linux/drivers/infiniband/hw/ipath/ipath_verbs.h

936 lines
27 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006, 2007, 2008 QLogic Corporation. All rights reserved.
* Copyright (c) 2005, 2006 PathScale, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef IPATH_VERBS_H
#define IPATH_VERBS_H
#include <linux/types.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/kref.h>
#include <rdma/ib_pack.h>
#include <rdma/ib_user_verbs.h>
#include "ipath_kernel.h"
#define IPATH_MAX_RDMA_ATOMIC 4
#define QPN_MAX (1 << 24)
#define QPNMAP_ENTRIES (QPN_MAX / PAGE_SIZE / BITS_PER_BYTE)
/*
* Increment this value if any changes that break userspace ABI
* compatibility are made.
*/
#define IPATH_UVERBS_ABI_VERSION 2
/*
* Define an ib_cq_notify value that is not valid so we know when CQ
* notifications are armed.
*/
#define IB_CQ_NONE (IB_CQ_NEXT_COMP + 1)
/* AETH NAK opcode values */
#define IB_RNR_NAK 0x20
#define IB_NAK_PSN_ERROR 0x60
#define IB_NAK_INVALID_REQUEST 0x61
#define IB_NAK_REMOTE_ACCESS_ERROR 0x62
#define IB_NAK_REMOTE_OPERATIONAL_ERROR 0x63
#define IB_NAK_INVALID_RD_REQUEST 0x64
/* Flags for checking QP state (see ib_ipath_state_ops[]) */
#define IPATH_POST_SEND_OK 0x01
#define IPATH_POST_RECV_OK 0x02
#define IPATH_PROCESS_RECV_OK 0x04
#define IPATH_PROCESS_SEND_OK 0x08
#define IPATH_PROCESS_NEXT_SEND_OK 0x10
#define IPATH_FLUSH_SEND 0x20
#define IPATH_FLUSH_RECV 0x40
#define IPATH_PROCESS_OR_FLUSH_SEND \
(IPATH_PROCESS_SEND_OK | IPATH_FLUSH_SEND)
/* IB Performance Manager status values */
#define IB_PMA_SAMPLE_STATUS_DONE 0x00
#define IB_PMA_SAMPLE_STATUS_STARTED 0x01
#define IB_PMA_SAMPLE_STATUS_RUNNING 0x02
/* Mandatory IB performance counter select values. */
#define IB_PMA_PORT_XMIT_DATA __constant_htons(0x0001)
#define IB_PMA_PORT_RCV_DATA __constant_htons(0x0002)
#define IB_PMA_PORT_XMIT_PKTS __constant_htons(0x0003)
#define IB_PMA_PORT_RCV_PKTS __constant_htons(0x0004)
#define IB_PMA_PORT_XMIT_WAIT __constant_htons(0x0005)
struct ib_reth {
__be64 vaddr;
__be32 rkey;
__be32 length;
} __attribute__ ((packed));
struct ib_atomic_eth {
__be32 vaddr[2]; /* unaligned so access as 2 32-bit words */
__be32 rkey;
__be64 swap_data;
__be64 compare_data;
} __attribute__ ((packed));
struct ipath_other_headers {
__be32 bth[3];
union {
struct {
__be32 deth[2];
__be32 imm_data;
} ud;
struct {
struct ib_reth reth;
__be32 imm_data;
} rc;
struct {
__be32 aeth;
__be32 atomic_ack_eth[2];
} at;
__be32 imm_data;
__be32 aeth;
struct ib_atomic_eth atomic_eth;
} u;
} __attribute__ ((packed));
/*
* Note that UD packets with a GRH header are 8+40+12+8 = 68 bytes
* long (72 w/ imm_data). Only the first 56 bytes of the IB header
* will be in the eager header buffer. The remaining 12 or 16 bytes
* are in the data buffer.
*/
struct ipath_ib_header {
__be16 lrh[4];
union {
struct {
struct ib_grh grh;
struct ipath_other_headers oth;
} l;
struct ipath_other_headers oth;
} u;
} __attribute__ ((packed));
struct ipath_pio_header {
__le32 pbc[2];
struct ipath_ib_header hdr;
} __attribute__ ((packed));
/*
* There is one struct ipath_mcast for each multicast GID.
* All attached QPs are then stored as a list of
* struct ipath_mcast_qp.
*/
struct ipath_mcast_qp {
struct list_head list;
struct ipath_qp *qp;
};
struct ipath_mcast {
struct rb_node rb_node;
union ib_gid mgid;
struct list_head qp_list;
wait_queue_head_t wait;
atomic_t refcount;
int n_attached;
};
/* Protection domain */
struct ipath_pd {
struct ib_pd ibpd;
int user; /* non-zero if created from user space */
};
/* Address Handle */
struct ipath_ah {
struct ib_ah ibah;
struct ib_ah_attr attr;
};
/*
* This structure is used by ipath_mmap() to validate an offset
* when an mmap() request is made. The vm_area_struct then uses
* this as its vm_private_data.
*/
struct ipath_mmap_info {
struct list_head pending_mmaps;
struct ib_ucontext *context;
void *obj;
__u64 offset;
struct kref ref;
unsigned size;
};
/*
* This structure is used to contain the head pointer, tail pointer,
* and completion queue entries as a single memory allocation so
* it can be mmap'ed into user space.
*/
struct ipath_cq_wc {
u32 head; /* index of next entry to fill */
u32 tail; /* index of next ib_poll_cq() entry */
union {
/* these are actually size ibcq.cqe + 1 */
struct ib_uverbs_wc uqueue[0];
struct ib_wc kqueue[0];
};
};
/*
* The completion queue structure.
*/
struct ipath_cq {
struct ib_cq ibcq;
struct tasklet_struct comptask;
spinlock_t lock;
u8 notify;
u8 triggered;
struct ipath_cq_wc *queue;
struct ipath_mmap_info *ip;
};
/*
* A segment is a linear region of low physical memory.
* XXX Maybe we should use phys addr here and kmap()/kunmap().
* Used by the verbs layer.
*/
struct ipath_seg {
void *vaddr;
size_t length;
};
/* The number of ipath_segs that fit in a page. */
#define IPATH_SEGSZ (PAGE_SIZE / sizeof (struct ipath_seg))
struct ipath_segarray {
struct ipath_seg segs[IPATH_SEGSZ];
};
struct ipath_mregion {
struct ib_pd *pd; /* shares refcnt of ibmr.pd */
u64 user_base; /* User's address for this region */
u64 iova; /* IB start address of this region */
size_t length;
u32 lkey;
u32 offset; /* offset (bytes) to start of region */
int access_flags;
u32 max_segs; /* number of ipath_segs in all the arrays */
u32 mapsz; /* size of the map array */
struct ipath_segarray *map[0]; /* the segments */
};
/*
* These keep track of the copy progress within a memory region.
* Used by the verbs layer.
*/
struct ipath_sge {
struct ipath_mregion *mr;
void *vaddr; /* kernel virtual address of segment */
u32 sge_length; /* length of the SGE */
u32 length; /* remaining length of the segment */
u16 m; /* current index: mr->map[m] */
u16 n; /* current index: mr->map[m]->segs[n] */
};
/* Memory region */
struct ipath_mr {
struct ib_mr ibmr;
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-05 08:15:11 +08:00
struct ib_umem *umem;
struct ipath_mregion mr; /* must be last */
};
/*
* Send work request queue entry.
* The size of the sg_list is determined when the QP is created and stored
* in qp->s_max_sge.
*/
struct ipath_swqe {
struct ib_send_wr wr; /* don't use wr.sg_list */
u32 psn; /* first packet sequence number */
u32 lpsn; /* last packet sequence number */
u32 ssn; /* send sequence number */
u32 length; /* total length of data in sg_list */
struct ipath_sge sg_list[0];
};
/*
* Receive work request queue entry.
* The size of the sg_list is determined when the QP (or SRQ) is created
* and stored in qp->r_rq.max_sge (or srq->rq.max_sge).
*/
struct ipath_rwqe {
u64 wr_id;
u8 num_sge;
struct ib_sge sg_list[0];
};
/*
* This structure is used to contain the head pointer, tail pointer,
* and receive work queue entries as a single memory allocation so
* it can be mmap'ed into user space.
* Note that the wq array elements are variable size so you can't
* just index into the array to get the N'th element;
* use get_rwqe_ptr() instead.
*/
struct ipath_rwq {
u32 head; /* new work requests posted to the head */
u32 tail; /* receives pull requests from here. */
struct ipath_rwqe wq[0];
};
struct ipath_rq {
struct ipath_rwq *wq;
spinlock_t lock;
u32 size; /* size of RWQE array */
u8 max_sge;
};
struct ipath_srq {
struct ib_srq ibsrq;
struct ipath_rq rq;
struct ipath_mmap_info *ip;
/* send signal when number of RWQEs < limit */
u32 limit;
};
struct ipath_sge_state {
struct ipath_sge *sg_list; /* next SGE to be used if any */
struct ipath_sge sge; /* progress state for the current SGE */
u8 num_sge;
u8 static_rate;
};
/*
* This structure holds the information that the send tasklet needs
* to send a RDMA read response or atomic operation.
*/
struct ipath_ack_entry {
u8 opcode;
u8 sent;
u32 psn;
union {
struct ipath_sge_state rdma_sge;
u64 atomic_data;
};
};
/*
* Variables prefixed with s_ are for the requester (sender).
* Variables prefixed with r_ are for the responder (receiver).
* Variables prefixed with ack_ are for responder replies.
*
* Common variables are protected by both r_rq.lock and s_lock in that order
* which only happens in modify_qp() or changing the QP 'state'.
*/
struct ipath_qp {
struct ib_qp ibqp;
struct ipath_qp *next; /* link list for QPN hash table */
struct ipath_qp *timer_next; /* link list for ipath_ib_timer() */
struct ipath_qp *pio_next; /* link for ipath_ib_piobufavail() */
struct list_head piowait; /* link for wait PIO buf */
struct list_head timerwait; /* link for waiting for timeouts */
struct ib_ah_attr remote_ah_attr;
struct ipath_ib_header s_hdr; /* next packet header to send */
atomic_t refcount;
wait_queue_head_t wait;
wait_queue_head_t wait_dma;
struct tasklet_struct s_task;
struct ipath_mmap_info *ip;
struct ipath_sge_state *s_cur_sge;
struct ipath_verbs_txreq *s_tx;
struct ipath_sge_state s_sge; /* current send request data */
struct ipath_ack_entry s_ack_queue[IPATH_MAX_RDMA_ATOMIC + 1];
struct ipath_sge_state s_ack_rdma_sge;
struct ipath_sge_state s_rdma_read_sge;
struct ipath_sge_state r_sge; /* current receive data */
spinlock_t s_lock;
atomic_t s_dma_busy;
u16 s_pkt_delay;
u16 s_hdrwords; /* size of s_hdr in 32 bit words */
u32 s_cur_size; /* size of send packet in bytes */
u32 s_len; /* total length of s_sge */
u32 s_rdma_read_len; /* total length of s_rdma_read_sge */
u32 s_next_psn; /* PSN for next request */
u32 s_last_psn; /* last response PSN processed */
u32 s_psn; /* current packet sequence number */
u32 s_ack_rdma_psn; /* PSN for sending RDMA read responses */
u32 s_ack_psn; /* PSN for acking sends and RDMA writes */
u32 s_rnr_timeout; /* number of milliseconds for RNR timeout */
u32 r_ack_psn; /* PSN for next ACK or atomic ACK */
u64 r_wr_id; /* ID for current receive WQE */
unsigned long r_aflags;
u32 r_len; /* total length of r_sge */
u32 r_rcv_len; /* receive data len processed */
u32 r_psn; /* expected rcv packet sequence number */
u32 r_msn; /* message sequence number */
u8 state; /* QP state */
u8 s_state; /* opcode of last packet sent */
u8 s_ack_state; /* opcode of packet to ACK */
u8 s_nak_state; /* non-zero if NAK is pending */
u8 r_state; /* opcode of last packet received */
u8 r_nak_state; /* non-zero if NAK is pending */
u8 r_min_rnr_timer; /* retry timeout value for RNR NAKs */
u8 r_flags;
u8 r_max_rd_atomic; /* max number of RDMA read/atomic to receive */
u8 r_head_ack_queue; /* index into s_ack_queue[] */
u8 qp_access_flags;
u8 s_max_sge; /* size of s_wq->sg_list */
u8 s_retry_cnt; /* number of times to retry */
u8 s_rnr_retry_cnt;
u8 s_retry; /* requester retry counter */
u8 s_rnr_retry; /* requester RNR retry counter */
u8 s_pkey_index; /* PKEY index to use */
u8 s_max_rd_atomic; /* max number of RDMA read/atomic to send */
u8 s_num_rd_atomic; /* number of RDMA read/atomic pending */
u8 s_tail_ack_queue; /* index into s_ack_queue[] */
u8 s_flags;
u8 s_dmult;
u8 s_draining;
u8 timeout; /* Timeout for this QP */
enum ib_mtu path_mtu;
u32 remote_qpn;
u32 qkey; /* QKEY for this QP (for UD or RD) */
u32 s_size; /* send work queue size */
u32 s_head; /* new entries added here */
u32 s_tail; /* next entry to process */
u32 s_cur; /* current work queue entry */
u32 s_last; /* last un-ACK'ed entry */
u32 s_ssn; /* SSN of tail entry */
u32 s_lsn; /* limit sequence number (credit) */
struct ipath_swqe *s_wq; /* send work queue */
struct ipath_swqe *s_wqe;
struct ipath_rq r_rq; /* receive work queue */
struct ipath_sge r_sg_list[0]; /* verified SGEs */
};
/*
* Atomic bit definitions for r_aflags.
*/
#define IPATH_R_WRID_VALID 0
/*
* Bit definitions for r_flags.
*/
#define IPATH_R_REUSE_SGE 0x01
#define IPATH_R_RDMAR_SEQ 0x02
/*
* Bit definitions for s_flags.
*
* IPATH_S_FENCE_PENDING - waiting for all prior RDMA read or atomic SWQEs
* before processing the next SWQE
* IPATH_S_RDMAR_PENDING - waiting for any RDMA read or atomic SWQEs
* before processing the next SWQE
* IPATH_S_WAITING - waiting for RNR timeout or send buffer available.
* IPATH_S_WAIT_SSN_CREDIT - waiting for RC credits to process next SWQE
* IPATH_S_WAIT_DMA - waiting for send DMA queue to drain before generating
* next send completion entry not via send DMA.
*/
#define IPATH_S_SIGNAL_REQ_WR 0x01
#define IPATH_S_FENCE_PENDING 0x02
#define IPATH_S_RDMAR_PENDING 0x04
#define IPATH_S_ACK_PENDING 0x08
#define IPATH_S_BUSY 0x10
#define IPATH_S_WAITING 0x20
#define IPATH_S_WAIT_SSN_CREDIT 0x40
#define IPATH_S_WAIT_DMA 0x80
#define IPATH_S_ANY_WAIT (IPATH_S_FENCE_PENDING | IPATH_S_RDMAR_PENDING | \
IPATH_S_WAITING | IPATH_S_WAIT_SSN_CREDIT | IPATH_S_WAIT_DMA)
#define IPATH_PSN_CREDIT 512
/*
* Since struct ipath_swqe is not a fixed size, we can't simply index into
* struct ipath_qp.s_wq. This function does the array index computation.
*/
static inline struct ipath_swqe *get_swqe_ptr(struct ipath_qp *qp,
unsigned n)
{
return (struct ipath_swqe *)((char *)qp->s_wq +
(sizeof(struct ipath_swqe) +
qp->s_max_sge *
sizeof(struct ipath_sge)) * n);
}
/*
* Since struct ipath_rwqe is not a fixed size, we can't simply index into
* struct ipath_rwq.wq. This function does the array index computation.
*/
static inline struct ipath_rwqe *get_rwqe_ptr(struct ipath_rq *rq,
unsigned n)
{
return (struct ipath_rwqe *)
((char *) rq->wq->wq +
(sizeof(struct ipath_rwqe) +
rq->max_sge * sizeof(struct ib_sge)) * n);
}
/*
* QPN-map pages start out as NULL, they get allocated upon
* first use and are never deallocated. This way,
* large bitmaps are not allocated unless large numbers of QPs are used.
*/
struct qpn_map {
atomic_t n_free;
void *page;
};
struct ipath_qp_table {
spinlock_t lock;
u32 last; /* last QP number allocated */
u32 max; /* size of the hash table */
u32 nmaps; /* size of the map table */
struct ipath_qp **table;
/* bit map of free numbers */
struct qpn_map map[QPNMAP_ENTRIES];
};
struct ipath_lkey_table {
spinlock_t lock;
u32 next; /* next unused index (speeds search) */
u32 gen; /* generation count */
u32 max; /* size of the table */
struct ipath_mregion **table;
};
struct ipath_opcode_stats {
u64 n_packets; /* number of packets */
u64 n_bytes; /* total number of bytes */
};
struct ipath_ibdev {
struct ib_device ibdev;
struct ipath_devdata *dd;
struct list_head pending_mmaps;
spinlock_t mmap_offset_lock;
u32 mmap_offset;
int ib_unit; /* This is the device number */
u16 sm_lid; /* in host order */
u8 sm_sl;
u8 mkeyprot;
/* non-zero when timer is set */
unsigned long mkey_lease_timeout;
/* The following fields are really per port. */
struct ipath_qp_table qp_table;
struct ipath_lkey_table lk_table;
struct list_head pending[3]; /* FIFO of QPs waiting for ACKs */
struct list_head piowait; /* list for wait PIO buf */
struct list_head txreq_free;
void *txreq_bufs;
/* list of QPs waiting for RNR timer */
struct list_head rnrwait;
spinlock_t pending_lock;
__be64 sys_image_guid; /* in network order */
__be64 gid_prefix; /* in network order */
__be64 mkey;
u32 n_pds_allocated; /* number of PDs allocated for device */
spinlock_t n_pds_lock;
u32 n_ahs_allocated; /* number of AHs allocated for device */
spinlock_t n_ahs_lock;
u32 n_cqs_allocated; /* number of CQs allocated for device */
spinlock_t n_cqs_lock;
u32 n_qps_allocated; /* number of QPs allocated for device */
spinlock_t n_qps_lock;
u32 n_srqs_allocated; /* number of SRQs allocated for device */
spinlock_t n_srqs_lock;
u32 n_mcast_grps_allocated; /* number of mcast groups allocated */
spinlock_t n_mcast_grps_lock;
u64 ipath_sword; /* total dwords sent (sample result) */
u64 ipath_rword; /* total dwords received (sample result) */
u64 ipath_spkts; /* total packets sent (sample result) */
u64 ipath_rpkts; /* total packets received (sample result) */
/* # of ticks no data sent (sample result) */
u64 ipath_xmit_wait;
u64 rcv_errors; /* # of packets with SW detected rcv errs */
u64 n_unicast_xmit; /* total unicast packets sent */
u64 n_unicast_rcv; /* total unicast packets received */
u64 n_multicast_xmit; /* total multicast packets sent */
u64 n_multicast_rcv; /* total multicast packets received */
u64 z_symbol_error_counter; /* starting count for PMA */
u64 z_link_error_recovery_counter; /* starting count for PMA */
u64 z_link_downed_counter; /* starting count for PMA */
u64 z_port_rcv_errors; /* starting count for PMA */
u64 z_port_rcv_remphys_errors; /* starting count for PMA */
u64 z_port_xmit_discards; /* starting count for PMA */
u64 z_port_xmit_data; /* starting count for PMA */
u64 z_port_rcv_data; /* starting count for PMA */
u64 z_port_xmit_packets; /* starting count for PMA */
u64 z_port_rcv_packets; /* starting count for PMA */
u32 z_pkey_violations; /* starting count for PMA */
u32 z_local_link_integrity_errors; /* starting count for PMA */
u32 z_excessive_buffer_overrun_errors; /* starting count for PMA */
u32 z_vl15_dropped; /* starting count for PMA */
u32 n_rc_resends;
u32 n_rc_acks;
u32 n_rc_qacks;
u32 n_seq_naks;
u32 n_rdma_seq;
u32 n_rnr_naks;
u32 n_other_naks;
u32 n_timeouts;
u32 n_pkt_drops;
u32 n_vl15_dropped;
u32 n_wqe_errs;
u32 n_rdma_dup_busy;
u32 n_piowait;
u32 n_unaligned;
u32 port_cap_flags;
u32 pma_sample_start;
u32 pma_sample_interval;
__be16 pma_counter_select[5];
u16 pma_tag;
u16 qkey_violations;
u16 mkey_violations;
u16 mkey_lease_period;
u16 pending_index; /* which pending queue is active */
u8 pma_sample_status;
u8 subnet_timeout;
u8 vl_high_limit;
struct ipath_opcode_stats opstats[128];
};
struct ipath_verbs_counters {
u64 symbol_error_counter;
u64 link_error_recovery_counter;
u64 link_downed_counter;
u64 port_rcv_errors;
u64 port_rcv_remphys_errors;
u64 port_xmit_discards;
u64 port_xmit_data;
u64 port_rcv_data;
u64 port_xmit_packets;
u64 port_rcv_packets;
u32 local_link_integrity_errors;
u32 excessive_buffer_overrun_errors;
u32 vl15_dropped;
};
struct ipath_verbs_txreq {
struct ipath_qp *qp;
struct ipath_swqe *wqe;
u32 map_len;
u32 len;
struct ipath_sge_state *ss;
struct ipath_pio_header hdr;
struct ipath_sdma_txreq txreq;
};
static inline struct ipath_mr *to_imr(struct ib_mr *ibmr)
{
return container_of(ibmr, struct ipath_mr, ibmr);
}
static inline struct ipath_pd *to_ipd(struct ib_pd *ibpd)
{
return container_of(ibpd, struct ipath_pd, ibpd);
}
static inline struct ipath_ah *to_iah(struct ib_ah *ibah)
{
return container_of(ibah, struct ipath_ah, ibah);
}
static inline struct ipath_cq *to_icq(struct ib_cq *ibcq)
{
return container_of(ibcq, struct ipath_cq, ibcq);
}
static inline struct ipath_srq *to_isrq(struct ib_srq *ibsrq)
{
return container_of(ibsrq, struct ipath_srq, ibsrq);
}
static inline struct ipath_qp *to_iqp(struct ib_qp *ibqp)
{
return container_of(ibqp, struct ipath_qp, ibqp);
}
static inline struct ipath_ibdev *to_idev(struct ib_device *ibdev)
{
return container_of(ibdev, struct ipath_ibdev, ibdev);
}
/*
* This must be called with s_lock held.
*/
static inline void ipath_schedule_send(struct ipath_qp *qp)
{
if (qp->s_flags & IPATH_S_ANY_WAIT)
qp->s_flags &= ~IPATH_S_ANY_WAIT;
if (!(qp->s_flags & IPATH_S_BUSY))
tasklet_hi_schedule(&qp->s_task);
}
int ipath_process_mad(struct ib_device *ibdev,
int mad_flags,
u8 port_num,
struct ib_wc *in_wc,
struct ib_grh *in_grh,
struct ib_mad *in_mad, struct ib_mad *out_mad);
/*
* Compare the lower 24 bits of the two values.
* Returns an integer <, ==, or > than zero.
*/
static inline int ipath_cmp24(u32 a, u32 b)
{
return (((int) a) - ((int) b)) << 8;
}
struct ipath_mcast *ipath_mcast_find(union ib_gid *mgid);
int ipath_snapshot_counters(struct ipath_devdata *dd, u64 *swords,
u64 *rwords, u64 *spkts, u64 *rpkts,
u64 *xmit_wait);
int ipath_get_counters(struct ipath_devdata *dd,
struct ipath_verbs_counters *cntrs);
int ipath_multicast_attach(struct ib_qp *ibqp, union ib_gid *gid, u16 lid);
int ipath_multicast_detach(struct ib_qp *ibqp, union ib_gid *gid, u16 lid);
int ipath_mcast_tree_empty(void);
__be32 ipath_compute_aeth(struct ipath_qp *qp);
struct ipath_qp *ipath_lookup_qpn(struct ipath_qp_table *qpt, u32 qpn);
struct ib_qp *ipath_create_qp(struct ib_pd *ibpd,
struct ib_qp_init_attr *init_attr,
struct ib_udata *udata);
int ipath_destroy_qp(struct ib_qp *ibqp);
int ipath_error_qp(struct ipath_qp *qp, enum ib_wc_status err);
int ipath_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
int attr_mask, struct ib_udata *udata);
int ipath_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
int attr_mask, struct ib_qp_init_attr *init_attr);
unsigned ipath_free_all_qps(struct ipath_qp_table *qpt);
int ipath_init_qp_table(struct ipath_ibdev *idev, int size);
void ipath_get_credit(struct ipath_qp *qp, u32 aeth);
unsigned ipath_ib_rate_to_mult(enum ib_rate rate);
int ipath_verbs_send(struct ipath_qp *qp, struct ipath_ib_header *hdr,
u32 hdrwords, struct ipath_sge_state *ss, u32 len);
void ipath_copy_sge(struct ipath_sge_state *ss, void *data, u32 length);
void ipath_skip_sge(struct ipath_sge_state *ss, u32 length);
void ipath_uc_rcv(struct ipath_ibdev *dev, struct ipath_ib_header *hdr,
int has_grh, void *data, u32 tlen, struct ipath_qp *qp);
void ipath_rc_rcv(struct ipath_ibdev *dev, struct ipath_ib_header *hdr,
int has_grh, void *data, u32 tlen, struct ipath_qp *qp);
void ipath_restart_rc(struct ipath_qp *qp, u32 psn);
void ipath_rc_error(struct ipath_qp *qp, enum ib_wc_status err);
int ipath_post_ud_send(struct ipath_qp *qp, struct ib_send_wr *wr);
void ipath_ud_rcv(struct ipath_ibdev *dev, struct ipath_ib_header *hdr,
int has_grh, void *data, u32 tlen, struct ipath_qp *qp);
int ipath_alloc_lkey(struct ipath_lkey_table *rkt,
struct ipath_mregion *mr);
void ipath_free_lkey(struct ipath_lkey_table *rkt, u32 lkey);
int ipath_lkey_ok(struct ipath_qp *qp, struct ipath_sge *isge,
struct ib_sge *sge, int acc);
int ipath_rkey_ok(struct ipath_qp *qp, struct ipath_sge_state *ss,
u32 len, u64 vaddr, u32 rkey, int acc);
int ipath_post_srq_receive(struct ib_srq *ibsrq, struct ib_recv_wr *wr,
struct ib_recv_wr **bad_wr);
struct ib_srq *ipath_create_srq(struct ib_pd *ibpd,
struct ib_srq_init_attr *srq_init_attr,
struct ib_udata *udata);
int ipath_modify_srq(struct ib_srq *ibsrq, struct ib_srq_attr *attr,
enum ib_srq_attr_mask attr_mask,
struct ib_udata *udata);
int ipath_query_srq(struct ib_srq *ibsrq, struct ib_srq_attr *attr);
int ipath_destroy_srq(struct ib_srq *ibsrq);
void ipath_cq_enter(struct ipath_cq *cq, struct ib_wc *entry, int sig);
int ipath_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *entry);
struct ib_cq *ipath_create_cq(struct ib_device *ibdev, int entries, int comp_vector,
struct ib_ucontext *context,
struct ib_udata *udata);
int ipath_destroy_cq(struct ib_cq *ibcq);
IB: Return "maybe missed event" hint from ib_req_notify_cq() The semantics defined by the InfiniBand specification say that completion events are only generated when a completions is added to a completion queue (CQ) after completion notification is requested. In other words, this means that the following race is possible: while (CQ is not empty) ib_poll_cq(CQ); // new completion is added after while loop is exited ib_req_notify_cq(CQ); // no event is generated for the existing completion To close this race, the IB spec recommends doing another poll of the CQ after requesting notification. However, it is not always possible to arrange code this way (for example, we have found that NAPI for IPoIB cannot poll after requesting notification). Also, some hardware (eg Mellanox HCAs) actually will generate an event for completions added before the call to ib_req_notify_cq() -- which is allowed by the spec, since there's no way for any upper-layer consumer to know exactly when a completion was really added -- so the extra poll of the CQ is just a waste. Motivated by this, we add a new flag "IB_CQ_REPORT_MISSED_EVENTS" for ib_req_notify_cq() so that it can return a hint about whether the a completion may have been added before the request for notification. The return value of ib_req_notify_cq() is extended so: < 0 means an error occurred while requesting notification == 0 means notification was requested successfully, and if IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events were missed and it is safe to wait for another event. > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed in. It means that the consumer must poll the CQ again to make sure it is empty to avoid the race described above. We add a flag to enable this behavior rather than turning it on unconditionally, because checking for missed events may incur significant overhead for some low-level drivers, and consumers that don't care about the results of this test shouldn't be forced to pay for the test. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-05-07 12:02:48 +08:00
int ipath_req_notify_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags notify_flags);
int ipath_resize_cq(struct ib_cq *ibcq, int cqe, struct ib_udata *udata);
struct ib_mr *ipath_get_dma_mr(struct ib_pd *pd, int acc);
struct ib_mr *ipath_reg_phys_mr(struct ib_pd *pd,
struct ib_phys_buf *buffer_list,
int num_phys_buf, int acc, u64 *iova_start);
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-05 08:15:11 +08:00
struct ib_mr *ipath_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
u64 virt_addr, int mr_access_flags,
struct ib_udata *udata);
int ipath_dereg_mr(struct ib_mr *ibmr);
struct ib_fmr *ipath_alloc_fmr(struct ib_pd *pd, int mr_access_flags,
struct ib_fmr_attr *fmr_attr);
int ipath_map_phys_fmr(struct ib_fmr *ibfmr, u64 * page_list,
int list_len, u64 iova);
int ipath_unmap_fmr(struct list_head *fmr_list);
int ipath_dealloc_fmr(struct ib_fmr *ibfmr);
void ipath_release_mmap_info(struct kref *ref);
struct ipath_mmap_info *ipath_create_mmap_info(struct ipath_ibdev *dev,
u32 size,
struct ib_ucontext *context,
void *obj);
void ipath_update_mmap_info(struct ipath_ibdev *dev,
struct ipath_mmap_info *ip,
u32 size, void *obj);
int ipath_mmap(struct ib_ucontext *context, struct vm_area_struct *vma);
void ipath_insert_rnr_queue(struct ipath_qp *qp);
int ipath_init_sge(struct ipath_qp *qp, struct ipath_rwqe *wqe,
u32 *lengthp, struct ipath_sge_state *ss);
int ipath_get_rwqe(struct ipath_qp *qp, int wr_id_only);
u32 ipath_make_grh(struct ipath_ibdev *dev, struct ib_grh *hdr,
struct ib_global_route *grh, u32 hwords, u32 nwords);
void ipath_make_ruc_header(struct ipath_ibdev *dev, struct ipath_qp *qp,
struct ipath_other_headers *ohdr,
u32 bth0, u32 bth2);
void ipath_do_send(unsigned long data);
void ipath_send_complete(struct ipath_qp *qp, struct ipath_swqe *wqe,
enum ib_wc_status status);
int ipath_make_rc_req(struct ipath_qp *qp);
int ipath_make_uc_req(struct ipath_qp *qp);
int ipath_make_ud_req(struct ipath_qp *qp);
int ipath_register_ib_device(struct ipath_devdata *);
void ipath_unregister_ib_device(struct ipath_ibdev *);
void ipath_ib_rcv(struct ipath_ibdev *, void *, void *, u32);
int ipath_ib_piobufavail(struct ipath_ibdev *);
unsigned ipath_get_npkeys(struct ipath_devdata *);
u32 ipath_get_cr_errpkey(struct ipath_devdata *);
unsigned ipath_get_pkey(struct ipath_devdata *, unsigned);
extern const enum ib_wc_opcode ib_ipath_wc_opcode[];
/*
* Below converts HCA-specific LinkTrainingState to IB PhysPortState
* values.
*/
extern const u8 ipath_cvt_physportstate[];
#define IB_PHYSPORTSTATE_SLEEP 1
#define IB_PHYSPORTSTATE_POLL 2
#define IB_PHYSPORTSTATE_DISABLED 3
#define IB_PHYSPORTSTATE_CFG_TRAIN 4
#define IB_PHYSPORTSTATE_LINKUP 5
#define IB_PHYSPORTSTATE_LINK_ERR_RECOVER 6
extern const int ib_ipath_state_ops[];
extern unsigned int ib_ipath_lkey_table_size;
extern unsigned int ib_ipath_max_cqes;
extern unsigned int ib_ipath_max_cqs;
extern unsigned int ib_ipath_max_qp_wrs;
extern unsigned int ib_ipath_max_qps;
extern unsigned int ib_ipath_max_sges;
extern unsigned int ib_ipath_max_mcast_grps;
extern unsigned int ib_ipath_max_mcast_qp_attached;
extern unsigned int ib_ipath_max_srqs;
extern unsigned int ib_ipath_max_srq_sges;
extern unsigned int ib_ipath_max_srq_wrs;
extern const u32 ib_ipath_rnr_table[];
extern struct ib_dma_mapping_ops ipath_dma_mapping_ops;
#endif /* IPATH_VERBS_H */