mirror of https://gitee.com/openkylin/linux.git
272 lines
6.1 KiB
C
272 lines
6.1 KiB
C
|
/*
|
||
|
* Copyright 2014 Chen-Yu Tsai
|
||
|
*
|
||
|
* Chen-Yu Tsai <wens@csie.org>
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*/
|
||
|
|
||
|
#include <linux/clk-provider.h>
|
||
|
#include <linux/clkdev.h>
|
||
|
#include <linux/of.h>
|
||
|
#include <linux/of_address.h>
|
||
|
#include <linux/log2.h>
|
||
|
|
||
|
#include "clk-factors.h"
|
||
|
|
||
|
|
||
|
/**
|
||
|
* sun9i_a80_get_pll4_factors() - calculates n, p, m factors for PLL1
|
||
|
* PLL4 rate is calculated as follows
|
||
|
* rate = (parent_rate * n >> p) / (m + 1);
|
||
|
* parent_rate is always 24Mhz
|
||
|
*
|
||
|
* p and m are named div1 and div2 in Allwinner's SDK
|
||
|
*/
|
||
|
|
||
|
static void sun9i_a80_get_pll4_factors(u32 *freq, u32 parent_rate,
|
||
|
u8 *n, u8 *k, u8 *m, u8 *p)
|
||
|
{
|
||
|
int div;
|
||
|
|
||
|
/* Normalize value to a 6M multiple */
|
||
|
div = DIV_ROUND_UP(*freq, 6000000);
|
||
|
|
||
|
/* divs above 256 cannot be odd */
|
||
|
if (div > 256)
|
||
|
div = round_up(div, 2);
|
||
|
|
||
|
/* divs above 512 must be a multiple of 4 */
|
||
|
if (div > 512)
|
||
|
div = round_up(div, 4);
|
||
|
|
||
|
*freq = 6000000 * div;
|
||
|
|
||
|
/* we were called to round the frequency, we can now return */
|
||
|
if (n == NULL)
|
||
|
return;
|
||
|
|
||
|
/* p will be 1 for divs under 512 */
|
||
|
if (div < 512)
|
||
|
*p = 1;
|
||
|
else
|
||
|
*p = 0;
|
||
|
|
||
|
/* m will be 1 if div is odd */
|
||
|
if (div & 1)
|
||
|
*m = 1;
|
||
|
else
|
||
|
*m = 0;
|
||
|
|
||
|
/* calculate a suitable n based on m and p */
|
||
|
*n = div / (*p + 1) / (*m + 1);
|
||
|
}
|
||
|
|
||
|
static struct clk_factors_config sun9i_a80_pll4_config = {
|
||
|
.mshift = 18,
|
||
|
.mwidth = 1,
|
||
|
.nshift = 8,
|
||
|
.nwidth = 8,
|
||
|
.pshift = 16,
|
||
|
.pwidth = 1,
|
||
|
};
|
||
|
|
||
|
static const struct factors_data sun9i_a80_pll4_data __initconst = {
|
||
|
.enable = 31,
|
||
|
.table = &sun9i_a80_pll4_config,
|
||
|
.getter = sun9i_a80_get_pll4_factors,
|
||
|
};
|
||
|
|
||
|
static DEFINE_SPINLOCK(sun9i_a80_pll4_lock);
|
||
|
|
||
|
static void __init sun9i_a80_pll4_setup(struct device_node *node)
|
||
|
{
|
||
|
sunxi_factors_register(node, &sun9i_a80_pll4_data, &sun9i_a80_pll4_lock);
|
||
|
}
|
||
|
CLK_OF_DECLARE(sun9i_a80_pll4, "allwinner,sun9i-a80-pll4-clk", sun9i_a80_pll4_setup);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* sun9i_a80_get_gt_factors() - calculates m factor for GT
|
||
|
* GT rate is calculated as follows
|
||
|
* rate = parent_rate / (m + 1);
|
||
|
*/
|
||
|
|
||
|
static void sun9i_a80_get_gt_factors(u32 *freq, u32 parent_rate,
|
||
|
u8 *n, u8 *k, u8 *m, u8 *p)
|
||
|
{
|
||
|
u32 div;
|
||
|
|
||
|
if (parent_rate < *freq)
|
||
|
*freq = parent_rate;
|
||
|
|
||
|
div = DIV_ROUND_UP(parent_rate, *freq);
|
||
|
|
||
|
/* maximum divider is 4 */
|
||
|
if (div > 4)
|
||
|
div = 4;
|
||
|
|
||
|
*freq = parent_rate / div;
|
||
|
|
||
|
/* we were called to round the frequency, we can now return */
|
||
|
if (!m)
|
||
|
return;
|
||
|
|
||
|
*m = div;
|
||
|
}
|
||
|
|
||
|
static struct clk_factors_config sun9i_a80_gt_config = {
|
||
|
.mshift = 0,
|
||
|
.mwidth = 2,
|
||
|
};
|
||
|
|
||
|
static const struct factors_data sun9i_a80_gt_data __initconst = {
|
||
|
.mux = 24,
|
||
|
.muxmask = BIT(1) | BIT(0),
|
||
|
.table = &sun9i_a80_gt_config,
|
||
|
.getter = sun9i_a80_get_gt_factors,
|
||
|
};
|
||
|
|
||
|
static DEFINE_SPINLOCK(sun9i_a80_gt_lock);
|
||
|
|
||
|
static void __init sun9i_a80_gt_setup(struct device_node *node)
|
||
|
{
|
||
|
struct clk *gt = sunxi_factors_register(node, &sun9i_a80_gt_data,
|
||
|
&sun9i_a80_gt_lock);
|
||
|
|
||
|
/* The GT bus clock needs to be always enabled */
|
||
|
__clk_get(gt);
|
||
|
clk_prepare_enable(gt);
|
||
|
}
|
||
|
CLK_OF_DECLARE(sun9i_a80_gt, "allwinner,sun9i-a80-gt-clk", sun9i_a80_gt_setup);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* sun9i_a80_get_ahb_factors() - calculates p factor for AHB0/1/2
|
||
|
* AHB rate is calculated as follows
|
||
|
* rate = parent_rate >> p;
|
||
|
*/
|
||
|
|
||
|
static void sun9i_a80_get_ahb_factors(u32 *freq, u32 parent_rate,
|
||
|
u8 *n, u8 *k, u8 *m, u8 *p)
|
||
|
{
|
||
|
u32 _p;
|
||
|
|
||
|
if (parent_rate < *freq)
|
||
|
*freq = parent_rate;
|
||
|
|
||
|
_p = order_base_2(DIV_ROUND_UP(parent_rate, *freq));
|
||
|
|
||
|
/* maximum p is 3 */
|
||
|
if (_p > 3)
|
||
|
_p = 3;
|
||
|
|
||
|
*freq = parent_rate >> _p;
|
||
|
|
||
|
/* we were called to round the frequency, we can now return */
|
||
|
if (!p)
|
||
|
return;
|
||
|
|
||
|
*p = _p;
|
||
|
}
|
||
|
|
||
|
static struct clk_factors_config sun9i_a80_ahb_config = {
|
||
|
.pshift = 0,
|
||
|
.pwidth = 2,
|
||
|
};
|
||
|
|
||
|
static const struct factors_data sun9i_a80_ahb_data __initconst = {
|
||
|
.mux = 24,
|
||
|
.muxmask = BIT(1) | BIT(0),
|
||
|
.table = &sun9i_a80_ahb_config,
|
||
|
.getter = sun9i_a80_get_ahb_factors,
|
||
|
};
|
||
|
|
||
|
static DEFINE_SPINLOCK(sun9i_a80_ahb_lock);
|
||
|
|
||
|
static void __init sun9i_a80_ahb_setup(struct device_node *node)
|
||
|
{
|
||
|
sunxi_factors_register(node, &sun9i_a80_ahb_data, &sun9i_a80_ahb_lock);
|
||
|
}
|
||
|
CLK_OF_DECLARE(sun9i_a80_ahb, "allwinner,sun9i-a80-ahb-clk", sun9i_a80_ahb_setup);
|
||
|
|
||
|
|
||
|
static const struct factors_data sun9i_a80_apb0_data __initconst = {
|
||
|
.mux = 24,
|
||
|
.muxmask = BIT(0),
|
||
|
.table = &sun9i_a80_ahb_config,
|
||
|
.getter = sun9i_a80_get_ahb_factors,
|
||
|
};
|
||
|
|
||
|
static DEFINE_SPINLOCK(sun9i_a80_apb0_lock);
|
||
|
|
||
|
static void __init sun9i_a80_apb0_setup(struct device_node *node)
|
||
|
{
|
||
|
sunxi_factors_register(node, &sun9i_a80_apb0_data, &sun9i_a80_apb0_lock);
|
||
|
}
|
||
|
CLK_OF_DECLARE(sun9i_a80_apb0, "allwinner,sun9i-a80-apb0-clk", sun9i_a80_apb0_setup);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* sun9i_a80_get_apb1_factors() - calculates m, p factors for APB1
|
||
|
* APB1 rate is calculated as follows
|
||
|
* rate = (parent_rate >> p) / (m + 1);
|
||
|
*/
|
||
|
|
||
|
static void sun9i_a80_get_apb1_factors(u32 *freq, u32 parent_rate,
|
||
|
u8 *n, u8 *k, u8 *m, u8 *p)
|
||
|
{
|
||
|
u32 div;
|
||
|
u8 calcm, calcp;
|
||
|
|
||
|
if (parent_rate < *freq)
|
||
|
*freq = parent_rate;
|
||
|
|
||
|
div = DIV_ROUND_UP(parent_rate, *freq);
|
||
|
|
||
|
/* Highest possible divider is 256 (p = 3, m = 31) */
|
||
|
if (div > 256)
|
||
|
div = 256;
|
||
|
|
||
|
calcp = order_base_2(div);
|
||
|
calcm = (parent_rate >> calcp) - 1;
|
||
|
*freq = (parent_rate >> calcp) / (calcm + 1);
|
||
|
|
||
|
/* we were called to round the frequency, we can now return */
|
||
|
if (n == NULL)
|
||
|
return;
|
||
|
|
||
|
*m = calcm;
|
||
|
*p = calcp;
|
||
|
}
|
||
|
|
||
|
static struct clk_factors_config sun9i_a80_apb1_config = {
|
||
|
.mshift = 0,
|
||
|
.mwidth = 5,
|
||
|
.pshift = 16,
|
||
|
.pwidth = 2,
|
||
|
};
|
||
|
|
||
|
static const struct factors_data sun9i_a80_apb1_data __initconst = {
|
||
|
.mux = 24,
|
||
|
.muxmask = BIT(0),
|
||
|
.table = &sun9i_a80_apb1_config,
|
||
|
.getter = sun9i_a80_get_apb1_factors,
|
||
|
};
|
||
|
|
||
|
static DEFINE_SPINLOCK(sun9i_a80_apb1_lock);
|
||
|
|
||
|
static void __init sun9i_a80_apb1_setup(struct device_node *node)
|
||
|
{
|
||
|
sunxi_factors_register(node, &sun9i_a80_apb1_data, &sun9i_a80_apb1_lock);
|
||
|
}
|
||
|
CLK_OF_DECLARE(sun9i_a80_apb1, "allwinner,sun9i-a80-apb1-clk", sun9i_a80_apb1_setup);
|