|
/* free VF resources to begin resetting the VSI state */
|
|
|
|
ice_free_vf_res(vf);
|
|
|
|
|
|
|
|
ice_cleanup_and_realloc_vf(vf);
|
|
|
|
|
|
|
|
ice_flush(hw);
|
|
|
|
clear_bit(__ICE_VF_DIS, pf->state);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ice_vc_notify_reset - Send pending reset message to all VFs
|
|
|
|
* @pf: pointer to the PF structure
|
|
|
|
*
|
|
|
|
* indicate a pending reset to all VFs on a given PF
|
|
|
|
*/
|
|
|
|
void ice_vc_notify_reset(struct ice_pf *pf)
|
|
|
|
{
|
|
|
|
struct virtchnl_pf_event pfe;
|
|
|
|
|
|
|
|
if (!pf->num_alloc_vfs)
|
|
|
|
return;
|
|
|
|
|
|
|
|
pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
|
|
|
|
pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
|
|
|
|
ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, ICE_SUCCESS,
|
|
|
|
(u8 *)&pfe, sizeof(struct virtchnl_pf_event));
|
|
|
|
}
|
|
|
|
|
2018-09-20 08:42:58 +08:00
|
|
|
/**
|
|
|
|
* ice_vc_notify_vf_reset - Notify VF of a reset event
|
|
|
|
* @vf: pointer to the VF structure
|
|
|
|
*/
|
|
|
|
static void ice_vc_notify_vf_reset(struct ice_vf *vf)
|
|
|
|
{
|
|
|
|
struct virtchnl_pf_event pfe;
|
|
|
|
|
|
|
|
/* validate the request */
|
|
|
|
if (!vf || vf->vf_id >= vf->pf->num_alloc_vfs)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* verify if the VF is in either init or active before proceeding */
|
|
|
|
if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
|
|
|
|
!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
|
|
|
|
return;
|
|
|
|
|
|
|
|
pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
|
|
|
|
pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
|
|
|
|
ice_aq_send_msg_to_vf(&vf->pf->hw, vf->vf_id, VIRTCHNL_OP_EVENT, 0,
|
|
|
|
(u8 *)&pfe, sizeof(pfe), NULL);
|
|
|
|
}
|
|
|
|
|
2018-09-20 08:42:55 +08:00
|
|
|
/**
|
|
|
|
* ice_alloc_vfs - Allocate and set up VFs resources
|
|
|
|
* @pf: pointer to the PF structure
|
|
|
|
* @num_alloc_vfs: number of VFs to allocate
|
|
|
|
*/
|
|
|
|
static int ice_alloc_vfs(struct ice_pf *pf, u16 num_alloc_vfs)
|
|
|
|
{
|
|
|
|
struct ice_hw *hw = &pf->hw;
|
|
|
|
struct ice_vf *vfs;
|
|
|
|
int i, ret;
|
|
|
|
|
|
|
|
/* Disable global interrupt 0 so we don't try to handle the VFLR. */
|
|
|
|
wr32(hw, GLINT_DYN_CTL(pf->hw_oicr_idx),
|
|
|
|
ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
|
|
|
|
|
|
|
|
ice_flush(hw);
|
|
|
|
|
|
|
|
ret = pci_enable_sriov(pf->pdev, num_alloc_vfs);
|
|
|
|
if (ret) {
|
|
|
|
pf->num_alloc_vfs = 0;
|
|
|
|
goto err_unroll_intr;
|
|
|
|
}
|
|
|
|
/* allocate memory */
|
|
|
|
vfs = devm_kcalloc(&pf->pdev->dev, num_alloc_vfs, sizeof(*vfs),
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!vfs) {
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto err_unroll_sriov;
|
|
|
|
}
|
|
|
|
pf->vf = vfs;
|
|
|
|
|
|
|
|
/* apply default profile */
|
|
|
|
for (i = 0; i < num_alloc_vfs; i++) {
|
|
|
|
vfs[i].pf = pf;
|
|
|
|
vfs[i].vf_sw_id = pf->first_sw;
|
|
|
|
vfs[i].vf_id = i;
|
|
|
|
|
|
|
|
/* assign default capabilities */
|
|
|
|
set_bit(ICE_VIRTCHNL_VF_CAP_L2, &vfs[i].vf_caps);
|
|
|
|
vfs[i].spoofchk = true;
|
|
|
|
|
|
|
|
/* Set this state so that PF driver does VF vector assignment */
|
|
|
|
set_bit(ICE_VF_STATE_CFG_INTR, vfs[i].vf_states);
|
|
|
|
}
|
|
|
|
pf->num_alloc_vfs = num_alloc_vfs;
|
|
|
|
|
|
|
|
/* VF resources get allocated during reset */
|
|
|
|
if (!ice_reset_all_vfs(pf, false))
|
|
|
|
goto err_unroll_sriov;
|
|
|
|
|
|
|
|
goto err_unroll_intr;
|
|
|
|
|
|
|
|
err_unroll_sriov:
|
|
|
|
pci_disable_sriov(pf->pdev);
|
|
|
|
err_unroll_intr:
|
|
|
|
/* rearm interrupts here */
|
|
|
|
ice_irq_dynamic_ena(hw, NULL, NULL);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ice_pf_state_is_nominal - checks the pf for nominal state
|
|
|
|
* @pf: pointer to pf to check
|
|
|
|
*
|
|
|
|
* Check the PF's state for a collection of bits that would indicate
|
|
|
|
* the PF is in a state that would inhibit normal operation for
|
|
|
|
* driver functionality.
|
|
|
|
*
|
|
|
|
* Returns true if PF is in a nominal state.
|
|
|
|
* Returns false otherwise
|
|
|
|
*/
|
|
|
|
static bool ice_pf_state_is_nominal(struct ice_pf *pf)
|
|
|
|
{
|
|
|
|
DECLARE_BITMAP(check_bits, __ICE_STATE_NBITS) = { 0 };
|
|
|
|
|
|
|
|
if (!pf)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
bitmap_set(check_bits, 0, __ICE_STATE_NOMINAL_CHECK_BITS);
|
|
|
|
if (bitmap_intersects(pf->state, check_bits, __ICE_STATE_NBITS))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ice_pci_sriov_ena - Enable or change number of VFs
|
|
|
|
* @pf: pointer to the PF structure
|
|
|
|
* @num_vfs: number of VFs to allocate
|
|
|
|
*/
|
|
|
|
static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
|
|
|
|
{
|
|
|
|
int pre_existing_vfs = pci_num_vf(pf->pdev);
|
|
|
|
struct device *dev = &pf->pdev->dev;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
if (!ice_pf_state_is_nominal(pf)) {
|
|
|
|
dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
|
|
|
|
return -EBUSY;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
|
|
|
|
dev_err(dev, "This device is not capable of SR-IOV\n");
|
|
|
|
return -ENODEV;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (pre_existing_vfs && pre_existing_vfs != num_vfs)
|
|
|
|
ice_free_vfs(pf);
|
|
|
|
else if (pre_existing_vfs && pre_existing_vfs == num_vfs)
|
|
|
|
return num_vfs;
|
|
|
|
|
|
|
|
if (num_vfs > pf->num_vfs_supported) {
|
|
|
|
dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
|
|
|
|
num_vfs, pf->num_vfs_supported);
|
|
|
|
return -ENOTSUPP;
|
|
|
|
}
|
|
|
|
|
|
|
|
dev_info(dev, "Allocating %d VFs\n", num_vfs);
|
|
|
|
err = ice_alloc_vfs(pf, num_vfs);
|
|
|
|
if (err) {
|
|
|
|
dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
|
|
|
|
return num_vfs;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ice_sriov_configure - Enable or change number of VFs via sysfs
|
|
|
|
* @pdev: pointer to a pci_dev structure
|
|
|
|
* @num_vfs: number of VFs to allocate
|
|
|
|
*
|
|
|
|
* This function is called when the user updates the number of VFs in sysfs.
|
|
|
|
*/
|
|
|
|
int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
|
|
|
|
{
|
|
|
|
struct ice_pf *pf = pci_get_drvdata(pdev);
|
|
|
|
|
|
|
|
if (num_vfs)
|
|
|
|
return ice_pci_sriov_ena(pf, num_vfs);
|
|
|
|
|
|
|
|
if (!pci_vfs_assigned(pdev)) {
|
|
|
|
ice_free_vfs(pf);
|
|
|
|
} else {
|
|
|
|
dev_err(&pf->pdev->dev,
|
|
|
|
"can't free VFs because some are assigned to VMs.\n");
|
|
|
|
return -EBUSY;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
2018-09-20 08:42:57 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* ice_process_vflr_event - Free VF resources via IRQ calls
|
|
|
|
* @pf: pointer to the PF structure
|
|
|
|
*
|
|
|
|
* called from the VLFR IRQ handler to
|
|
|
|
* free up VF resources and state variables
|
|
|
|
*/
|
|
|
|
void ice_process_vflr_event(struct ice_pf *pf)
|
|
|
|
{
|
|
|
|
struct ice_hw *hw = &pf->hw;
|
|
|
|
int vf_id;
|
|
|
|
u32 reg;
|
|
|
|
|
|
|
|
if (!test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
|
|
|
|
!pf->num_alloc_vfs)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* Re-enable the VFLR interrupt cause here, before looking for which
|
|
|
|
* VF got reset. Otherwise, if another VF gets a reset while the
|
|
|
|
* first one is being processed, that interrupt will be lost, and
|
|
|
|
* that VF will be stuck in reset forever.
|
|
|
|
*/
|
|
|
|
reg = rd32(hw, PFINT_OICR_ENA);
|
|
|
|
reg |= PFINT_OICR_VFLR_M;
|
|
|
|
wr32(hw, PFINT_OICR_ENA, reg);
|
|
|
|
ice_flush(hw);
|
|
|
|
|
|
|
|
clear_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
|
|
|
|
for (vf_id = 0; vf_id < pf->num_alloc_vfs; vf_id++) {
|
|
|
|
struct ice_vf *vf = &pf->vf[vf_id];
|
|
|
|
u32 reg_idx, bit_idx;
|
|
|
|
|
|
|
|
reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32;
|
|
|
|
bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32;
|
|
|
|
/* read GLGEN_VFLRSTAT register to find out the flr VFs */
|
|
|
|
reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
|
|
|
|
if (reg & BIT(bit_idx))
|
|
|
|
/* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
|
|
|
|
ice_reset_vf(vf, true);
|
|
|
|
}
|
|
|
|
}
|
2018-09-20 08:42:58 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* ice_vc_dis_vf - Disable a given VF via SW reset
|
|
|
|
* @vf: pointer to the VF info
|
|
|
|
*
|
|
|
|
* Disable the VF through a SW reset
|
|
|
|
*/
|
|
|
|
static void ice_vc_dis_vf(struct ice_vf *vf)
|
|
|
|
{
|
|
|
|
ice_vc_notify_vf_reset(vf);
|
|
|
|
ice_reset_vf(vf, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ice_set_vf_port_vlan
|
|
|
|
* @netdev: network interface device structure
|
|
|
|
* @vf_id: VF identifier
|
|
|
|
* @vlan_id: VLAN id being set
|
|
|
|
* @qos: priority setting
|
|
|
|
* @vlan_proto: VLAN protocol
|
|
|
|
*
|
|
|
|
* program VF Port VLAN id and/or qos
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
|
|
|
|
__be16 vlan_proto)
|
|
|
|
{
|
|
|
|
u16 vlanprio = vlan_id | (qos << ICE_VLAN_PRIORITY_S);
|
|
|
|
struct ice_netdev_priv *np = netdev_priv(netdev);
|
|
|
|
struct ice_pf *pf = np->vsi->back;
|
|
|
|
struct ice_vsi *vsi;
|
|
|
|
struct ice_vf *vf;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
/* validate the request */
|
|
|
|
if (vf_id >= pf->num_alloc_vfs) {
|
|
|
|
dev_err(&pf->pdev->dev, "invalid VF id: %d\n", vf_id);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (vlan_id > ICE_MAX_VLANID || qos > 7) {
|
|
|
|
dev_err(&pf->pdev->dev, "Invalid VF Parameters\n");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (vlan_proto != htons(ETH_P_8021Q)) {
|
|
|
|
dev_err(&pf->pdev->dev, "VF VLAN protocol is not supported\n");
|
|
|
|
return -EPROTONOSUPPORT;
|
|
|
|
}
|
|
|
|
|
|
|
|
vf = &pf->vf[vf_id];
|
|
|
|
vsi = pf->vsi[vf->lan_vsi_idx];
|
|
|
|
if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
|
|
|
|
dev_err(&pf->pdev->dev, "VF %d in reset. Try again.\n", vf_id);
|
|
|
|
return -EBUSY;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (le16_to_cpu(vsi->info.pvid) == vlanprio) {
|
|
|
|
/* duplicate request, so just return success */
|
|
|
|
dev_info(&pf->pdev->dev,
|
|
|
|
"Duplicate pvid %d request\n", vlanprio);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If pvid, then remove all filters on the old VLAN */
|
|
|
|
if (vsi->info.pvid)
|
|
|
|
ice_vsi_kill_vlan(vsi, (le16_to_cpu(vsi->info.pvid) &
|
|
|
|
VLAN_VID_MASK));
|
|
|
|
|
|
|
|
if (vlan_id || qos) {
|
|
|
|
ret = ice_vsi_set_pvid(vsi, vlanprio);
|
|
|
|
if (ret)
|
|
|
|
goto error_set_pvid;
|
|
|
|
} else {
|
|
|
|
ice_vsi_kill_pvid(vsi);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (vlan_id) {
|
|
|
|
dev_info(&pf->pdev->dev, "Setting VLAN %d, QOS 0x%x on VF %d\n",
|
|
|
|
vlan_id, qos, vf_id);
|
|
|
|
|
|
|
|
/* add new VLAN filter for each MAC */
|
|
|
|
ret = ice_vsi_add_vlan(vsi, vlan_id);
|
|
|
|
if (ret)
|
|
|
|
goto error_set_pvid;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The Port VLAN needs to be saved across resets the same as the
|
|
|
|
* default LAN MAC address.
|
|
|
|
*/
|
|
|
|
vf->port_vlan_id = le16_to_cpu(vsi->info.pvid);
|
|
|
|
|
|
|
|
error_set_pvid:
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ice_get_vf_cfg
|
|
|
|
* @netdev: network interface device structure
|
|
|
|
* @vf_id: VF identifier
|
|
|
|
* @ivi: VF configuration structure
|
|
|
|
*
|
|
|
|
* return VF configuration
|
|
|
|
*/
|
|
|
|
int ice_get_vf_cfg(struct net_device *netdev, int vf_id,
|
|
|
|
struct ifla_vf_info *ivi)
|
|
|
|
{
|
|
|
|
struct ice_netdev_priv *np = netdev_priv(netdev);
|
|
|
|
struct ice_vsi *vsi = np->vsi;
|
|
|
|
struct ice_pf *pf = vsi->back;
|
|
|
|
struct ice_vf *vf;
|
|
|
|
|
|
|
|
/* validate the request */
|
|
|
|
if (vf_id >= pf->num_alloc_vfs) {
|
|
|
|
netdev_err(netdev, "invalid VF id: %d\n", vf_id);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
vf = &pf->vf[vf_id];
|
|
|
|
vsi = pf->vsi[vf->lan_vsi_idx];
|
|
|
|
|
|
|
|
if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
|
|
|
|
netdev_err(netdev, "VF %d in reset. Try again.\n", vf_id);
|
|
|
|
return -EBUSY;
|
|
|
|
}
|
|
|
|
|
|
|
|
ivi->vf = vf_id;
|
|
|
|
ether_addr_copy(ivi->mac, vf->dflt_lan_addr.addr);
|
|
|
|
|
|
|
|
/* VF configuration for VLAN and applicable QoS */
|
|
|
|
ivi->vlan = le16_to_cpu(vsi->info.pvid) & ICE_VLAN_M;
|
|
|
|
ivi->qos = (le16_to_cpu(vsi->info.pvid) & ICE_PRIORITY_M) >>
|
|
|
|
ICE_VLAN_PRIORITY_S;
|
|
|
|
|
|
|
|
ivi->trusted = vf->trusted;
|
|
|
|
ivi->spoofchk = vf->spoofchk;
|
|
|
|
if (!vf->link_forced)
|
|
|
|
ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
|
|
|
|
else if (vf->link_up)
|
|
|
|
ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
|
|
|
|
else
|
|
|
|
ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
|
|
|
|
ivi->max_tx_rate = vf->tx_rate;
|
|
|
|
ivi->min_tx_rate = 0;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ice_set_vf_spoofchk
|
|
|
|
* @netdev: network interface device structure
|
|
|
|
* @vf_id: VF identifier
|
|
|
|
* @ena: flag to enable or disable feature
|
|
|
|
*
|
|
|
|
* Enable or disable VF spoof checking
|
|
|
|
*/
|
|
|
|
int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
|
|
|
|
{
|
|
|
|
struct ice_netdev_priv *np = netdev_priv(netdev);
|
|
|
|
struct ice_vsi_ctx ctx = { 0 };
|
|
|
|
struct ice_vsi *vsi = np->vsi;
|
|
|
|
struct ice_pf *pf = vsi->back;
|
|
|
|
struct ice_vf *vf;
|
|
|
|
int status;
|
|
|
|
|
|
|
|
/* validate the request */
|
|
|
|
if (vf_id >= pf->num_alloc_vfs) {
|
|
|
|
netdev_err(netdev, "invalid VF id: %d\n", vf_id);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
vf = &pf->vf[vf_id];
|
|
|
|
if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
|
|
|
|
netdev_err(netdev, "VF %d in reset. Try again.\n", vf_id);
|
|
|
|
return -EBUSY;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ena == vf->spoofchk) {
|
|
|
|
dev_dbg(&pf->pdev->dev, "VF spoofchk already %s\n",
|
|
|
|
ena ? "ON" : "OFF");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
|
|
|
|
|
|
|
|
if (ena) {
|
|
|
|
ctx.info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF;
|
|
|
|
ctx.info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_PRUNE_EN_M;
|
|
|
|
}
|
|
|
|
|
|
|
|
status = ice_update_vsi(&pf->hw, vsi->idx, &ctx, NULL);
|
|
|
|
if (status) {
|
|
|
|
dev_dbg(&pf->pdev->dev,
|
|
|
|
"Error %d, failed to update VSI* parameters\n", status);
|
|
|
|
return -EIO;
|
|
|
|
}
|
|
|
|
|
|
|
|
vf->spoofchk = ena;
|
|
|
|
vsi->info.sec_flags = ctx.info.sec_flags;
|
|
|
|
vsi->info.sw_flags2 = ctx.info.sw_flags2;
|
|
|
|
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ice_set_vf_mac
|
|
|
|
* @netdev: network interface device structure
|
|
|
|
* @vf_id: VF identifier
|
|
|
|
* @mac: mac address
|
|
|
|
*
|
|
|
|
* program VF mac address
|
|
|
|
*/
|
|
|
|
int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
|
|
|
|
{
|
|
|
|
struct ice_netdev_priv *np = netdev_priv(netdev);
|
|
|
|
struct ice_vsi *vsi = np->vsi;
|
|
|
|
struct ice_pf *pf = vsi->back;
|
|
|
|
struct ice_vf *vf;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
/* validate the request */
|
|
|
|
if (vf_id >= pf->num_alloc_vfs) {
|
|
|
|
netdev_err(netdev, "invalid VF id: %d\n", vf_id);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
vf = &pf->vf[vf_id];
|
|
|
|
if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
|
|
|
|
netdev_err(netdev, "VF %d in reset. Try again.\n", vf_id);
|
|
|
|
return -EBUSY;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (is_zero_ether_addr(mac) || is_multicast_ether_addr(mac)) {
|
|
|
|
netdev_err(netdev, "%pM not a valid unicast address\n", mac);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* copy mac into dflt_lan_addr and trigger a VF reset. The reset
|
|
|
|
* flow will use the updated dflt_lan_addr and add a MAC filter
|
|
|
|
* using ice_add_mac. Also set pf_set_mac to indicate that the PF has
|
|
|
|
* set the MAC address for this VF.
|
|
|
|
*/
|
|
|
|
ether_addr_copy(vf->dflt_lan_addr.addr, mac);
|
|
|
|
vf->pf_set_mac = true;
|
|
|
|
netdev_info(netdev,
|
|
|
|
"mac on VF %d set to %pM\n. VF driver will be reinitialized\n",
|
|
|
|
vf_id, mac);
|
|
|
|
|
|
|
|
ice_vc_dis_vf(vf);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ice_set_vf_trust
|
|
|
|
* @netdev: network interface device structure
|
|
|
|
* @vf_id: VF identifier
|
|
|
|
* @trusted: Boolean value to enable/disable trusted VF
|
|
|
|
*
|
|
|
|
* Enable or disable a given VF as trusted
|
|
|
|
*/
|
|
|
|
int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
|
|
|
|
{
|
|
|
|
struct ice_netdev_priv *np = netdev_priv(netdev);
|
|
|
|
struct ice_vsi *vsi = np->vsi;
|
|
|
|
struct ice_pf *pf = vsi->back;
|
|
|
|
struct ice_vf *vf;
|
|
|
|
|
|
|
|
/* validate the request */
|
|
|
|
if (vf_id >= pf->num_alloc_vfs) {
|
|
|
|
dev_err(&pf->pdev->dev, "invalid VF id: %d\n", vf_id);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
vf = &pf->vf[vf_id];
|
|
|
|
if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
|
|
|
|
dev_err(&pf->pdev->dev, "VF %d in reset. Try again.\n", vf_id);
|
|
|
|
return -EBUSY;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check if already trusted */
|
|
|
|
if (trusted == vf->trusted)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
vf->trusted = trusted;
|
|
|
|
ice_vc_dis_vf(vf);
|
|
|
|
dev_info(&pf->pdev->dev, "VF %u is now %strusted\n",
|
|
|
|
vf_id, trusted ? "" : "un");
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ice_set_vf_link_state
|
|
|
|
* @netdev: network interface device structure
|
|
|
|
* @vf_id: VF identifier
|
|
|
|
* @link_state: required link state
|
|
|
|
*
|
|
|
|
* Set VF's link state, irrespective of physical link state status
|
|
|
|
*/
|
|
|
|
int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
|
|
|
|
{
|
|
|
|
struct ice_netdev_priv *np = netdev_priv(netdev);
|
|
|
|
struct ice_pf *pf = np->vsi->back;
|
|
|
|
struct virtchnl_pf_event pfe = { 0 };
|
|
|
|
struct ice_link_status *ls;
|
|
|
|
struct ice_vf *vf;
|
|
|
|
struct ice_hw *hw;
|
|
|
|
|
|
|
|
if (vf_id >= pf->num_alloc_vfs) {
|
|
|
|
dev_err(&pf->pdev->dev, "Invalid VF Identifier %d\n", vf_id);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
vf = &pf->vf[vf_id];
|
|
|
|
hw = &pf->hw;
|
|
|
|
ls = &pf->hw.port_info->phy.link_info;
|
|
|
|
|
|
|
|
if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
|
|
|
|
dev_err(&pf->pdev->dev, "vf %d in reset. Try again.\n", vf_id);
|
|
|
|
return -EBUSY;
|
|
|
|
}
|
|
|
|
|
|
|
|
pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
|
|
|
|
pfe.severity = PF_EVENT_SEVERITY_INFO;
|
|
|
|
|
|
|
|
switch (link_state) {
|
|
|
|
case IFLA_VF_LINK_STATE_AUTO:
|
|
|
|
vf->link_forced = false;
|
|
|
|
vf->link_up = ls->link_info & ICE_AQ_LINK_UP;
|
|
|
|
break;
|
|
|
|
case IFLA_VF_LINK_STATE_ENABLE:
|
|
|
|
vf->link_forced = true;
|
|
|
|
vf->link_up = true;
|
|
|
|
break;
|
|
|
|
case IFLA_VF_LINK_STATE_DISABLE:
|
|
|
|
vf->link_forced = true;
|
|
|
|
vf->link_up = false;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (vf->link_forced)
|
|
|
|
ice_set_pfe_link_forced(vf, &pfe, vf->link_up);
|
|
|
|
else
|
|
|
|
ice_set_pfe_link(vf, &pfe, ls->link_speed, vf->link_up);
|
|
|
|
|
|
|
|
/* Notify the VF of its new link state */
|
|
|
|
ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 0, (u8 *)&pfe,
|
|
|
|
sizeof(pfe), NULL);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|