linux/drivers/net/ieee802154/cc2520.c

1256 lines
30 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/* Driver for TI CC2520 802.15.4 Wireless-PAN Networking controller
*
* Copyright (C) 2014 Varka Bhadram <varkab@cdac.in>
* Md.Jamal Mohiuddin <mjmohiuddin@cdac.in>
* P Sowjanya <sowjanyap@cdac.in>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/gpio.h>
#include <linux/delay.h>
#include <linux/spi/spi.h>
#include <linux/spi/cc2520.h>
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#include <linux/skbuff.h>
#include <linux/of_gpio.h>
#include <linux/ieee802154.h>
#include <linux/crc-ccitt.h>
#include <asm/unaligned.h>
#include <net/mac802154.h>
#include <net/cfg802154.h>
#define SPI_COMMAND_BUFFER 3
#define HIGH 1
#define LOW 0
#define STATE_IDLE 0
#define RSSI_VALID 0
#define RSSI_OFFSET 78
#define CC2520_RAM_SIZE 640
#define CC2520_FIFO_SIZE 128
#define CC2520RAM_TXFIFO 0x100
#define CC2520RAM_RXFIFO 0x180
#define CC2520RAM_IEEEADDR 0x3EA
#define CC2520RAM_PANID 0x3F2
#define CC2520RAM_SHORTADDR 0x3F4
#define CC2520_FREG_MASK 0x3F
/* status byte values */
#define CC2520_STATUS_XOSC32M_STABLE BIT(7)
#define CC2520_STATUS_RSSI_VALID BIT(6)
#define CC2520_STATUS_TX_UNDERFLOW BIT(3)
/* IEEE-802.15.4 defined constants (2.4 GHz logical channels) */
#define CC2520_MINCHANNEL 11
#define CC2520_MAXCHANNEL 26
#define CC2520_CHANNEL_SPACING 5
/* command strobes */
#define CC2520_CMD_SNOP 0x00
#define CC2520_CMD_IBUFLD 0x02
#define CC2520_CMD_SIBUFEX 0x03
#define CC2520_CMD_SSAMPLECCA 0x04
#define CC2520_CMD_SRES 0x0f
#define CC2520_CMD_MEMORY_MASK 0x0f
#define CC2520_CMD_MEMORY_READ 0x10
#define CC2520_CMD_MEMORY_WRITE 0x20
#define CC2520_CMD_RXBUF 0x30
#define CC2520_CMD_RXBUFCP 0x38
#define CC2520_CMD_RXBUFMOV 0x32
#define CC2520_CMD_TXBUF 0x3A
#define CC2520_CMD_TXBUFCP 0x3E
#define CC2520_CMD_RANDOM 0x3C
#define CC2520_CMD_SXOSCON 0x40
#define CC2520_CMD_STXCAL 0x41
#define CC2520_CMD_SRXON 0x42
#define CC2520_CMD_STXON 0x43
#define CC2520_CMD_STXONCCA 0x44
#define CC2520_CMD_SRFOFF 0x45
#define CC2520_CMD_SXOSCOFF 0x46
#define CC2520_CMD_SFLUSHRX 0x47
#define CC2520_CMD_SFLUSHTX 0x48
#define CC2520_CMD_SACK 0x49
#define CC2520_CMD_SACKPEND 0x4A
#define CC2520_CMD_SNACK 0x4B
#define CC2520_CMD_SRXMASKBITSET 0x4C
#define CC2520_CMD_SRXMASKBITCLR 0x4D
#define CC2520_CMD_RXMASKAND 0x4E
#define CC2520_CMD_RXMASKOR 0x4F
#define CC2520_CMD_MEMCP 0x50
#define CC2520_CMD_MEMCPR 0x52
#define CC2520_CMD_MEMXCP 0x54
#define CC2520_CMD_MEMXWR 0x56
#define CC2520_CMD_BCLR 0x58
#define CC2520_CMD_BSET 0x59
#define CC2520_CMD_CTR_UCTR 0x60
#define CC2520_CMD_CBCMAC 0x64
#define CC2520_CMD_UCBCMAC 0x66
#define CC2520_CMD_CCM 0x68
#define CC2520_CMD_UCCM 0x6A
#define CC2520_CMD_ECB 0x70
#define CC2520_CMD_ECBO 0x72
#define CC2520_CMD_ECBX 0x74
#define CC2520_CMD_INC 0x78
#define CC2520_CMD_ABORT 0x7F
#define CC2520_CMD_REGISTER_READ 0x80
#define CC2520_CMD_REGISTER_WRITE 0xC0
/* status registers */
#define CC2520_CHIPID 0x40
#define CC2520_VERSION 0x42
#define CC2520_EXTCLOCK 0x44
#define CC2520_MDMCTRL0 0x46
#define CC2520_MDMCTRL1 0x47
#define CC2520_FREQEST 0x48
#define CC2520_RXCTRL 0x4A
#define CC2520_FSCTRL 0x4C
#define CC2520_FSCAL0 0x4E
#define CC2520_FSCAL1 0x4F
#define CC2520_FSCAL2 0x50
#define CC2520_FSCAL3 0x51
#define CC2520_AGCCTRL0 0x52
#define CC2520_AGCCTRL1 0x53
#define CC2520_AGCCTRL2 0x54
#define CC2520_AGCCTRL3 0x55
#define CC2520_ADCTEST0 0x56
#define CC2520_ADCTEST1 0x57
#define CC2520_ADCTEST2 0x58
#define CC2520_MDMTEST0 0x5A
#define CC2520_MDMTEST1 0x5B
#define CC2520_DACTEST0 0x5C
#define CC2520_DACTEST1 0x5D
#define CC2520_ATEST 0x5E
#define CC2520_DACTEST2 0x5F
#define CC2520_PTEST0 0x60
#define CC2520_PTEST1 0x61
#define CC2520_RESERVED 0x62
#define CC2520_DPUBIST 0x7A
#define CC2520_ACTBIST 0x7C
#define CC2520_RAMBIST 0x7E
/* frame registers */
#define CC2520_FRMFILT0 0x00
#define CC2520_FRMFILT1 0x01
#define CC2520_SRCMATCH 0x02
#define CC2520_SRCSHORTEN0 0x04
#define CC2520_SRCSHORTEN1 0x05
#define CC2520_SRCSHORTEN2 0x06
#define CC2520_SRCEXTEN0 0x08
#define CC2520_SRCEXTEN1 0x09
#define CC2520_SRCEXTEN2 0x0A
#define CC2520_FRMCTRL0 0x0C
#define CC2520_FRMCTRL1 0x0D
#define CC2520_RXENABLE0 0x0E
#define CC2520_RXENABLE1 0x0F
#define CC2520_EXCFLAG0 0x10
#define CC2520_EXCFLAG1 0x11
#define CC2520_EXCFLAG2 0x12
#define CC2520_EXCMASKA0 0x14
#define CC2520_EXCMASKA1 0x15
#define CC2520_EXCMASKA2 0x16
#define CC2520_EXCMASKB0 0x18
#define CC2520_EXCMASKB1 0x19
#define CC2520_EXCMASKB2 0x1A
#define CC2520_EXCBINDX0 0x1C
#define CC2520_EXCBINDX1 0x1D
#define CC2520_EXCBINDY0 0x1E
#define CC2520_EXCBINDY1 0x1F
#define CC2520_GPIOCTRL0 0x20
#define CC2520_GPIOCTRL1 0x21
#define CC2520_GPIOCTRL2 0x22
#define CC2520_GPIOCTRL3 0x23
#define CC2520_GPIOCTRL4 0x24
#define CC2520_GPIOCTRL5 0x25
#define CC2520_GPIOPOLARITY 0x26
#define CC2520_GPIOCTRL 0x28
#define CC2520_DPUCON 0x2A
#define CC2520_DPUSTAT 0x2C
#define CC2520_FREQCTRL 0x2E
#define CC2520_FREQTUNE 0x2F
#define CC2520_TXPOWER 0x30
#define CC2520_TXCTRL 0x31
#define CC2520_FSMSTAT0 0x32
#define CC2520_FSMSTAT1 0x33
#define CC2520_FIFOPCTRL 0x34
#define CC2520_FSMCTRL 0x35
#define CC2520_CCACTRL0 0x36
#define CC2520_CCACTRL1 0x37
#define CC2520_RSSI 0x38
#define CC2520_RSSISTAT 0x39
#define CC2520_RXFIRST 0x3C
#define CC2520_RXFIFOCNT 0x3E
#define CC2520_TXFIFOCNT 0x3F
/* CC2520_FRMFILT0 */
#define FRMFILT0_FRAME_FILTER_EN BIT(0)
#define FRMFILT0_PAN_COORDINATOR BIT(1)
/* CC2520_FRMCTRL0 */
#define FRMCTRL0_AUTOACK BIT(5)
#define FRMCTRL0_AUTOCRC BIT(6)
/* CC2520_FRMCTRL1 */
#define FRMCTRL1_SET_RXENMASK_ON_TX BIT(0)
#define FRMCTRL1_IGNORE_TX_UNDERF BIT(1)
/* Driver private information */
struct cc2520_private {
struct spi_device *spi; /* SPI device structure */
struct ieee802154_hw *hw; /* IEEE-802.15.4 device */
u8 *buf; /* SPI TX/Rx data buffer */
struct mutex buffer_mutex; /* SPI buffer mutex */
bool is_tx; /* Flag for sync b/w Tx and Rx */
bool amplified; /* Flag for CC2591 */
int fifo_pin; /* FIFO GPIO pin number */
struct work_struct fifop_irqwork;/* Workqueue for FIFOP */
spinlock_t lock; /* Lock for is_tx*/
struct completion tx_complete; /* Work completion for Tx */
bool promiscuous; /* Flag for promiscuous mode */
};
/* Generic Functions */
static int
cc2520_cmd_strobe(struct cc2520_private *priv, u8 cmd)
{
int ret;
struct spi_message msg;
struct spi_transfer xfer = {
.len = 0,
.tx_buf = priv->buf,
.rx_buf = priv->buf,
};
spi_message_init(&msg);
spi_message_add_tail(&xfer, &msg);
mutex_lock(&priv->buffer_mutex);
priv->buf[xfer.len++] = cmd;
dev_vdbg(&priv->spi->dev,
"command strobe buf[0] = %02x\n",
priv->buf[0]);
ret = spi_sync(priv->spi, &msg);
dev_vdbg(&priv->spi->dev,
"buf[0] = %02x\n", priv->buf[0]);
mutex_unlock(&priv->buffer_mutex);
return ret;
}
static int
cc2520_get_status(struct cc2520_private *priv, u8 *status)
{
int ret;
struct spi_message msg;
struct spi_transfer xfer = {
.len = 0,
.tx_buf = priv->buf,
.rx_buf = priv->buf,
};
spi_message_init(&msg);
spi_message_add_tail(&xfer, &msg);
mutex_lock(&priv->buffer_mutex);
priv->buf[xfer.len++] = CC2520_CMD_SNOP;
dev_vdbg(&priv->spi->dev,
"get status command buf[0] = %02x\n", priv->buf[0]);
ret = spi_sync(priv->spi, &msg);
if (!ret)
*status = priv->buf[0];
dev_vdbg(&priv->spi->dev,
"buf[0] = %02x\n", priv->buf[0]);
mutex_unlock(&priv->buffer_mutex);
return ret;
}
static int
cc2520_write_register(struct cc2520_private *priv, u8 reg, u8 value)
{
int status;
struct spi_message msg;
struct spi_transfer xfer = {
.len = 0,
.tx_buf = priv->buf,
.rx_buf = priv->buf,
};
spi_message_init(&msg);
spi_message_add_tail(&xfer, &msg);
mutex_lock(&priv->buffer_mutex);
if (reg <= CC2520_FREG_MASK) {
priv->buf[xfer.len++] = CC2520_CMD_REGISTER_WRITE | reg;
priv->buf[xfer.len++] = value;
} else {
priv->buf[xfer.len++] = CC2520_CMD_MEMORY_WRITE;
priv->buf[xfer.len++] = reg;
priv->buf[xfer.len++] = value;
}
status = spi_sync(priv->spi, &msg);
if (msg.status)
status = msg.status;
mutex_unlock(&priv->buffer_mutex);
return status;
}
static int
cc2520_write_ram(struct cc2520_private *priv, u16 reg, u8 len, u8 *data)
{
int status;
struct spi_message msg;
struct spi_transfer xfer_head = {
.len = 0,
.tx_buf = priv->buf,
.rx_buf = priv->buf,
};
struct spi_transfer xfer_buf = {
.len = len,
.tx_buf = data,
};
mutex_lock(&priv->buffer_mutex);
priv->buf[xfer_head.len++] = (CC2520_CMD_MEMORY_WRITE |
((reg >> 8) & 0xff));
priv->buf[xfer_head.len++] = reg & 0xff;
spi_message_init(&msg);
spi_message_add_tail(&xfer_head, &msg);
spi_message_add_tail(&xfer_buf, &msg);
status = spi_sync(priv->spi, &msg);
dev_dbg(&priv->spi->dev, "spi status = %d\n", status);
if (msg.status)
status = msg.status;
mutex_unlock(&priv->buffer_mutex);
return status;
}
static int
cc2520_read_register(struct cc2520_private *priv, u8 reg, u8 *data)
{
int status;
struct spi_message msg;
struct spi_transfer xfer1 = {
.len = 0,
.tx_buf = priv->buf,
.rx_buf = priv->buf,
};
struct spi_transfer xfer2 = {
.len = 1,
.rx_buf = data,
};
spi_message_init(&msg);
spi_message_add_tail(&xfer1, &msg);
spi_message_add_tail(&xfer2, &msg);
mutex_lock(&priv->buffer_mutex);
priv->buf[xfer1.len++] = CC2520_CMD_MEMORY_READ;
priv->buf[xfer1.len++] = reg;
status = spi_sync(priv->spi, &msg);
dev_dbg(&priv->spi->dev,
"spi status = %d\n", status);
if (msg.status)
status = msg.status;
mutex_unlock(&priv->buffer_mutex);
return status;
}
static int
cc2520_write_txfifo(struct cc2520_private *priv, u8 pkt_len, u8 *data, u8 len)
{
int status;
/* length byte must include FCS even
* if it is calculated in the hardware
*/
int len_byte = pkt_len;
struct spi_message msg;
struct spi_transfer xfer_head = {
.len = 0,
.tx_buf = priv->buf,
.rx_buf = priv->buf,
};
struct spi_transfer xfer_len = {
.len = 1,
.tx_buf = &len_byte,
};
struct spi_transfer xfer_buf = {
.len = len,
.tx_buf = data,
};
spi_message_init(&msg);
spi_message_add_tail(&xfer_head, &msg);
spi_message_add_tail(&xfer_len, &msg);
spi_message_add_tail(&xfer_buf, &msg);
mutex_lock(&priv->buffer_mutex);
priv->buf[xfer_head.len++] = CC2520_CMD_TXBUF;
dev_vdbg(&priv->spi->dev,
"TX_FIFO cmd buf[0] = %02x\n", priv->buf[0]);
status = spi_sync(priv->spi, &msg);
dev_vdbg(&priv->spi->dev, "status = %d\n", status);
if (msg.status)
status = msg.status;
dev_vdbg(&priv->spi->dev, "status = %d\n", status);
dev_vdbg(&priv->spi->dev, "buf[0] = %02x\n", priv->buf[0]);
mutex_unlock(&priv->buffer_mutex);
return status;
}
static int
cc2520_read_rxfifo(struct cc2520_private *priv, u8 *data, u8 len)
{
int status;
struct spi_message msg;
struct spi_transfer xfer_head = {
.len = 0,
.tx_buf = priv->buf,
.rx_buf = priv->buf,
};
struct spi_transfer xfer_buf = {
.len = len,
.rx_buf = data,
};
spi_message_init(&msg);
spi_message_add_tail(&xfer_head, &msg);
spi_message_add_tail(&xfer_buf, &msg);
mutex_lock(&priv->buffer_mutex);
priv->buf[xfer_head.len++] = CC2520_CMD_RXBUF;
dev_vdbg(&priv->spi->dev, "read rxfifo buf[0] = %02x\n", priv->buf[0]);
dev_vdbg(&priv->spi->dev, "buf[1] = %02x\n", priv->buf[1]);
status = spi_sync(priv->spi, &msg);
dev_vdbg(&priv->spi->dev, "status = %d\n", status);
if (msg.status)
status = msg.status;
dev_vdbg(&priv->spi->dev, "status = %d\n", status);
dev_vdbg(&priv->spi->dev,
"return status buf[0] = %02x\n", priv->buf[0]);
dev_vdbg(&priv->spi->dev, "length buf[1] = %02x\n", priv->buf[1]);
mutex_unlock(&priv->buffer_mutex);
return status;
}
static int cc2520_start(struct ieee802154_hw *hw)
{
return cc2520_cmd_strobe(hw->priv, CC2520_CMD_SRXON);
}
static void cc2520_stop(struct ieee802154_hw *hw)
{
cc2520_cmd_strobe(hw->priv, CC2520_CMD_SRFOFF);
}
static int
cc2520_tx(struct ieee802154_hw *hw, struct sk_buff *skb)
{
struct cc2520_private *priv = hw->priv;
unsigned long flags;
int rc;
u8 status = 0;
u8 pkt_len;
/* In promiscuous mode we disable AUTOCRC so we can get the raw CRC
* values on RX. This means we need to manually add the CRC on TX.
*/
if (priv->promiscuous) {
u16 crc = crc_ccitt(0, skb->data, skb->len);
put_unaligned_le16(crc, skb_put(skb, 2));
pkt_len = skb->len;
} else {
pkt_len = skb->len + 2;
}
rc = cc2520_cmd_strobe(priv, CC2520_CMD_SFLUSHTX);
if (rc)
goto err_tx;
rc = cc2520_write_txfifo(priv, pkt_len, skb->data, skb->len);
if (rc)
goto err_tx;
rc = cc2520_get_status(priv, &status);
if (rc)
goto err_tx;
if (status & CC2520_STATUS_TX_UNDERFLOW) {
dev_err(&priv->spi->dev, "cc2520 tx underflow exception\n");
goto err_tx;
}
spin_lock_irqsave(&priv->lock, flags);
WARN_ON(priv->is_tx);
priv->is_tx = 1;
spin_unlock_irqrestore(&priv->lock, flags);
rc = cc2520_cmd_strobe(priv, CC2520_CMD_STXONCCA);
if (rc)
goto err;
rc = wait_for_completion_interruptible(&priv->tx_complete);
if (rc < 0)
goto err;
cc2520_cmd_strobe(priv, CC2520_CMD_SFLUSHTX);
cc2520_cmd_strobe(priv, CC2520_CMD_SRXON);
return rc;
err:
spin_lock_irqsave(&priv->lock, flags);
priv->is_tx = 0;
spin_unlock_irqrestore(&priv->lock, flags);
err_tx:
return rc;
}
static int cc2520_rx(struct cc2520_private *priv)
{
u8 len = 0, lqi = 0, bytes = 1;
struct sk_buff *skb;
/* Read single length byte from the radio. */
cc2520_read_rxfifo(priv, &len, bytes);
if (!ieee802154_is_valid_psdu_len(len)) {
/* Corrupted frame received, clear frame buffer by
* reading entire buffer.
*/
dev_dbg(&priv->spi->dev, "corrupted frame received\n");
len = IEEE802154_MTU;
}
skb = dev_alloc_skb(len);
if (!skb)
return -ENOMEM;
if (cc2520_read_rxfifo(priv, skb_put(skb, len), len)) {
dev_dbg(&priv->spi->dev, "frame reception failed\n");
kfree_skb(skb);
return -EINVAL;
}
/* In promiscuous mode, we configure the radio to include the
* CRC (AUTOCRC==0) and we pass on the packet unconditionally. If not
* in promiscuous mode, we check the CRC here, but leave the
* RSSI/LQI/CRC_OK bytes as they will get removed in the mac layer.
*/
if (!priv->promiscuous) {
bool crc_ok;
/* Check if the CRC is valid. With AUTOCRC set, the most
* significant bit of the last byte returned from the CC2520
* is CRC_OK flag. See section 20.3.4 of the datasheet.
*/
crc_ok = skb->data[len - 1] & BIT(7);
/* If we failed CRC drop the packet in the driver layer. */
if (!crc_ok) {
dev_dbg(&priv->spi->dev, "CRC check failed\n");
kfree_skb(skb);
return -EINVAL;
}
/* To calculate LQI, the lower 7 bits of the last byte (the
* correlation value provided by the radio) must be scaled to
* the range 0-255. According to section 20.6, the correlation
* value ranges from 50-110. Ideally this would be calibrated
* per hardware design, but we use roughly the datasheet values
* to get close enough while avoiding floating point.
*/
lqi = skb->data[len - 1] & 0x7f;
if (lqi < 50)
lqi = 50;
else if (lqi > 113)
lqi = 113;
lqi = (lqi - 50) * 4;
}
ieee802154_rx_irqsafe(priv->hw, skb, lqi);
dev_vdbg(&priv->spi->dev, "RXFIFO: %x %x\n", len, lqi);
return 0;
}
static int
cc2520_ed(struct ieee802154_hw *hw, u8 *level)
{
struct cc2520_private *priv = hw->priv;
u8 status = 0xff;
u8 rssi;
int ret;
ret = cc2520_read_register(priv, CC2520_RSSISTAT, &status);
if (ret)
return ret;
if (status != RSSI_VALID)
return -EINVAL;
ret = cc2520_read_register(priv, CC2520_RSSI, &rssi);
if (ret)
return ret;
/* level = RSSI(rssi) - OFFSET [dBm] : offset is 76dBm */
*level = rssi - RSSI_OFFSET;
return 0;
}
static int
cc2520_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
{
struct cc2520_private *priv = hw->priv;
int ret;
dev_dbg(&priv->spi->dev, "trying to set channel\n");
WARN_ON(page != 0);
WARN_ON(channel < CC2520_MINCHANNEL);
WARN_ON(channel > CC2520_MAXCHANNEL);
ret = cc2520_write_register(priv, CC2520_FREQCTRL,
11 + 5 * (channel - 11));
return ret;
}
static int
cc2520_filter(struct ieee802154_hw *hw,
struct ieee802154_hw_addr_filt *filt, unsigned long changed)
{
struct cc2520_private *priv = hw->priv;
int ret = 0;
if (changed & IEEE802154_AFILT_PANID_CHANGED) {
u16 panid = le16_to_cpu(filt->pan_id);
dev_vdbg(&priv->spi->dev, "%s called for pan id\n", __func__);
ret = cc2520_write_ram(priv, CC2520RAM_PANID,
sizeof(panid), (u8 *)&panid);
}
if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
dev_vdbg(&priv->spi->dev,
"%s called for IEEE addr\n", __func__);
ret = cc2520_write_ram(priv, CC2520RAM_IEEEADDR,
sizeof(filt->ieee_addr),
(u8 *)&filt->ieee_addr);
}
if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
u16 addr = le16_to_cpu(filt->short_addr);
dev_vdbg(&priv->spi->dev, "%s called for saddr\n", __func__);
ret = cc2520_write_ram(priv, CC2520RAM_SHORTADDR,
sizeof(addr), (u8 *)&addr);
}
if (changed & IEEE802154_AFILT_PANC_CHANGED) {
u8 frmfilt0;
dev_vdbg(&priv->spi->dev,
"%s called for panc change\n", __func__);
cc2520_read_register(priv, CC2520_FRMFILT0, &frmfilt0);
if (filt->pan_coord)
frmfilt0 |= FRMFILT0_PAN_COORDINATOR;
else
frmfilt0 &= ~FRMFILT0_PAN_COORDINATOR;
ret = cc2520_write_register(priv, CC2520_FRMFILT0, frmfilt0);
}
return ret;
}
static inline int cc2520_set_tx_power(struct cc2520_private *priv, s32 mbm)
{
u8 power;
switch (mbm) {
case 500:
power = 0xF7;
break;
case 300:
power = 0xF2;
break;
case 200:
power = 0xAB;
break;
case 100:
power = 0x13;
break;
case 0:
power = 0x32;
break;
case -200:
power = 0x81;
break;
case -400:
power = 0x88;
break;
case -700:
power = 0x2C;
break;
case -1800:
power = 0x03;
break;
default:
return -EINVAL;
}
return cc2520_write_register(priv, CC2520_TXPOWER, power);
}
static inline int cc2520_cc2591_set_tx_power(struct cc2520_private *priv,
s32 mbm)
{
u8 power;
switch (mbm) {
case 1700:
power = 0xF9;
break;
case 1600:
power = 0xF0;
break;
case 1400:
power = 0xA0;
break;
case 1100:
power = 0x2C;
break;
case -100:
power = 0x03;
break;
case -800:
power = 0x01;
break;
default:
return -EINVAL;
}
return cc2520_write_register(priv, CC2520_TXPOWER, power);
}
#define CC2520_MAX_TX_POWERS 0x8
static const s32 cc2520_powers[CC2520_MAX_TX_POWERS + 1] = {
500, 300, 200, 100, 0, -200, -400, -700, -1800,
};
#define CC2520_CC2591_MAX_TX_POWERS 0x5
static const s32 cc2520_cc2591_powers[CC2520_CC2591_MAX_TX_POWERS + 1] = {
1700, 1600, 1400, 1100, -100, -800,
};
static int
cc2520_set_txpower(struct ieee802154_hw *hw, s32 mbm)
{
struct cc2520_private *priv = hw->priv;
if (!priv->amplified)
return cc2520_set_tx_power(priv, mbm);
return cc2520_cc2591_set_tx_power(priv, mbm);
}
static int
cc2520_set_promiscuous_mode(struct ieee802154_hw *hw, bool on)
{
struct cc2520_private *priv = hw->priv;
u8 frmfilt0;
dev_dbg(&priv->spi->dev, "%s : mode %d\n", __func__, on);
priv->promiscuous = on;
cc2520_read_register(priv, CC2520_FRMFILT0, &frmfilt0);
if (on) {
/* Disable automatic ACK, automatic CRC, and frame filtering. */
cc2520_write_register(priv, CC2520_FRMCTRL0, 0);
frmfilt0 &= ~FRMFILT0_FRAME_FILTER_EN;
} else {
cc2520_write_register(priv, CC2520_FRMCTRL0, FRMCTRL0_AUTOACK |
FRMCTRL0_AUTOCRC);
frmfilt0 |= FRMFILT0_FRAME_FILTER_EN;
}
return cc2520_write_register(priv, CC2520_FRMFILT0, frmfilt0);
}
static const struct ieee802154_ops cc2520_ops = {
.owner = THIS_MODULE,
.start = cc2520_start,
.stop = cc2520_stop,
.xmit_sync = cc2520_tx,
.ed = cc2520_ed,
.set_channel = cc2520_set_channel,
.set_hw_addr_filt = cc2520_filter,
.set_txpower = cc2520_set_txpower,
.set_promiscuous_mode = cc2520_set_promiscuous_mode,
};
static int cc2520_register(struct cc2520_private *priv)
{
int ret = -ENOMEM;
priv->hw = ieee802154_alloc_hw(sizeof(*priv), &cc2520_ops);
if (!priv->hw)
goto err_ret;
priv->hw->priv = priv;
priv->hw->parent = &priv->spi->dev;
priv->hw->extra_tx_headroom = 0;
ieee802154_random_extended_addr(&priv->hw->phy->perm_extended_addr);
/* We do support only 2.4 Ghz */
priv->hw->phy->supported.channels[0] = 0x7FFF800;
priv->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | IEEE802154_HW_AFILT |
IEEE802154_HW_PROMISCUOUS;
priv->hw->phy->flags = WPAN_PHY_FLAG_TXPOWER;
if (!priv->amplified) {
priv->hw->phy->supported.tx_powers = cc2520_powers;
priv->hw->phy->supported.tx_powers_size = ARRAY_SIZE(cc2520_powers);
priv->hw->phy->transmit_power = priv->hw->phy->supported.tx_powers[4];
} else {
priv->hw->phy->supported.tx_powers = cc2520_cc2591_powers;
priv->hw->phy->supported.tx_powers_size = ARRAY_SIZE(cc2520_cc2591_powers);
priv->hw->phy->transmit_power = priv->hw->phy->supported.tx_powers[0];
}
priv->hw->phy->current_channel = 11;
dev_vdbg(&priv->spi->dev, "registered cc2520\n");
ret = ieee802154_register_hw(priv->hw);
if (ret)
goto err_free_device;
return 0;
err_free_device:
ieee802154_free_hw(priv->hw);
err_ret:
return ret;
}
static void cc2520_fifop_irqwork(struct work_struct *work)
{
struct cc2520_private *priv
= container_of(work, struct cc2520_private, fifop_irqwork);
dev_dbg(&priv->spi->dev, "fifop interrupt received\n");
if (gpio_get_value(priv->fifo_pin))
cc2520_rx(priv);
else
dev_dbg(&priv->spi->dev, "rxfifo overflow\n");
cc2520_cmd_strobe(priv, CC2520_CMD_SFLUSHRX);
cc2520_cmd_strobe(priv, CC2520_CMD_SFLUSHRX);
}
static irqreturn_t cc2520_fifop_isr(int irq, void *data)
{
struct cc2520_private *priv = data;
schedule_work(&priv->fifop_irqwork);
return IRQ_HANDLED;
}
static irqreturn_t cc2520_sfd_isr(int irq, void *data)
{
struct cc2520_private *priv = data;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
if (priv->is_tx) {
priv->is_tx = 0;
spin_unlock_irqrestore(&priv->lock, flags);
dev_dbg(&priv->spi->dev, "SFD for TX\n");
complete(&priv->tx_complete);
} else {
spin_unlock_irqrestore(&priv->lock, flags);
dev_dbg(&priv->spi->dev, "SFD for RX\n");
}
return IRQ_HANDLED;
}
static int cc2520_get_platform_data(struct spi_device *spi,
struct cc2520_platform_data *pdata)
{
struct device_node *np = spi->dev.of_node;
struct cc2520_private *priv = spi_get_drvdata(spi);
if (!np) {
struct cc2520_platform_data *spi_pdata = spi->dev.platform_data;
if (!spi_pdata)
return -ENOENT;
*pdata = *spi_pdata;
priv->fifo_pin = pdata->fifo;
return 0;
}
pdata->fifo = of_get_named_gpio(np, "fifo-gpio", 0);
priv->fifo_pin = pdata->fifo;
pdata->fifop = of_get_named_gpio(np, "fifop-gpio", 0);
pdata->sfd = of_get_named_gpio(np, "sfd-gpio", 0);
pdata->cca = of_get_named_gpio(np, "cca-gpio", 0);
pdata->vreg = of_get_named_gpio(np, "vreg-gpio", 0);
pdata->reset = of_get_named_gpio(np, "reset-gpio", 0);
/* CC2591 front end for CC2520 */
if (of_property_read_bool(np, "amplified"))
priv->amplified = true;
return 0;
}
static int cc2520_hw_init(struct cc2520_private *priv)
{
u8 status = 0, state = 0xff;
int ret;
int timeout = 100;
struct cc2520_platform_data pdata;
ret = cc2520_get_platform_data(priv->spi, &pdata);
if (ret)
goto err_ret;
ret = cc2520_read_register(priv, CC2520_FSMSTAT1, &state);
if (ret)
goto err_ret;
if (state != STATE_IDLE)
return -EINVAL;
do {
ret = cc2520_get_status(priv, &status);
if (ret)
goto err_ret;
if (timeout-- <= 0) {
dev_err(&priv->spi->dev, "oscillator start failed!\n");
return ret;
}
udelay(1);
} while (!(status & CC2520_STATUS_XOSC32M_STABLE));
dev_vdbg(&priv->spi->dev, "oscillator brought up\n");
/* If the CC2520 is connected to a CC2591 amplifier, we must both
* configure GPIOs on the CC2520 to correctly configure the CC2591
* and change a couple settings of the CC2520 to work with the
* amplifier. See section 8 page 17 of TI application note AN065.
* http://www.ti.com/lit/an/swra229a/swra229a.pdf
*/
if (priv->amplified) {
ret = cc2520_write_register(priv, CC2520_AGCCTRL1, 0x16);
if (ret)
goto err_ret;
ret = cc2520_write_register(priv, CC2520_GPIOCTRL0, 0x46);
if (ret)
goto err_ret;
ret = cc2520_write_register(priv, CC2520_GPIOCTRL5, 0x47);
if (ret)
goto err_ret;
ret = cc2520_write_register(priv, CC2520_GPIOPOLARITY, 0x1e);
if (ret)
goto err_ret;
ret = cc2520_write_register(priv, CC2520_TXCTRL, 0xc1);
if (ret)
goto err_ret;
} else {
ret = cc2520_write_register(priv, CC2520_AGCCTRL1, 0x11);
if (ret)
goto err_ret;
}
/* Registers default value: section 28.1 in Datasheet */
/* Set the CCA threshold to -50 dBm. This seems to have been copied
* from the TinyOS CC2520 driver and is much higher than the -84 dBm
* threshold suggested in the datasheet.
*/
ret = cc2520_write_register(priv, CC2520_CCACTRL0, 0x1A);
if (ret)
goto err_ret;
ret = cc2520_write_register(priv, CC2520_MDMCTRL0, 0x85);
if (ret)
goto err_ret;
ret = cc2520_write_register(priv, CC2520_MDMCTRL1, 0x14);
if (ret)
goto err_ret;
ret = cc2520_write_register(priv, CC2520_RXCTRL, 0x3f);
if (ret)
goto err_ret;
ret = cc2520_write_register(priv, CC2520_FSCTRL, 0x5a);
if (ret)
goto err_ret;
ret = cc2520_write_register(priv, CC2520_FSCAL1, 0x2b);
if (ret)
goto err_ret;
ret = cc2520_write_register(priv, CC2520_ADCTEST0, 0x10);
if (ret)
goto err_ret;
ret = cc2520_write_register(priv, CC2520_ADCTEST1, 0x0e);
if (ret)
goto err_ret;
ret = cc2520_write_register(priv, CC2520_ADCTEST2, 0x03);
if (ret)
goto err_ret;
/* Configure registers correctly for this driver. */
ret = cc2520_write_register(priv, CC2520_FRMCTRL1,
FRMCTRL1_SET_RXENMASK_ON_TX |
FRMCTRL1_IGNORE_TX_UNDERF);
if (ret)
goto err_ret;
ret = cc2520_write_register(priv, CC2520_FIFOPCTRL, 127);
if (ret)
goto err_ret;
return 0;
err_ret:
return ret;
}
static int cc2520_probe(struct spi_device *spi)
{
struct cc2520_private *priv;
struct cc2520_platform_data pdata;
int ret;
priv = devm_kzalloc(&spi->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
spi_set_drvdata(spi, priv);
ret = cc2520_get_platform_data(spi, &pdata);
if (ret < 0) {
dev_err(&spi->dev, "no platform data\n");
return -EINVAL;
}
priv->spi = spi;
priv->buf = devm_kzalloc(&spi->dev,
SPI_COMMAND_BUFFER, GFP_KERNEL);
if (!priv->buf)
return -ENOMEM;
mutex_init(&priv->buffer_mutex);
INIT_WORK(&priv->fifop_irqwork, cc2520_fifop_irqwork);
spin_lock_init(&priv->lock);
init_completion(&priv->tx_complete);
/* Assumption that CC2591 is not connected */
priv->amplified = false;
/* Request all the gpio's */
if (!gpio_is_valid(pdata.fifo)) {
dev_err(&spi->dev, "fifo gpio is not valid\n");
ret = -EINVAL;
goto err_hw_init;
}
ret = devm_gpio_request_one(&spi->dev, pdata.fifo,
GPIOF_IN, "fifo");
if (ret)
goto err_hw_init;
if (!gpio_is_valid(pdata.cca)) {
dev_err(&spi->dev, "cca gpio is not valid\n");
ret = -EINVAL;
goto err_hw_init;
}
ret = devm_gpio_request_one(&spi->dev, pdata.cca,
GPIOF_IN, "cca");
if (ret)
goto err_hw_init;
if (!gpio_is_valid(pdata.fifop)) {
dev_err(&spi->dev, "fifop gpio is not valid\n");
ret = -EINVAL;
goto err_hw_init;
}
ret = devm_gpio_request_one(&spi->dev, pdata.fifop,
GPIOF_IN, "fifop");
if (ret)
goto err_hw_init;
if (!gpio_is_valid(pdata.sfd)) {
dev_err(&spi->dev, "sfd gpio is not valid\n");
ret = -EINVAL;
goto err_hw_init;
}
ret = devm_gpio_request_one(&spi->dev, pdata.sfd,
GPIOF_IN, "sfd");
if (ret)
goto err_hw_init;
if (!gpio_is_valid(pdata.reset)) {
dev_err(&spi->dev, "reset gpio is not valid\n");
ret = -EINVAL;
goto err_hw_init;
}
ret = devm_gpio_request_one(&spi->dev, pdata.reset,
GPIOF_OUT_INIT_LOW, "reset");
if (ret)
goto err_hw_init;
if (!gpio_is_valid(pdata.vreg)) {
dev_err(&spi->dev, "vreg gpio is not valid\n");
ret = -EINVAL;
goto err_hw_init;
}
ret = devm_gpio_request_one(&spi->dev, pdata.vreg,
GPIOF_OUT_INIT_LOW, "vreg");
if (ret)
goto err_hw_init;
gpio_set_value(pdata.vreg, HIGH);
usleep_range(100, 150);
gpio_set_value(pdata.reset, HIGH);
usleep_range(200, 250);
ret = cc2520_hw_init(priv);
if (ret)
goto err_hw_init;
/* Set up fifop interrupt */
ret = devm_request_irq(&spi->dev,
gpio_to_irq(pdata.fifop),
cc2520_fifop_isr,
IRQF_TRIGGER_RISING,
dev_name(&spi->dev),
priv);
if (ret) {
dev_err(&spi->dev, "could not get fifop irq\n");
goto err_hw_init;
}
/* Set up sfd interrupt */
ret = devm_request_irq(&spi->dev,
gpio_to_irq(pdata.sfd),
cc2520_sfd_isr,
IRQF_TRIGGER_FALLING,
dev_name(&spi->dev),
priv);
if (ret) {
dev_err(&spi->dev, "could not get sfd irq\n");
goto err_hw_init;
}
ret = cc2520_register(priv);
if (ret)
goto err_hw_init;
return 0;
err_hw_init:
mutex_destroy(&priv->buffer_mutex);
flush_work(&priv->fifop_irqwork);
return ret;
}
static int cc2520_remove(struct spi_device *spi)
{
struct cc2520_private *priv = spi_get_drvdata(spi);
mutex_destroy(&priv->buffer_mutex);
flush_work(&priv->fifop_irqwork);
ieee802154_unregister_hw(priv->hw);
ieee802154_free_hw(priv->hw);
return 0;
}
static const struct spi_device_id cc2520_ids[] = {
{"cc2520", },
{},
};
MODULE_DEVICE_TABLE(spi, cc2520_ids);
static const struct of_device_id cc2520_of_ids[] = {
{.compatible = "ti,cc2520", },
{},
};
MODULE_DEVICE_TABLE(of, cc2520_of_ids);
/* SPI driver structure */
static struct spi_driver cc2520_driver = {
.driver = {
.name = "cc2520",
.of_match_table = of_match_ptr(cc2520_of_ids),
},
.id_table = cc2520_ids,
.probe = cc2520_probe,
.remove = cc2520_remove,
};
module_spi_driver(cc2520_driver);
MODULE_AUTHOR("Varka Bhadram <varkab@cdac.in>");
MODULE_DESCRIPTION("CC2520 Transceiver Driver");
MODULE_LICENSE("GPL v2");