linux/arch/arc/kernel/setup.c

640 lines
16 KiB
C
Raw Normal View History

/*
* Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/seq_file.h>
#include <linux/fs.h>
#include <linux/delay.h>
#include <linux/root_dev.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/clocksource.h>
#include <linux/console.h>
#include <linux/module.h>
#include <linux/cpu.h>
#include <linux/of_fdt.h>
#include <linux/of.h>
#include <linux/cache.h>
#include <asm/sections.h>
#include <asm/arcregs.h>
#include <asm/tlb.h>
#include <asm/setup.h>
#include <asm/page.h>
#include <asm/irq.h>
#include <asm/unwind.h>
#include <asm/mach_desc.h>
#include <asm/smp.h>
#define FIX_PTR(x) __asm__ __volatile__(";" : "+r"(x))
unsigned int intr_to_DE_cnt;
/* Part of U-boot ABI: see head.S */
int __initdata uboot_tag;
char __initdata *uboot_arg;
const struct machine_desc *machine_desc;
struct task_struct *_current_task[NR_CPUS]; /* For stack switching */
struct cpuinfo_arc cpuinfo_arc700[NR_CPUS];
static const struct id_to_str arc_cpu_rel[] = {
#ifdef CONFIG_ISA_ARCOMPACT
{ 0x34, "R4.10"},
{ 0x35, "R4.11"},
#else
{ 0x51, "R2.0" },
{ 0x52, "R2.1" },
{ 0x53, "R3.0" },
{ 0x54, "R4.0" },
#endif
{ 0x00, NULL }
};
static const struct id_to_str arc_cpu_nm[] = {
#ifdef CONFIG_ISA_ARCOMPACT
{ 0x20, "ARC 600" },
{ 0x30, "ARC 770" }, /* 750 identified seperately */
#else
{ 0x40, "ARC EM" },
{ 0x50, "ARC HS38" },
{ 0x54, "ARC HS48" },
#endif
{ 0x00, "Unknown" }
};
static void read_decode_ccm_bcr(struct cpuinfo_arc *cpu)
{
if (is_isa_arcompact()) {
struct bcr_iccm_arcompact iccm;
struct bcr_dccm_arcompact dccm;
READ_BCR(ARC_REG_ICCM_BUILD, iccm);
if (iccm.ver) {
cpu->iccm.sz = 4096 << iccm.sz; /* 8K to 512K */
cpu->iccm.base_addr = iccm.base << 16;
}
READ_BCR(ARC_REG_DCCM_BUILD, dccm);
if (dccm.ver) {
unsigned long base;
cpu->dccm.sz = 2048 << dccm.sz; /* 2K to 256K */
base = read_aux_reg(ARC_REG_DCCM_BASE_BUILD);
cpu->dccm.base_addr = base & ~0xF;
}
} else {
struct bcr_iccm_arcv2 iccm;
struct bcr_dccm_arcv2 dccm;
unsigned long region;
READ_BCR(ARC_REG_ICCM_BUILD, iccm);
if (iccm.ver) {
cpu->iccm.sz = 256 << iccm.sz00; /* 512B to 16M */
if (iccm.sz00 == 0xF && iccm.sz01 > 0)
cpu->iccm.sz <<= iccm.sz01;
region = read_aux_reg(ARC_REG_AUX_ICCM);
cpu->iccm.base_addr = region & 0xF0000000;
}
READ_BCR(ARC_REG_DCCM_BUILD, dccm);
if (dccm.ver) {
cpu->dccm.sz = 256 << dccm.sz0;
if (dccm.sz0 == 0xF && dccm.sz1 > 0)
cpu->dccm.sz <<= dccm.sz1;
region = read_aux_reg(ARC_REG_AUX_DCCM);
cpu->dccm.base_addr = region & 0xF0000000;
}
}
}
static void read_arc_build_cfg_regs(void)
{
struct bcr_timer timer;
struct bcr_generic bcr;
struct cpuinfo_arc *cpu = &cpuinfo_arc700[smp_processor_id()];
const struct id_to_str *tbl;
struct bcr_isa_arcv2 isa;
FIX_PTR(cpu);
READ_BCR(AUX_IDENTITY, cpu->core);
for (tbl = &arc_cpu_rel[0]; tbl->id != 0; tbl++) {
if (cpu->core.family == tbl->id) {
cpu->details = tbl->str;
break;
}
}
for (tbl = &arc_cpu_nm[0]; tbl->id != 0; tbl++) {
if ((cpu->core.family & 0xF4) == tbl->id)
break;
}
cpu->name = tbl->str;
READ_BCR(ARC_REG_TIMERS_BCR, timer);
cpu->extn.timer0 = timer.t0;
cpu->extn.timer1 = timer.t1;
cpu->extn.rtc = timer.rtc;
cpu->vec_base = read_aux_reg(AUX_INTR_VEC_BASE);
READ_BCR(ARC_REG_MUL_BCR, cpu->extn_mpy);
cpu->extn.norm = read_aux_reg(ARC_REG_NORM_BCR) > 1 ? 1 : 0; /* 2,3 */
cpu->extn.barrel = read_aux_reg(ARC_REG_BARREL_BCR) > 1 ? 1 : 0; /* 2,3 */
cpu->extn.swap = read_aux_reg(ARC_REG_SWAP_BCR) ? 1 : 0; /* 1,3 */
cpu->extn.crc = read_aux_reg(ARC_REG_CRC_BCR) ? 1 : 0;
cpu->extn.minmax = read_aux_reg(ARC_REG_MIXMAX_BCR) > 1 ? 1 : 0; /* 2 */
cpu->extn.swape = (cpu->core.family >= 0x34) ? 1 :
IS_ENABLED(CONFIG_ARC_HAS_SWAPE);
READ_BCR(ARC_REG_XY_MEM_BCR, cpu->extn_xymem);
/* Read CCM BCRs for boot reporting even if not enabled in Kconfig */
read_decode_ccm_bcr(cpu);
read_decode_mmu_bcr();
read_decode_cache_bcr();
if (is_isa_arcompact()) {
struct bcr_fp_arcompact sp, dp;
struct bcr_bpu_arcompact bpu;
READ_BCR(ARC_REG_FP_BCR, sp);
READ_BCR(ARC_REG_DPFP_BCR, dp);
cpu->extn.fpu_sp = sp.ver ? 1 : 0;
cpu->extn.fpu_dp = dp.ver ? 1 : 0;
READ_BCR(ARC_REG_BPU_BCR, bpu);
cpu->bpu.ver = bpu.ver;
cpu->bpu.full = bpu.fam ? 1 : 0;
if (bpu.ent) {
cpu->bpu.num_cache = 256 << (bpu.ent - 1);
cpu->bpu.num_pred = 256 << (bpu.ent - 1);
}
} else {
struct bcr_fp_arcv2 spdp;
struct bcr_bpu_arcv2 bpu;
READ_BCR(ARC_REG_FP_V2_BCR, spdp);
cpu->extn.fpu_sp = spdp.sp ? 1 : 0;
cpu->extn.fpu_dp = spdp.dp ? 1 : 0;
READ_BCR(ARC_REG_BPU_BCR, bpu);
cpu->bpu.ver = bpu.ver;
cpu->bpu.full = bpu.ft;
cpu->bpu.num_cache = 256 << bpu.bce;
cpu->bpu.num_pred = 2048 << bpu.pte;
if (cpu->core.family >= 0x54) {
unsigned int exec_ctrl;
READ_BCR(AUX_EXEC_CTRL, exec_ctrl);
cpu->extn.dual_enb = !(exec_ctrl & 1);
/* dual issue always present for this core */
cpu->extn.dual = 1;
}
}
READ_BCR(ARC_REG_AP_BCR, bcr);
cpu->extn.ap = bcr.ver ? 1 : 0;
READ_BCR(ARC_REG_SMART_BCR, bcr);
cpu->extn.smart = bcr.ver ? 1 : 0;
READ_BCR(ARC_REG_RTT_BCR, bcr);
cpu->extn.rtt = bcr.ver ? 1 : 0;
cpu->extn.debug = cpu->extn.ap | cpu->extn.smart | cpu->extn.rtt;
READ_BCR(ARC_REG_ISA_CFG_BCR, isa);
/* some hacks for lack of feature BCR info in old ARC700 cores */
if (is_isa_arcompact()) {
if (!isa.ver) /* ISA BCR absent, use Kconfig info */
cpu->isa.atomic = IS_ENABLED(CONFIG_ARC_HAS_LLSC);
else {
/* ARC700_BUILD only has 2 bits of isa info */
struct bcr_generic bcr = *(struct bcr_generic *)&isa;
cpu->isa.atomic = bcr.info & 1;
}
cpu->isa.be = IS_ENABLED(CONFIG_CPU_BIG_ENDIAN);
/* there's no direct way to distinguish 750 vs. 770 */
if (unlikely(cpu->core.family < 0x34 || cpu->mmu.ver < 3))
cpu->name = "ARC750";
} else {
cpu->isa = isa;
}
}
static char *arc_cpu_mumbojumbo(int cpu_id, char *buf, int len)
{
struct cpuinfo_arc *cpu = &cpuinfo_arc700[cpu_id];
struct bcr_identity *core = &cpu->core;
int i, n = 0;
FIX_PTR(cpu);
n += scnprintf(buf + n, len - n,
"\nIDENTITY\t: ARCVER [%#02x] ARCNUM [%#02x] CHIPID [%#4x]\n",
core->family, core->cpu_id, core->chip_id);
n += scnprintf(buf + n, len - n, "processor [%d]\t: %s %s (%s ISA) %s%s%s\n",
cpu_id, cpu->name, cpu->details,
is_isa_arcompact() ? "ARCompact" : "ARCv2",
IS_AVAIL1(cpu->isa.be, "[Big-Endian]"),
IS_AVAIL3(cpu->extn.dual, cpu->extn.dual_enb, " Dual-Issue "));
n += scnprintf(buf + n, len - n, "Timers\t\t: %s%s%s%s%s%s\nISA Extn\t: ",
IS_AVAIL1(cpu->extn.timer0, "Timer0 "),
IS_AVAIL1(cpu->extn.timer1, "Timer1 "),
IS_AVAIL2(cpu->extn.rtc, "RTC [UP 64-bit] ", CONFIG_ARC_TIMERS_64BIT),
IS_AVAIL2(cpu->extn.gfrc, "GFRC [SMP 64-bit] ", CONFIG_ARC_TIMERS_64BIT));
n += i = scnprintf(buf + n, len - n, "%s%s%s%s%s",
IS_AVAIL2(cpu->isa.atomic, "atomic ", CONFIG_ARC_HAS_LLSC),
IS_AVAIL2(cpu->isa.ldd, "ll64 ", CONFIG_ARC_HAS_LL64),
IS_AVAIL1(cpu->isa.unalign, "unalign (not used)"));
if (i)
n += scnprintf(buf + n, len - n, "\n\t\t: ");
if (cpu->extn_mpy.ver) {
if (cpu->extn_mpy.ver <= 0x2) { /* ARCompact */
n += scnprintf(buf + n, len - n, "mpy ");
} else {
int opt = 2; /* stock MPY/MPYH */
if (cpu->extn_mpy.dsp) /* OPT 7-9 */
opt = cpu->extn_mpy.dsp + 6;
n += scnprintf(buf + n, len - n, "mpy[opt %d] ", opt);
}
}
n += scnprintf(buf + n, len - n, "%s%s%s%s%s%s%s%s\n",
IS_AVAIL1(cpu->isa.div_rem, "div_rem "),
IS_AVAIL1(cpu->extn.norm, "norm "),
IS_AVAIL1(cpu->extn.barrel, "barrel-shift "),
IS_AVAIL1(cpu->extn.swap, "swap "),
IS_AVAIL1(cpu->extn.minmax, "minmax "),
IS_AVAIL1(cpu->extn.crc, "crc "),
IS_AVAIL2(cpu->extn.swape, "swape", CONFIG_ARC_HAS_SWAPE));
if (cpu->bpu.ver)
n += scnprintf(buf + n, len - n,
"BPU\t\t: %s%s match, cache:%d, Predict Table:%d",
IS_AVAIL1(cpu->bpu.full, "full"),
IS_AVAIL1(!cpu->bpu.full, "partial"),
cpu->bpu.num_cache, cpu->bpu.num_pred);
if (is_isa_arcv2()) {
struct bcr_lpb lpb;
READ_BCR(ARC_REG_LPB_BUILD, lpb);
if (lpb.ver) {
unsigned int ctl;
ctl = read_aux_reg(ARC_REG_LPB_CTRL);
n += scnprintf(buf + n, len - n, " Loop Buffer:%d %s",
lpb.entries,
IS_DISABLED_RUN(!ctl));
}
}
n += scnprintf(buf + n, len - n, "\n");
return buf;
}
static char *arc_extn_mumbojumbo(int cpu_id, char *buf, int len)
{
int n = 0;
struct cpuinfo_arc *cpu = &cpuinfo_arc700[cpu_id];
FIX_PTR(cpu);
n += scnprintf(buf + n, len - n, "Vector Table\t: %#x\n", cpu->vec_base);
if (cpu->extn.fpu_sp || cpu->extn.fpu_dp)
n += scnprintf(buf + n, len - n, "FPU\t\t: %s%s\n",
IS_AVAIL1(cpu->extn.fpu_sp, "SP "),
IS_AVAIL1(cpu->extn.fpu_dp, "DP "));
if (cpu->extn.debug)
n += scnprintf(buf + n, len - n, "DEBUG\t\t: %s%s%s\n",
IS_AVAIL1(cpu->extn.ap, "ActionPoint "),
IS_AVAIL1(cpu->extn.smart, "smaRT "),
IS_AVAIL1(cpu->extn.rtt, "RTT "));
if (cpu->dccm.sz || cpu->iccm.sz)
n += scnprintf(buf + n, len - n, "Extn [CCM]\t: DCCM @ %x, %d KB / ICCM: @ %x, %d KB\n",
cpu->dccm.base_addr, TO_KB(cpu->dccm.sz),
cpu->iccm.base_addr, TO_KB(cpu->iccm.sz));
if (is_isa_arcv2()) {
/* Error Protection: ECC/Parity */
struct bcr_erp erp;
READ_BCR(ARC_REG_ERP_BUILD, erp);
if (erp.ver) {
struct ctl_erp ctl;
READ_BCR(ARC_REG_ERP_CTRL, ctl);
/* inverted bits: 0 means enabled */
n += scnprintf(buf + n, len - n, "Extn [ECC]\t: %s%s%s%s%s%s\n",
IS_AVAIL3(erp.ic, !ctl.dpi, "IC "),
IS_AVAIL3(erp.dc, !ctl.dpd, "DC "),
IS_AVAIL3(erp.mmu, !ctl.mpd, "MMU "));
}
}
n += scnprintf(buf + n, len - n, "OS ABI [v%d]\t: %s\n",
EF_ARC_OSABI_CURRENT >> 8,
EF_ARC_OSABI_CURRENT == EF_ARC_OSABI_V3 ?
"no-legacy-syscalls" : "64-bit data any register aligned");
return buf;
}
static void arc_chk_core_config(void)
{
struct cpuinfo_arc *cpu = &cpuinfo_arc700[smp_processor_id()];
int saved = 0, present = 0;
char *opt_nm = NULL;;
if (!cpu->extn.timer0)
panic("Timer0 is not present!\n");
if (!cpu->extn.timer1)
panic("Timer1 is not present!\n");
#ifdef CONFIG_ARC_HAS_DCCM
/*
* DCCM can be arbit placed in hardware.
* Make sure it's placement/sz matches what Linux is built with
*/
if ((unsigned int)__arc_dccm_base != cpu->dccm.base_addr)
panic("Linux built with incorrect DCCM Base address\n");
if (CONFIG_ARC_DCCM_SZ != cpu->dccm.sz)
panic("Linux built with incorrect DCCM Size\n");
#endif
#ifdef CONFIG_ARC_HAS_ICCM
if (CONFIG_ARC_ICCM_SZ != cpu->iccm.sz)
panic("Linux built with incorrect ICCM Size\n");
#endif
/*
* FP hardware/software config sanity
* -If hardware present, kernel needs to save/restore FPU state
* -If not, it will crash trying to save/restore the non-existant regs
*/
if (is_isa_arcompact()) {
opt_nm = "CONFIG_ARC_FPU_SAVE_RESTORE";
saved = IS_ENABLED(CONFIG_ARC_FPU_SAVE_RESTORE);
/* only DPDP checked since SP has no arch visible regs */
present = cpu->extn.fpu_dp;
} else {
opt_nm = "CONFIG_ARC_HAS_ACCL_REGS";
saved = IS_ENABLED(CONFIG_ARC_HAS_ACCL_REGS);
/* Accumulator Low:High pair (r58:59) present if DSP MPY or FPU */
present = cpu->extn_mpy.dsp | cpu->extn.fpu_sp | cpu->extn.fpu_dp;
}
if (present && !saved)
pr_warn("Enable %s for working apps\n", opt_nm);
else if (!present && saved)
panic("Disable %s, hardware NOT present\n", opt_nm);
}
/*
* Initialize and setup the processor core
* This is called by all the CPUs thus should not do special case stuff
* such as only for boot CPU etc
*/
void setup_processor(void)
{
char str[512];
int cpu_id = smp_processor_id();
read_arc_build_cfg_regs();
arc_init_IRQ();
pr_info("%s", arc_cpu_mumbojumbo(cpu_id, str, sizeof(str)));
arc_mmu_init();
arc_cache_init();
pr_info("%s", arc_extn_mumbojumbo(cpu_id, str, sizeof(str)));
pr_info("%s", arc_platform_smp_cpuinfo());
arc_chk_core_config();
}
static inline int is_kernel(unsigned long addr)
{
if (addr >= (unsigned long)_stext && addr <= (unsigned long)_end)
return 1;
return 0;
}
void __init setup_arch(char **cmdline_p)
{
#ifdef CONFIG_ARC_UBOOT_SUPPORT
/* make sure that uboot passed pointer to cmdline/dtb is valid */
if (uboot_tag && is_kernel((unsigned long)uboot_arg))
panic("Invalid uboot arg\n");
/* See if u-boot passed an external Device Tree blob */
machine_desc = setup_machine_fdt(uboot_arg); /* uboot_tag == 2 */
if (!machine_desc)
#endif
{
/* No, so try the embedded one */
machine_desc = setup_machine_fdt(__dtb_start);
if (!machine_desc)
panic("Embedded DT invalid\n");
/*
* If we are here, it is established that @uboot_arg didn't
* point to DT blob. Instead if u-boot says it is cmdline,
* append to embedded DT cmdline.
* setup_machine_fdt() would have populated @boot_command_line
*/
if (uboot_tag == 1) {
/* Ensure a whitespace between the 2 cmdlines */
strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
strlcat(boot_command_line, uboot_arg,
COMMAND_LINE_SIZE);
}
}
/* Save unparsed command line copy for /proc/cmdline */
*cmdline_p = boot_command_line;
/* To force early parsing of things like mem=xxx */
parse_early_param();
/* Platform/board specific: e.g. early console registration */
if (machine_desc->init_early)
machine_desc->init_early();
smp_init_cpus();
setup_processor();
setup_arch_memory();
/* copy flat DT out of .init and then unflatten it */
unflatten_and_copy_device_tree();
/* Can be issue if someone passes cmd line arg "ro"
* But that is unlikely so keeping it as it is
*/
root_mountflags &= ~MS_RDONLY;
#if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
conswitchp = &dummy_con;
#endif
arc_unwind_init();
}
/*
* Called from start_kernel() - boot CPU only
*/
void __init time_init(void)
{
of_clk_init(NULL);
timer_probe();
}
static int __init customize_machine(void)
{
if (machine_desc->init_machine)
machine_desc->init_machine();
return 0;
}
arch_initcall(customize_machine);
static int __init init_late_machine(void)
{
if (machine_desc->init_late)
machine_desc->init_late();
return 0;
}
late_initcall(init_late_machine);
/*
* Get CPU information for use by the procfs.
*/
#define cpu_to_ptr(c) ((void *)(0xFFFF0000 | (unsigned int)(c)))
#define ptr_to_cpu(p) (~0xFFFF0000UL & (unsigned int)(p))
static int show_cpuinfo(struct seq_file *m, void *v)
{
char *str;
int cpu_id = ptr_to_cpu(v);
struct device *cpu_dev = get_cpu_device(cpu_id);
struct clk *cpu_clk;
unsigned long freq = 0;
if (!cpu_online(cpu_id)) {
seq_printf(m, "processor [%d]\t: Offline\n", cpu_id);
goto done;
}
mm: treewide: remove GFP_TEMPORARY allocation flag GFP_TEMPORARY was introduced by commit e12ba74d8ff3 ("Group short-lived and reclaimable kernel allocations") along with __GFP_RECLAIMABLE. It's primary motivation was to allow users to tell that an allocation is short lived and so the allocator can try to place such allocations close together and prevent long term fragmentation. As much as this sounds like a reasonable semantic it becomes much less clear when to use the highlevel GFP_TEMPORARY allocation flag. How long is temporary? Can the context holding that memory sleep? Can it take locks? It seems there is no good answer for those questions. The current implementation of GFP_TEMPORARY is basically GFP_KERNEL | __GFP_RECLAIMABLE which in itself is tricky because basically none of the existing caller provide a way to reclaim the allocated memory. So this is rather misleading and hard to evaluate for any benefits. I have checked some random users and none of them has added the flag with a specific justification. I suspect most of them just copied from other existing users and others just thought it might be a good idea to use without any measuring. This suggests that GFP_TEMPORARY just motivates for cargo cult usage without any reasoning. I believe that our gfp flags are quite complex already and especially those with highlevel semantic should be clearly defined to prevent from confusion and abuse. Therefore I propose dropping GFP_TEMPORARY and replace all existing users to simply use GFP_KERNEL. Please note that SLAB users with shrinkers will still get __GFP_RECLAIMABLE heuristic and so they will be placed properly for memory fragmentation prevention. I can see reasons we might want some gfp flag to reflect shorterm allocations but I propose starting from a clear semantic definition and only then add users with proper justification. This was been brought up before LSF this year by Matthew [1] and it turned out that GFP_TEMPORARY really doesn't have a clear semantic. It seems to be a heuristic without any measured advantage for most (if not all) its current users. The follow up discussion has revealed that opinions on what might be temporary allocation differ a lot between developers. So rather than trying to tweak existing users into a semantic which they haven't expected I propose to simply remove the flag and start from scratch if we really need a semantic for short term allocations. [1] http://lkml.kernel.org/r/20170118054945.GD18349@bombadil.infradead.org [akpm@linux-foundation.org: fix typo] [akpm@linux-foundation.org: coding-style fixes] [sfr@canb.auug.org.au: drm/i915: fix up] Link: http://lkml.kernel.org/r/20170816144703.378d4f4d@canb.auug.org.au Link: http://lkml.kernel.org/r/20170728091904.14627-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Matthew Wilcox <willy@infradead.org> Cc: Neil Brown <neilb@suse.de> Cc: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-14 07:28:29 +08:00
str = (char *)__get_free_page(GFP_KERNEL);
if (!str)
goto done;
seq_printf(m, arc_cpu_mumbojumbo(cpu_id, str, PAGE_SIZE));
cpu_clk = clk_get(cpu_dev, NULL);
if (IS_ERR(cpu_clk)) {
seq_printf(m, "CPU speed \t: Cannot get clock for processor [%d]\n",
cpu_id);
} else {
freq = clk_get_rate(cpu_clk);
}
if (freq)
seq_printf(m, "CPU speed\t: %lu.%02lu Mhz\n",
freq / 1000000, (freq / 10000) % 100);
seq_printf(m, "Bogo MIPS\t: %lu.%02lu\n",
loops_per_jiffy / (500000 / HZ),
(loops_per_jiffy / (5000 / HZ)) % 100);
seq_printf(m, arc_mmu_mumbojumbo(cpu_id, str, PAGE_SIZE));
seq_printf(m, arc_cache_mumbojumbo(cpu_id, str, PAGE_SIZE));
seq_printf(m, arc_extn_mumbojumbo(cpu_id, str, PAGE_SIZE));
seq_printf(m, arc_platform_smp_cpuinfo());
free_page((unsigned long)str);
done:
seq_printf(m, "\n");
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
/*
* Callback returns cpu-id to iterator for show routine, NULL to stop.
* However since NULL is also a valid cpu-id (0), we use a round-about
* way to pass it w/o having to kmalloc/free a 2 byte string.
* Encode cpu-id as 0xFFcccc, which is decoded by show routine.
*/
return *pos < nr_cpu_ids ? cpu_to_ptr(*pos) : NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
++*pos;
return c_start(m, pos);
}
static void c_stop(struct seq_file *m, void *v)
{
}
const struct seq_operations cpuinfo_op = {
.start = c_start,
.next = c_next,
.stop = c_stop,
.show = show_cpuinfo
};
static DEFINE_PER_CPU(struct cpu, cpu_topology);
static int __init topology_init(void)
{
int cpu;
for_each_present_cpu(cpu)
register_cpu(&per_cpu(cpu_topology, cpu), cpu);
return 0;
}
subsys_initcall(topology_init);