linux/drivers/gpu/drm/i915/i915_request.h

435 lines
14 KiB
C
Raw Normal View History

/*
* Copyright © 2008-2018 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#ifndef I915_REQUEST_H
#define I915_REQUEST_H
dma-buf: Rename struct fence to dma_fence I plan to usurp the short name of struct fence for a core kernel struct, and so I need to rename the specialised fence/timeline for DMA operations to make room. A consensus was reached in https://lists.freedesktop.org/archives/dri-devel/2016-July/113083.html that making clear this fence applies to DMA operations was a good thing. Since then the patch has grown a bit as usage increases, so hopefully it remains a good thing! (v2...: rebase, rerun spatch) v3: Compile on msm, spotted a manual fixup that I broke. v4: Try again for msm, sorry Daniel coccinelle script: @@ @@ - struct fence + struct dma_fence @@ @@ - struct fence_ops + struct dma_fence_ops @@ @@ - struct fence_cb + struct dma_fence_cb @@ @@ - struct fence_array + struct dma_fence_array @@ @@ - enum fence_flag_bits + enum dma_fence_flag_bits @@ @@ ( - fence_init + dma_fence_init | - fence_release + dma_fence_release | - fence_free + dma_fence_free | - fence_get + dma_fence_get | - fence_get_rcu + dma_fence_get_rcu | - fence_put + dma_fence_put | - fence_signal + dma_fence_signal | - fence_signal_locked + dma_fence_signal_locked | - fence_default_wait + dma_fence_default_wait | - fence_add_callback + dma_fence_add_callback | - fence_remove_callback + dma_fence_remove_callback | - fence_enable_sw_signaling + dma_fence_enable_sw_signaling | - fence_is_signaled_locked + dma_fence_is_signaled_locked | - fence_is_signaled + dma_fence_is_signaled | - fence_is_later + dma_fence_is_later | - fence_later + dma_fence_later | - fence_wait_timeout + dma_fence_wait_timeout | - fence_wait_any_timeout + dma_fence_wait_any_timeout | - fence_wait + dma_fence_wait | - fence_context_alloc + dma_fence_context_alloc | - fence_array_create + dma_fence_array_create | - to_fence_array + to_dma_fence_array | - fence_is_array + dma_fence_is_array | - trace_fence_emit + trace_dma_fence_emit | - FENCE_TRACE + DMA_FENCE_TRACE | - FENCE_WARN + DMA_FENCE_WARN | - FENCE_ERR + DMA_FENCE_ERR ) ( ... ) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk> Acked-by: Sumit Semwal <sumit.semwal@linaro.org> Acked-by: Christian König <christian.koenig@amd.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/20161025120045.28839-1-chris@chris-wilson.co.uk
2016-10-25 20:00:45 +08:00
#include <linux/dma-fence.h>
#include <linux/lockdep.h>
#include "gt/intel_engine_types.h"
#include "i915_gem.h"
#include "i915_scheduler.h"
#include "i915_selftest.h"
#include "i915_sw_fence.h"
drm/i915/scheduler: Support user-defined priorities Use a priority stored in the context as the initial value when submitting a request. This allows us to change the default priority on a per-context basis, allowing different contexts to be favoured with GPU time at the expense of lower importance work. The user can adjust the context's priority via I915_CONTEXT_PARAM_PRIORITY, with more positive values being higher priority (they will be serviced earlier, after their dependencies have been resolved). Any prerequisite work for an execbuf will have its priority raised to match the new request as required. Normal users can specify any value in the range of -1023 to 0 [default], i.e. they can reduce the priority of their workloads (and temporarily boost it back to normal if so desired). Privileged users can specify any value in the range of -1023 to 1023, [default is 0], i.e. they can raise their priority above all overs and so potentially starve the system. Note that the existing schedulers are not fair, nor load balancing, the execution is strictly by priority on a first-come, first-served basis, and the driver may choose to boost some requests above the range available to users. This priority was originally based around nice(2), but evolved to allow clients to adjust their priority within a small range, and allow for a privileged high priority range. For example, this can be used to implement EGL_IMG_context_priority https://www.khronos.org/registry/egl/extensions/IMG/EGL_IMG_context_priority.txt EGL_CONTEXT_PRIORITY_LEVEL_IMG determines the priority level of the context to be created. This attribute is a hint, as an implementation may not support multiple contexts at some priority levels and system policy may limit access to high priority contexts to appropriate system privilege level. The default value for EGL_CONTEXT_PRIORITY_LEVEL_IMG is EGL_CONTEXT_PRIORITY_MEDIUM_IMG." so we can map PRIORITY_HIGH -> 1023 [privileged, will failback to 0] PRIORITY_MED -> 0 [default] PRIORITY_LOW -> -1023 They also map onto the priorities used by VkQueue (and a VkQueue is essentially a timeline, our i915_gem_context under full-ppgtt). v2: s/CAP_SYS_ADMIN/CAP_SYS_NICE/ v3: Report min/max user priorities as defines in the uapi, and rebase internal priorities on the exposed values. Testcase: igt/gem_exec_schedule Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20171003203453.15692-9-chris@chris-wilson.co.uk
2017-10-04 04:34:53 +08:00
#include <uapi/drm/i915_drm.h>
struct drm_file;
struct drm_i915_gem_object;
struct i915_request;
struct i915_timeline;
struct i915_timeline_cacheline;
struct i915_capture_list {
struct i915_capture_list *next;
struct i915_vma *vma;
};
drm/i915: Replace global breadcrumbs with per-context interrupt tracking A few years ago, see commit 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd"), the issue of handling multiple clients waiting in parallel was brought to our attention. The requirement was that every client should be woken immediately upon its request being signaled, without incurring any cpu overhead. To handle certain fragility of our hw meant that we could not do a simple check inside the irq handler (some generations required almost unbounded delays before we could be sure of seqno coherency) and so request completion checking required delegation. Before commit 688e6c725816, the solution was simple. Every client waiting on a request would be woken on every interrupt and each would do a heavyweight check to see if their request was complete. Commit 688e6c725816 introduced an rbtree so that only the earliest waiter on the global timeline would woken, and would wake the next and so on. (Along with various complications to handle requests being reordered along the global timeline, and also a requirement for kthread to provide a delegate for fence signaling that had no process context.) The global rbtree depends on knowing the execution timeline (and global seqno). Without knowing that order, we must instead check all contexts queued to the HW to see which may have advanced. We trim that list by only checking queued contexts that are being waited on, but still we keep a list of all active contexts and their active signalers that we inspect from inside the irq handler. By moving the waiters onto the fence signal list, we can combine the client wakeup with the dma_fence signaling (a dramatic reduction in complexity, but does require the HW being coherent, the seqno must be visible from the cpu before the interrupt is raised - we keep a timer backup just in case). Having previously fixed all the issues with irq-seqno serialisation (by inserting delays onto the GPU after each request instead of random delays on the CPU after each interrupt), we can rely on the seqno state to perfom direct wakeups from the interrupt handler. This allows us to preserve our single context switch behaviour of the current routine, with the only downside that we lose the RT priority sorting of wakeups. In general, direct wakeup latency of multiple clients is about the same (about 10% better in most cases) with a reduction in total CPU time spent in the waiter (about 20-50% depending on gen). Average herd behaviour is improved, but at the cost of not delegating wakeups on task_prio. v2: Capture fence signaling state for error state and add comments to warm even the most cold of hearts. v3: Check if the request is still active before busywaiting v4: Reduce the amount of pointer misdirection with list_for_each_safe and using a local i915_request variable inside the loops v5: Add a missing pluralisation to a purely informative selftest message. References: 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190129205230.19056-2-chris@chris-wilson.co.uk
2019-01-30 04:52:29 +08:00
enum {
/*
* I915_FENCE_FLAG_ACTIVE - this request is currently submitted to HW.
*
* Set by __i915_request_submit() on handing over to HW, and cleared
* by __i915_request_unsubmit() if we preempt this request.
*
* Finally cleared for consistency on retiring the request, when
* we know the HW is no longer running this request.
*
* See i915_request_is_active()
*/
I915_FENCE_FLAG_ACTIVE = DMA_FENCE_FLAG_USER_BITS,
/*
* I915_FENCE_FLAG_SIGNAL - this request is currently on signal_list
*
* Internal bookkeeping used by the breadcrumb code to track when
* a request is on the various signal_list.
*/
I915_FENCE_FLAG_SIGNAL,
};
/**
* Request queue structure.
*
* The request queue allows us to note sequence numbers that have been emitted
* and may be associated with active buffers to be retired.
*
* By keeping this list, we can avoid having to do questionable sequence
* number comparisons on buffer last_read|write_seqno. It also allows an
* emission time to be associated with the request for tracking how far ahead
* of the GPU the submission is.
*
drm/i915: Do not overwrite the request with zero on reallocation When using RCU lookup for the request, commit 0eafec6d3244 ("drm/i915: Enable lockless lookup of request tracking via RCU"), we acknowledge that we may race with another thread that could have reallocated the request. In order for the first thread not to blow up, the second thread must not clear the request completed before overwriting it. In the RCU lookup, we allow for the engine/seqno to be replaced but we do not allow for it to be zeroed. The choice we make is to either add extra checking to the RCU lookup, or embrace the inherent races (as intended). It is more complicated as we need to manually clear everything we depend upon being zero initialised, but we benefit from not emiting the memset() to clear the entire frequently allocated structure (that memset turns up in throughput profiles). And at the same time, the lookup remains flexible for future adjustments. v2: Old style LRC requires another variable to be initialize. (The danger inherent in not zeroing everything.) v3: request->batch also needs to be cleared v4: signaling.tsk is no long used unset, but pid still exists Fixes: 0eafec6d3244 ("drm/i915: Enable lockless lookup of request...") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: "Goel, Akash" <akash.goel@intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/1470731014-6894-2-git-send-email-chris@chris-wilson.co.uk
2016-08-09 16:23:34 +08:00
* When modifying this structure be very aware that we perform a lockless
* RCU lookup of it that may race against reallocation of the struct
* from the slab freelist. We intentionally do not zero the structure on
* allocation so that the lookup can use the dangling pointers (and is
* cogniscent that those pointers may be wrong). Instead, everything that
* needs to be initialised must be done so explicitly.
*
* The requests are reference counted.
*/
struct i915_request {
dma-buf: Rename struct fence to dma_fence I plan to usurp the short name of struct fence for a core kernel struct, and so I need to rename the specialised fence/timeline for DMA operations to make room. A consensus was reached in https://lists.freedesktop.org/archives/dri-devel/2016-July/113083.html that making clear this fence applies to DMA operations was a good thing. Since then the patch has grown a bit as usage increases, so hopefully it remains a good thing! (v2...: rebase, rerun spatch) v3: Compile on msm, spotted a manual fixup that I broke. v4: Try again for msm, sorry Daniel coccinelle script: @@ @@ - struct fence + struct dma_fence @@ @@ - struct fence_ops + struct dma_fence_ops @@ @@ - struct fence_cb + struct dma_fence_cb @@ @@ - struct fence_array + struct dma_fence_array @@ @@ - enum fence_flag_bits + enum dma_fence_flag_bits @@ @@ ( - fence_init + dma_fence_init | - fence_release + dma_fence_release | - fence_free + dma_fence_free | - fence_get + dma_fence_get | - fence_get_rcu + dma_fence_get_rcu | - fence_put + dma_fence_put | - fence_signal + dma_fence_signal | - fence_signal_locked + dma_fence_signal_locked | - fence_default_wait + dma_fence_default_wait | - fence_add_callback + dma_fence_add_callback | - fence_remove_callback + dma_fence_remove_callback | - fence_enable_sw_signaling + dma_fence_enable_sw_signaling | - fence_is_signaled_locked + dma_fence_is_signaled_locked | - fence_is_signaled + dma_fence_is_signaled | - fence_is_later + dma_fence_is_later | - fence_later + dma_fence_later | - fence_wait_timeout + dma_fence_wait_timeout | - fence_wait_any_timeout + dma_fence_wait_any_timeout | - fence_wait + dma_fence_wait | - fence_context_alloc + dma_fence_context_alloc | - fence_array_create + dma_fence_array_create | - to_fence_array + to_dma_fence_array | - fence_is_array + dma_fence_is_array | - trace_fence_emit + trace_dma_fence_emit | - FENCE_TRACE + DMA_FENCE_TRACE | - FENCE_WARN + DMA_FENCE_WARN | - FENCE_ERR + DMA_FENCE_ERR ) ( ... ) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk> Acked-by: Sumit Semwal <sumit.semwal@linaro.org> Acked-by: Christian König <christian.koenig@amd.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/20161025120045.28839-1-chris@chris-wilson.co.uk
2016-10-25 20:00:45 +08:00
struct dma_fence fence;
spinlock_t lock;
/** On Which ring this request was generated */
struct drm_i915_private *i915;
/**
* Context and ring buffer related to this request
* Contexts are refcounted, so when this request is associated with a
* context, we must increment the context's refcount, to guarantee that
* it persists while any request is linked to it. Requests themselves
* are also refcounted, so the request will only be freed when the last
* reference to it is dismissed, and the code in
* i915_request_free() will then decrement the refcount on the
* context.
*/
struct i915_gem_context *gem_context;
struct intel_engine_cs *engine;
struct intel_context *hw_context;
struct intel_ring *ring;
struct i915_timeline *timeline;
drm/i915: Replace global breadcrumbs with per-context interrupt tracking A few years ago, see commit 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd"), the issue of handling multiple clients waiting in parallel was brought to our attention. The requirement was that every client should be woken immediately upon its request being signaled, without incurring any cpu overhead. To handle certain fragility of our hw meant that we could not do a simple check inside the irq handler (some generations required almost unbounded delays before we could be sure of seqno coherency) and so request completion checking required delegation. Before commit 688e6c725816, the solution was simple. Every client waiting on a request would be woken on every interrupt and each would do a heavyweight check to see if their request was complete. Commit 688e6c725816 introduced an rbtree so that only the earliest waiter on the global timeline would woken, and would wake the next and so on. (Along with various complications to handle requests being reordered along the global timeline, and also a requirement for kthread to provide a delegate for fence signaling that had no process context.) The global rbtree depends on knowing the execution timeline (and global seqno). Without knowing that order, we must instead check all contexts queued to the HW to see which may have advanced. We trim that list by only checking queued contexts that are being waited on, but still we keep a list of all active contexts and their active signalers that we inspect from inside the irq handler. By moving the waiters onto the fence signal list, we can combine the client wakeup with the dma_fence signaling (a dramatic reduction in complexity, but does require the HW being coherent, the seqno must be visible from the cpu before the interrupt is raised - we keep a timer backup just in case). Having previously fixed all the issues with irq-seqno serialisation (by inserting delays onto the GPU after each request instead of random delays on the CPU after each interrupt), we can rely on the seqno state to perfom direct wakeups from the interrupt handler. This allows us to preserve our single context switch behaviour of the current routine, with the only downside that we lose the RT priority sorting of wakeups. In general, direct wakeup latency of multiple clients is about the same (about 10% better in most cases) with a reduction in total CPU time spent in the waiter (about 20-50% depending on gen). Average herd behaviour is improved, but at the cost of not delegating wakeups on task_prio. v2: Capture fence signaling state for error state and add comments to warm even the most cold of hearts. v3: Check if the request is still active before busywaiting v4: Reduce the amount of pointer misdirection with list_for_each_safe and using a local i915_request variable inside the loops v5: Add a missing pluralisation to a purely informative selftest message. References: 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190129205230.19056-2-chris@chris-wilson.co.uk
2019-01-30 04:52:29 +08:00
struct list_head signal_link;
drm/i915: Limit the backpressure for i915_request allocation If we try and fail to allocate a i915_request, we apply some backpressure on the clients to throttle the memory allocations coming from i915.ko. Currently, we wait until completely idle, but this is far too heavy and leads to some situations where the only escape is to declare a client hung and reset the GPU. The intent is to only ratelimit the allocation requests and to allow ourselves to recycle requests and memory from any long queues built up by a client hog. Although the system memory is inherently a global resources, we don't want to overly penalize an unlucky client to pay the price of reaping a hog. To reduce the influence of one client on another, we can instead of waiting for the entire GPU to idle, impose a barrier on the local client. (One end goal for request allocation is for scalability to many concurrent allocators; simultaneous execbufs.) To prevent ourselves from getting caught out by long running requests (requests that may never finish without userspace intervention, whom we are blocking) we need to impose a finite timeout, ideally shorter than hangcheck. A long time ago Paul McKenney suggested that RCU users should ratelimit themselves using judicious use of cond_synchronize_rcu(). This gives us the opportunity to reduce our indefinite wait for the GPU to idle to a wait for the RCU grace period of the previous allocation along this timeline to expire, satisfying both the local and finite properties we desire for our ratelimiting. There are still a few global steps (reclaim not least amongst those!) when we exhaust the immediate slab pool, at least now the wait is itself decoupled from struct_mutex for our glorious highly parallel future! Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=106680 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20180914080017.30308-1-chris@chris-wilson.co.uk
2018-09-14 16:00:15 +08:00
/*
* The rcu epoch of when this request was allocated. Used to judiciously
* apply backpressure on future allocations to ensure that under
* mempressure there is sufficient RCU ticks for us to reclaim our
* RCU protected slabs.
*/
unsigned long rcustate;
/*
* We pin the timeline->mutex while constructing the request to
* ensure that no caller accidentally drops it during construction.
* The timeline->mutex must be held to ensure that only this caller
* can use the ring and manipulate the associated timeline during
* construction.
*/
struct pin_cookie cookie;
/*
* Fences for the various phases in the request's lifetime.
*
* The submit fence is used to await upon all of the request's
* dependencies. When it is signaled, the request is ready to run.
* It is used by the driver to then queue the request for execution.
*/
struct i915_sw_fence submit;
union {
wait_queue_entry_t submitq;
struct i915_sw_dma_fence_cb dmaq;
};
drm/i915: Use HW semaphores for inter-engine synchronisation on gen8+ Having introduced per-context seqno, we now have a means to identity progress across the system without feel of rollback as befell the global_seqno. That is we can program a MI_SEMAPHORE_WAIT operation in advance of submission safe in the knowledge that our target seqno and address is stable. However, since we are telling the GPU to busy-spin on the target address until it matches the signaling seqno, we only want to do so when we are sure that busy-spin will be completed quickly. To achieve this we only submit the request to HW once the signaler is itself executing (modulo preemption causing us to wait longer), and we only do so for default and above priority requests (so that idle priority tasks never themselves hog the GPU waiting for others). As might be reasonably expected, HW semaphores excel in inter-engine synchronisation microbenchmarks (where the 3x reduced latency / increased throughput more than offset the power cost of spinning on a second ring) and have significant improvement (can be up to ~10%, most see no change) for single clients that utilize multiple engines (typically media players and transcoders), without regressing multiple clients that can saturate the system or changing the power envelope dramatically. v3: Drop the older NEQ branch, now we pin the signaler's HWSP anyway. v4: Tell the world and include it as part of scheduler caps. Testcase: igt/gem_exec_whisper Testcase: igt/benchmarks/gem_wsim Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190301170901.8340-3-chris@chris-wilson.co.uk
2019-03-02 01:09:00 +08:00
struct list_head execute_cb;
drm/i915: Bump ready tasks ahead of busywaits Consider two tasks that are running in parallel on a pair of engines (vcs0, vcs1), but then must complete on a shared engine (rcs0). To maximise throughput, we want to run the first ready task on rcs0 (i.e. the first task that completes on either of vcs0 or vcs1). When using semaphores, however, we will instead queue onto rcs in submission order. To resolve this incorrect ordering, we want to re-evaluate the priority queue when each of the request is ready. Normally this happens because we only insert into the priority queue requests that are ready, but with semaphores we are inserting ahead of their readiness and to compensate we penalize those tasks with reduced priority (so that tasks that do not need to busywait should naturally be run first). However, given a series of tasks that each use semaphores, the queue degrades into submission fifo rather than readiness fifo, and so to counter this we give a small boost to semaphore users as their dependent tasks are completed (and so we no longer require any busywait prior to running the user task as they are then ready themselves). v2: Fixup irqsave for schedule_lock (Tvrtko) Testcase: igt/gem_exec_schedule/semaphore-codependency Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com> Cc: Dmitry Ermilov <dmitry.ermilov@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190409152922.23894-1-chris@chris-wilson.co.uk
2019-04-09 23:29:22 +08:00
struct i915_sw_fence semaphore;
/*
* A list of everyone we wait upon, and everyone who waits upon us.
* Even though we will not be submitted to the hardware before the
* submit fence is signaled (it waits for all external events as well
* as our own requests), the scheduler still needs to know the
* dependency tree for the lifetime of the request (from execbuf
* to retirement), i.e. bidirectional dependency information for the
* request not tied to individual fences.
*/
struct i915_sched_node sched;
struct i915_dependency dep;
intel_engine_mask_t execution_mask;
/*
* A convenience pointer to the current breadcrumb value stored in
* the HW status page (or our timeline's local equivalent). The full
* path would be rq->hw_context->ring->timeline->hwsp_seqno.
*/
const u32 *hwsp_seqno;
/*
* If we need to access the timeline's seqno for this request in
* another request, we need to keep a read reference to this associated
* cacheline, so that we do not free and recycle it before the foreign
* observers have completed. Hence, we keep a pointer to the cacheline
* inside the timeline's HWSP vma, but it is only valid while this
* request has not completed and guarded by the timeline mutex.
*/
struct i915_timeline_cacheline *hwsp_cacheline;
/** Position in the ring of the start of the request */
u32 head;
drm/i915/ringbuffer: Fix context restore upon reset The discovery with trying to enable full-ppgtt was that we were completely failing to the load both the mm and context following the reset. Although we were performing mmio to set the PP_DIR (per-process GTT) and CCID (context), these were taking no effect (the assumption was that this would trigger reload of the context and restore the page tables). It was not until we performed the LRI + MI_SET_CONTEXT in a following context switch would anything occur. Since we are then required to reset the context image and PP_DIR using CS commands, we place those commands into every batch. The hardware should recognise the no-ops and eliminate the expensive context loads, but we still have to pay the cost of using cross-powerwell register writes. In practice, this has no effect on actual context switch times, and only adds a few hundred nanoseconds to no-op switches. We can improve the latter by eliminating the w/a around known no-op switches, but there is an ulterior motive to keeping them. Always emitting the context switch at the beginning of the request (and relying on HW to skip unneeded switches) does have one key advantage. Should we implement request reordering on Haswell, we will not know in advance what the previous executing context was on the GPU and so we would not be able to elide the MI_SET_CONTEXT commands ourselves and always have to emit them. Having our hand forced now actually prepares us for later. Now since that context and mm follow the request, we no longer (and not for a long time since requests took over!) require a trace point to tell when we write the switch into the ring, since it is always. (This is even more important when you remember that simply writing into the ring bears no relation to the current mm.) v2: Sandybridge has to agree to use LRI as well. Testcase: igt/drv_selftests/live_hangcheck Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com> Cc: Matthew Auld <matthew.william.auld@gmail.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20180611110845.31890-1-chris@chris-wilson.co.uk
2018-06-11 19:08:44 +08:00
/** Position in the ring of the start of the user packets */
u32 infix;
/**
* Position in the ring of the start of the postfix.
* This is required to calculate the maximum available ring space
* without overwriting the postfix.
*/
u32 postfix;
/** Position in the ring of the end of the whole request */
u32 tail;
/** Position in the ring of the end of any workarounds after the tail */
u32 wa_tail;
/** Preallocate space in the ring for the emitting the request */
u32 reserved_space;
/** Batch buffer related to this request if any (used for
* error state dump only).
*/
struct i915_vma *batch;
/**
* Additional buffers requested by userspace to be captured upon
* a GPU hang. The vma/obj on this list are protected by their
* active reference - all objects on this list must also be
* on the active_list (of their final request).
*/
struct i915_capture_list *capture_list;
drm/i915: Refactor activity tracking for requests With the introduction of requests, we amplified the number of atomic refcounted objects we use and update every execbuffer; from none to several references, and a set of references that need to be changed. We also introduced interesting side-effects in the order of retiring requests and objects. Instead of independently tracking the last request for an object, track the active objects for each request. The object will reside in the buffer list of its most recent active request and so we reduce the kref interchange to a list_move. Now retirements are entirely driven by the request, dramatically simplifying activity tracking on the object themselves, and removing the ambiguity between retiring objects and retiring requests. Furthermore with the consolidation of managing the activity tracking centrally, we can look forward to using RCU to enable lockless lookup of the current active requests for an object. In the future, we will be able to query the status or wait upon rendering to an object without even touching the struct_mutex BKL. All told, less code, simpler and faster, and more extensible. v2: Add a typedef for the function pointer for convenience later. v3: Make the noop retirement callback explicit. Allow passing NULL to the init_request_active() which is expanded to a common noop function. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/1470293567-10811-16-git-send-email-chris@chris-wilson.co.uk
2016-08-04 14:52:35 +08:00
struct list_head active_list;
/** Time at which this request was emitted, in jiffies. */
unsigned long emitted_jiffies;
drm/i915: Avoid keeping waitboost active for signaling threads Once a client has requested a waitboost, we keep that waitboost active until all clients are no longer waiting. This is because we don't distinguish which waiter deserves the boost. However, with the advent of fence signaling, the signaler threads appear as waiters to the RPS interrupt handler. So instead of using a single boolean to track when to keep the waitboost active, use a counter of all outstanding waitboosted requests. At this point, I have removed all vestiges of the rate limiting on clients. Whilst this means that compositors should remain more fluid, it also means that boosts are more prevalent. See commit b29c19b64528 ("drm/i915: Boost RPS frequency for CPU stalls") for a longer discussion on the pros and cons of both approaches. A drawback of this implementation is that it requires constant request submission to keep the waitboost trimmed (as it is now cancelled when the request is completed). This will be fine for a busy system, but near idle the boosts may be kept for longer than desired (effectively tens of vblanks worstcase) and there is a reliance on rc6 instead. v2: Remove defunct rps.client_lock Reported-by: Michał Winiarski <michal.winiarski@intel.com> Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Michał Winiarski <michal.winiarski@intel.com> Reviewed-by: Michał Winiarski <michal.winiarski@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170628123548.9236-1-chris@chris-wilson.co.uk
2017-06-28 20:35:48 +08:00
bool waitboost;
/** engine->request_list entry for this request */
struct list_head link;
/** ring->request_list entry for this request */
struct list_head ring_link;
struct drm_i915_file_private *file_priv;
/** file_priv list entry for this request */
struct list_head client_link;
I915_SELFTEST_DECLARE(struct {
struct list_head link;
unsigned long delay;
} mock;)
};
#define I915_FENCE_GFP (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
dma-buf: Rename struct fence to dma_fence I plan to usurp the short name of struct fence for a core kernel struct, and so I need to rename the specialised fence/timeline for DMA operations to make room. A consensus was reached in https://lists.freedesktop.org/archives/dri-devel/2016-July/113083.html that making clear this fence applies to DMA operations was a good thing. Since then the patch has grown a bit as usage increases, so hopefully it remains a good thing! (v2...: rebase, rerun spatch) v3: Compile on msm, spotted a manual fixup that I broke. v4: Try again for msm, sorry Daniel coccinelle script: @@ @@ - struct fence + struct dma_fence @@ @@ - struct fence_ops + struct dma_fence_ops @@ @@ - struct fence_cb + struct dma_fence_cb @@ @@ - struct fence_array + struct dma_fence_array @@ @@ - enum fence_flag_bits + enum dma_fence_flag_bits @@ @@ ( - fence_init + dma_fence_init | - fence_release + dma_fence_release | - fence_free + dma_fence_free | - fence_get + dma_fence_get | - fence_get_rcu + dma_fence_get_rcu | - fence_put + dma_fence_put | - fence_signal + dma_fence_signal | - fence_signal_locked + dma_fence_signal_locked | - fence_default_wait + dma_fence_default_wait | - fence_add_callback + dma_fence_add_callback | - fence_remove_callback + dma_fence_remove_callback | - fence_enable_sw_signaling + dma_fence_enable_sw_signaling | - fence_is_signaled_locked + dma_fence_is_signaled_locked | - fence_is_signaled + dma_fence_is_signaled | - fence_is_later + dma_fence_is_later | - fence_later + dma_fence_later | - fence_wait_timeout + dma_fence_wait_timeout | - fence_wait_any_timeout + dma_fence_wait_any_timeout | - fence_wait + dma_fence_wait | - fence_context_alloc + dma_fence_context_alloc | - fence_array_create + dma_fence_array_create | - to_fence_array + to_dma_fence_array | - fence_is_array + dma_fence_is_array | - trace_fence_emit + trace_dma_fence_emit | - FENCE_TRACE + DMA_FENCE_TRACE | - FENCE_WARN + DMA_FENCE_WARN | - FENCE_ERR + DMA_FENCE_ERR ) ( ... ) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk> Acked-by: Sumit Semwal <sumit.semwal@linaro.org> Acked-by: Christian König <christian.koenig@amd.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/20161025120045.28839-1-chris@chris-wilson.co.uk
2016-10-25 20:00:45 +08:00
extern const struct dma_fence_ops i915_fence_ops;
static inline bool dma_fence_is_i915(const struct dma_fence *fence)
{
return fence->ops == &i915_fence_ops;
}
struct i915_request * __must_check
__i915_request_create(struct intel_context *ce, gfp_t gfp);
struct i915_request * __must_check
i915_request_create(struct intel_context *ce);
struct i915_request *__i915_request_commit(struct i915_request *request);
void i915_request_retire_upto(struct i915_request *rq);
static inline struct i915_request *
dma-buf: Rename struct fence to dma_fence I plan to usurp the short name of struct fence for a core kernel struct, and so I need to rename the specialised fence/timeline for DMA operations to make room. A consensus was reached in https://lists.freedesktop.org/archives/dri-devel/2016-July/113083.html that making clear this fence applies to DMA operations was a good thing. Since then the patch has grown a bit as usage increases, so hopefully it remains a good thing! (v2...: rebase, rerun spatch) v3: Compile on msm, spotted a manual fixup that I broke. v4: Try again for msm, sorry Daniel coccinelle script: @@ @@ - struct fence + struct dma_fence @@ @@ - struct fence_ops + struct dma_fence_ops @@ @@ - struct fence_cb + struct dma_fence_cb @@ @@ - struct fence_array + struct dma_fence_array @@ @@ - enum fence_flag_bits + enum dma_fence_flag_bits @@ @@ ( - fence_init + dma_fence_init | - fence_release + dma_fence_release | - fence_free + dma_fence_free | - fence_get + dma_fence_get | - fence_get_rcu + dma_fence_get_rcu | - fence_put + dma_fence_put | - fence_signal + dma_fence_signal | - fence_signal_locked + dma_fence_signal_locked | - fence_default_wait + dma_fence_default_wait | - fence_add_callback + dma_fence_add_callback | - fence_remove_callback + dma_fence_remove_callback | - fence_enable_sw_signaling + dma_fence_enable_sw_signaling | - fence_is_signaled_locked + dma_fence_is_signaled_locked | - fence_is_signaled + dma_fence_is_signaled | - fence_is_later + dma_fence_is_later | - fence_later + dma_fence_later | - fence_wait_timeout + dma_fence_wait_timeout | - fence_wait_any_timeout + dma_fence_wait_any_timeout | - fence_wait + dma_fence_wait | - fence_context_alloc + dma_fence_context_alloc | - fence_array_create + dma_fence_array_create | - to_fence_array + to_dma_fence_array | - fence_is_array + dma_fence_is_array | - trace_fence_emit + trace_dma_fence_emit | - FENCE_TRACE + DMA_FENCE_TRACE | - FENCE_WARN + DMA_FENCE_WARN | - FENCE_ERR + DMA_FENCE_ERR ) ( ... ) Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk> Acked-by: Sumit Semwal <sumit.semwal@linaro.org> Acked-by: Christian König <christian.koenig@amd.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/20161025120045.28839-1-chris@chris-wilson.co.uk
2016-10-25 20:00:45 +08:00
to_request(struct dma_fence *fence)
{
/* We assume that NULL fence/request are interoperable */
BUILD_BUG_ON(offsetof(struct i915_request, fence) != 0);
GEM_BUG_ON(fence && !dma_fence_is_i915(fence));
return container_of(fence, struct i915_request, fence);
}
static inline struct i915_request *
i915_request_get(struct i915_request *rq)
{
return to_request(dma_fence_get(&rq->fence));
}
static inline struct i915_request *
i915_request_get_rcu(struct i915_request *rq)
drm/i915: Enable lockless lookup of request tracking via RCU If we enable RCU for the requests (providing a grace period where we can inspect a "dead" request before it is freed), we can allow callers to carefully perform lockless lookup of an active request. However, by enabling deferred freeing of requests, we can potentially hog a lot of memory when dealing with tens of thousands of requests per second - with a quick insertion of a synchronize_rcu() inside our shrinker callback, that issue disappears. v2: Currently, it is our responsibility to handle reclaim i.e. to avoid hogging memory with the delayed slab frees. At the moment, we wait for a grace period in the shrinker, and block for all RCU callbacks on oom. Suggested alternatives focus on flushing our RCU callback when we have a certain number of outstanding request frees, and blocking on that flush after a second high watermark. (So rather than wait for the system to run out of memory, we stop issuing requests - both are nondeterministic.) Paul E. McKenney wrote: Another approach is synchronize_rcu() after some largish number of requests. The advantage of this approach is that it throttles the production of callbacks at the source. The corresponding disadvantage is that it slows things up. Another approach is to use call_rcu(), but if the previous call_rcu() is still in flight, block waiting for it. Yet another approach is the get_state_synchronize_rcu() / cond_synchronize_rcu() pair. The idea is to do something like this: cond_synchronize_rcu(cookie); cookie = get_state_synchronize_rcu(); You would of course do an initial get_state_synchronize_rcu() to get things going. This would not block unless there was less than one grace period's worth of time between invocations. But this assumes a busy system, where there is almost always a grace period in flight. But you can make that happen as follows: cond_synchronize_rcu(cookie); cookie = get_state_synchronize_rcu(); call_rcu(&my_rcu_head, noop_function); Note that you need additional code to make sure that the old callback has completed before doing a new one. Setting and clearing a flag with appropriate memory ordering control suffices (e.g,. smp_load_acquire() and smp_store_release()). v3: More comments on compiler and processor order of operations within the RCU lookup and discover we can use rcu_access_pointer() here instead. v4: Wrap i915_gem_active_get_rcu() to take the rcu_read_lock itself. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: "Goel, Akash" <akash.goel@intel.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/1470324762-2545-25-git-send-email-chris@chris-wilson.co.uk
2016-08-04 23:32:41 +08:00
{
return to_request(dma_fence_get_rcu(&rq->fence));
drm/i915: Enable lockless lookup of request tracking via RCU If we enable RCU for the requests (providing a grace period where we can inspect a "dead" request before it is freed), we can allow callers to carefully perform lockless lookup of an active request. However, by enabling deferred freeing of requests, we can potentially hog a lot of memory when dealing with tens of thousands of requests per second - with a quick insertion of a synchronize_rcu() inside our shrinker callback, that issue disappears. v2: Currently, it is our responsibility to handle reclaim i.e. to avoid hogging memory with the delayed slab frees. At the moment, we wait for a grace period in the shrinker, and block for all RCU callbacks on oom. Suggested alternatives focus on flushing our RCU callback when we have a certain number of outstanding request frees, and blocking on that flush after a second high watermark. (So rather than wait for the system to run out of memory, we stop issuing requests - both are nondeterministic.) Paul E. McKenney wrote: Another approach is synchronize_rcu() after some largish number of requests. The advantage of this approach is that it throttles the production of callbacks at the source. The corresponding disadvantage is that it slows things up. Another approach is to use call_rcu(), but if the previous call_rcu() is still in flight, block waiting for it. Yet another approach is the get_state_synchronize_rcu() / cond_synchronize_rcu() pair. The idea is to do something like this: cond_synchronize_rcu(cookie); cookie = get_state_synchronize_rcu(); You would of course do an initial get_state_synchronize_rcu() to get things going. This would not block unless there was less than one grace period's worth of time between invocations. But this assumes a busy system, where there is almost always a grace period in flight. But you can make that happen as follows: cond_synchronize_rcu(cookie); cookie = get_state_synchronize_rcu(); call_rcu(&my_rcu_head, noop_function); Note that you need additional code to make sure that the old callback has completed before doing a new one. Setting and clearing a flag with appropriate memory ordering control suffices (e.g,. smp_load_acquire() and smp_store_release()). v3: More comments on compiler and processor order of operations within the RCU lookup and discover we can use rcu_access_pointer() here instead. v4: Wrap i915_gem_active_get_rcu() to take the rcu_read_lock itself. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: "Goel, Akash" <akash.goel@intel.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/1470324762-2545-25-git-send-email-chris@chris-wilson.co.uk
2016-08-04 23:32:41 +08:00
}
static inline void
i915_request_put(struct i915_request *rq)
{
dma_fence_put(&rq->fence);
}
int i915_request_await_object(struct i915_request *to,
struct drm_i915_gem_object *obj,
bool write);
int i915_request_await_dma_fence(struct i915_request *rq,
struct dma_fence *fence);
int i915_request_await_execution(struct i915_request *rq,
struct dma_fence *fence,
void (*hook)(struct i915_request *rq,
struct dma_fence *signal));
void i915_request_add(struct i915_request *rq);
void __i915_request_submit(struct i915_request *request);
void i915_request_submit(struct i915_request *request);
void i915_request_skip(struct i915_request *request, int error);
void __i915_request_unsubmit(struct i915_request *request);
void i915_request_unsubmit(struct i915_request *request);
drm/i915: Replace global breadcrumbs with per-context interrupt tracking A few years ago, see commit 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd"), the issue of handling multiple clients waiting in parallel was brought to our attention. The requirement was that every client should be woken immediately upon its request being signaled, without incurring any cpu overhead. To handle certain fragility of our hw meant that we could not do a simple check inside the irq handler (some generations required almost unbounded delays before we could be sure of seqno coherency) and so request completion checking required delegation. Before commit 688e6c725816, the solution was simple. Every client waiting on a request would be woken on every interrupt and each would do a heavyweight check to see if their request was complete. Commit 688e6c725816 introduced an rbtree so that only the earliest waiter on the global timeline would woken, and would wake the next and so on. (Along with various complications to handle requests being reordered along the global timeline, and also a requirement for kthread to provide a delegate for fence signaling that had no process context.) The global rbtree depends on knowing the execution timeline (and global seqno). Without knowing that order, we must instead check all contexts queued to the HW to see which may have advanced. We trim that list by only checking queued contexts that are being waited on, but still we keep a list of all active contexts and their active signalers that we inspect from inside the irq handler. By moving the waiters onto the fence signal list, we can combine the client wakeup with the dma_fence signaling (a dramatic reduction in complexity, but does require the HW being coherent, the seqno must be visible from the cpu before the interrupt is raised - we keep a timer backup just in case). Having previously fixed all the issues with irq-seqno serialisation (by inserting delays onto the GPU after each request instead of random delays on the CPU after each interrupt), we can rely on the seqno state to perfom direct wakeups from the interrupt handler. This allows us to preserve our single context switch behaviour of the current routine, with the only downside that we lose the RT priority sorting of wakeups. In general, direct wakeup latency of multiple clients is about the same (about 10% better in most cases) with a reduction in total CPU time spent in the waiter (about 20-50% depending on gen). Average herd behaviour is improved, but at the cost of not delegating wakeups on task_prio. v2: Capture fence signaling state for error state and add comments to warm even the most cold of hearts. v3: Check if the request is still active before busywaiting v4: Reduce the amount of pointer misdirection with list_for_each_safe and using a local i915_request variable inside the loops v5: Add a missing pluralisation to a purely informative selftest message. References: 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190129205230.19056-2-chris@chris-wilson.co.uk
2019-01-30 04:52:29 +08:00
/* Note: part of the intel_breadcrumbs family */
bool i915_request_enable_breadcrumb(struct i915_request *request);
void i915_request_cancel_breadcrumb(struct i915_request *request);
long i915_request_wait(struct i915_request *rq,
unsigned int flags,
long timeout)
drm/i915: Refactor activity tracking for requests With the introduction of requests, we amplified the number of atomic refcounted objects we use and update every execbuffer; from none to several references, and a set of references that need to be changed. We also introduced interesting side-effects in the order of retiring requests and objects. Instead of independently tracking the last request for an object, track the active objects for each request. The object will reside in the buffer list of its most recent active request and so we reduce the kref interchange to a list_move. Now retirements are entirely driven by the request, dramatically simplifying activity tracking on the object themselves, and removing the ambiguity between retiring objects and retiring requests. Furthermore with the consolidation of managing the activity tracking centrally, we can look forward to using RCU to enable lockless lookup of the current active requests for an object. In the future, we will be able to query the status or wait upon rendering to an object without even touching the struct_mutex BKL. All told, less code, simpler and faster, and more extensible. v2: Add a typedef for the function pointer for convenience later. v3: Make the noop retirement callback explicit. Allow passing NULL to the init_request_active() which is expanded to a common noop function. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/1470293567-10811-16-git-send-email-chris@chris-wilson.co.uk
2016-08-04 14:52:35 +08:00
__attribute__((nonnull(1)));
#define I915_WAIT_INTERRUPTIBLE BIT(0)
#define I915_WAIT_LOCKED BIT(1) /* struct_mutex held, handle GPU reset */
#define I915_WAIT_PRIORITY BIT(2) /* small priority bump for the request */
#define I915_WAIT_ALL BIT(3) /* used by i915_gem_object_wait() */
#define I915_WAIT_FOR_IDLE_BOOST BIT(4)
drm/i915: Refactor activity tracking for requests With the introduction of requests, we amplified the number of atomic refcounted objects we use and update every execbuffer; from none to several references, and a set of references that need to be changed. We also introduced interesting side-effects in the order of retiring requests and objects. Instead of independently tracking the last request for an object, track the active objects for each request. The object will reside in the buffer list of its most recent active request and so we reduce the kref interchange to a list_move. Now retirements are entirely driven by the request, dramatically simplifying activity tracking on the object themselves, and removing the ambiguity between retiring objects and retiring requests. Furthermore with the consolidation of managing the activity tracking centrally, we can look forward to using RCU to enable lockless lookup of the current active requests for an object. In the future, we will be able to query the status or wait upon rendering to an object without even touching the struct_mutex BKL. All told, less code, simpler and faster, and more extensible. v2: Add a typedef for the function pointer for convenience later. v3: Make the noop retirement callback explicit. Allow passing NULL to the init_request_active() which is expanded to a common noop function. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/1470293567-10811-16-git-send-email-chris@chris-wilson.co.uk
2016-08-04 14:52:35 +08:00
static inline bool i915_request_signaled(const struct i915_request *rq)
{
/* The request may live longer than its HWSP, so check flags first! */
return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags);
}
drm/i915: Replace global breadcrumbs with per-context interrupt tracking A few years ago, see commit 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd"), the issue of handling multiple clients waiting in parallel was brought to our attention. The requirement was that every client should be woken immediately upon its request being signaled, without incurring any cpu overhead. To handle certain fragility of our hw meant that we could not do a simple check inside the irq handler (some generations required almost unbounded delays before we could be sure of seqno coherency) and so request completion checking required delegation. Before commit 688e6c725816, the solution was simple. Every client waiting on a request would be woken on every interrupt and each would do a heavyweight check to see if their request was complete. Commit 688e6c725816 introduced an rbtree so that only the earliest waiter on the global timeline would woken, and would wake the next and so on. (Along with various complications to handle requests being reordered along the global timeline, and also a requirement for kthread to provide a delegate for fence signaling that had no process context.) The global rbtree depends on knowing the execution timeline (and global seqno). Without knowing that order, we must instead check all contexts queued to the HW to see which may have advanced. We trim that list by only checking queued contexts that are being waited on, but still we keep a list of all active contexts and their active signalers that we inspect from inside the irq handler. By moving the waiters onto the fence signal list, we can combine the client wakeup with the dma_fence signaling (a dramatic reduction in complexity, but does require the HW being coherent, the seqno must be visible from the cpu before the interrupt is raised - we keep a timer backup just in case). Having previously fixed all the issues with irq-seqno serialisation (by inserting delays onto the GPU after each request instead of random delays on the CPU after each interrupt), we can rely on the seqno state to perfom direct wakeups from the interrupt handler. This allows us to preserve our single context switch behaviour of the current routine, with the only downside that we lose the RT priority sorting of wakeups. In general, direct wakeup latency of multiple clients is about the same (about 10% better in most cases) with a reduction in total CPU time spent in the waiter (about 20-50% depending on gen). Average herd behaviour is improved, but at the cost of not delegating wakeups on task_prio. v2: Capture fence signaling state for error state and add comments to warm even the most cold of hearts. v3: Check if the request is still active before busywaiting v4: Reduce the amount of pointer misdirection with list_for_each_safe and using a local i915_request variable inside the loops v5: Add a missing pluralisation to a purely informative selftest message. References: 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190129205230.19056-2-chris@chris-wilson.co.uk
2019-01-30 04:52:29 +08:00
static inline bool i915_request_is_active(const struct i915_request *rq)
{
return test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
}
/**
* Returns true if seq1 is later than seq2.
*/
static inline bool i915_seqno_passed(u32 seq1, u32 seq2)
{
return (s32)(seq1 - seq2) >= 0;
}
static inline u32 __hwsp_seqno(const struct i915_request *rq)
{
return READ_ONCE(*rq->hwsp_seqno);
}
/**
* hwsp_seqno - the current breadcrumb value in the HW status page
* @rq: the request, to chase the relevant HW status page
*
* The emphasis in naming here is that hwsp_seqno() is not a property of the
* request, but an indication of the current HW state (associated with this
* request). Its value will change as the GPU executes more requests.
*
* Returns the current breadcrumb value in the associated HW status page (or
* the local timeline's equivalent) for this request. The request itself
* has the associated breadcrumb value of rq->fence.seqno, when the HW
* status page has that breadcrumb or later, this request is complete.
*/
static inline u32 hwsp_seqno(const struct i915_request *rq)
{
u32 seqno;
rcu_read_lock(); /* the HWSP may be freed at runtime */
seqno = __hwsp_seqno(rq);
rcu_read_unlock();
return seqno;
}
drm/i915: Replace global breadcrumbs with per-context interrupt tracking A few years ago, see commit 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd"), the issue of handling multiple clients waiting in parallel was brought to our attention. The requirement was that every client should be woken immediately upon its request being signaled, without incurring any cpu overhead. To handle certain fragility of our hw meant that we could not do a simple check inside the irq handler (some generations required almost unbounded delays before we could be sure of seqno coherency) and so request completion checking required delegation. Before commit 688e6c725816, the solution was simple. Every client waiting on a request would be woken on every interrupt and each would do a heavyweight check to see if their request was complete. Commit 688e6c725816 introduced an rbtree so that only the earliest waiter on the global timeline would woken, and would wake the next and so on. (Along with various complications to handle requests being reordered along the global timeline, and also a requirement for kthread to provide a delegate for fence signaling that had no process context.) The global rbtree depends on knowing the execution timeline (and global seqno). Without knowing that order, we must instead check all contexts queued to the HW to see which may have advanced. We trim that list by only checking queued contexts that are being waited on, but still we keep a list of all active contexts and their active signalers that we inspect from inside the irq handler. By moving the waiters onto the fence signal list, we can combine the client wakeup with the dma_fence signaling (a dramatic reduction in complexity, but does require the HW being coherent, the seqno must be visible from the cpu before the interrupt is raised - we keep a timer backup just in case). Having previously fixed all the issues with irq-seqno serialisation (by inserting delays onto the GPU after each request instead of random delays on the CPU after each interrupt), we can rely on the seqno state to perfom direct wakeups from the interrupt handler. This allows us to preserve our single context switch behaviour of the current routine, with the only downside that we lose the RT priority sorting of wakeups. In general, direct wakeup latency of multiple clients is about the same (about 10% better in most cases) with a reduction in total CPU time spent in the waiter (about 20-50% depending on gen). Average herd behaviour is improved, but at the cost of not delegating wakeups on task_prio. v2: Capture fence signaling state for error state and add comments to warm even the most cold of hearts. v3: Check if the request is still active before busywaiting v4: Reduce the amount of pointer misdirection with list_for_each_safe and using a local i915_request variable inside the loops v5: Add a missing pluralisation to a purely informative selftest message. References: 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190129205230.19056-2-chris@chris-wilson.co.uk
2019-01-30 04:52:29 +08:00
static inline bool __i915_request_has_started(const struct i915_request *rq)
{
return i915_seqno_passed(hwsp_seqno(rq), rq->fence.seqno - 1);
}
/**
* i915_request_started - check if the request has begun being executed
* @rq: the request
*
drm/i915: Use HW semaphores for inter-engine synchronisation on gen8+ Having introduced per-context seqno, we now have a means to identity progress across the system without feel of rollback as befell the global_seqno. That is we can program a MI_SEMAPHORE_WAIT operation in advance of submission safe in the knowledge that our target seqno and address is stable. However, since we are telling the GPU to busy-spin on the target address until it matches the signaling seqno, we only want to do so when we are sure that busy-spin will be completed quickly. To achieve this we only submit the request to HW once the signaler is itself executing (modulo preemption causing us to wait longer), and we only do so for default and above priority requests (so that idle priority tasks never themselves hog the GPU waiting for others). As might be reasonably expected, HW semaphores excel in inter-engine synchronisation microbenchmarks (where the 3x reduced latency / increased throughput more than offset the power cost of spinning on a second ring) and have significant improvement (can be up to ~10%, most see no change) for single clients that utilize multiple engines (typically media players and transcoders), without regressing multiple clients that can saturate the system or changing the power envelope dramatically. v3: Drop the older NEQ branch, now we pin the signaler's HWSP anyway. v4: Tell the world and include it as part of scheduler caps. Testcase: igt/gem_exec_whisper Testcase: igt/benchmarks/gem_wsim Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190301170901.8340-3-chris@chris-wilson.co.uk
2019-03-02 01:09:00 +08:00
* If the timeline is not using initial breadcrumbs, a request is
* considered started if the previous request on its timeline (i.e.
* context) has been signaled.
*
* If the timeline is using semaphores, it will also be emitting an
* "initial breadcrumb" after the semaphores are complete and just before
* it began executing the user payload. A request can therefore be active
* on the HW and not yet started as it is still busywaiting on its
* dependencies (via HW semaphores).
*
* If the request has started, its dependencies will have been signaled
* (either by fences or by semaphores) and it will have begun processing
* the user payload.
*
* However, even if a request has started, it may have been preempted and
* so no longer active, or it may have already completed.
*
* See also i915_request_is_active().
*
* Returns true if the request has begun executing the user payload, or
* has completed:
*/
static inline bool i915_request_started(const struct i915_request *rq)
{
if (i915_request_signaled(rq))
return true;
/* Remember: started but may have since been preempted! */
drm/i915: Replace global breadcrumbs with per-context interrupt tracking A few years ago, see commit 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd"), the issue of handling multiple clients waiting in parallel was brought to our attention. The requirement was that every client should be woken immediately upon its request being signaled, without incurring any cpu overhead. To handle certain fragility of our hw meant that we could not do a simple check inside the irq handler (some generations required almost unbounded delays before we could be sure of seqno coherency) and so request completion checking required delegation. Before commit 688e6c725816, the solution was simple. Every client waiting on a request would be woken on every interrupt and each would do a heavyweight check to see if their request was complete. Commit 688e6c725816 introduced an rbtree so that only the earliest waiter on the global timeline would woken, and would wake the next and so on. (Along with various complications to handle requests being reordered along the global timeline, and also a requirement for kthread to provide a delegate for fence signaling that had no process context.) The global rbtree depends on knowing the execution timeline (and global seqno). Without knowing that order, we must instead check all contexts queued to the HW to see which may have advanced. We trim that list by only checking queued contexts that are being waited on, but still we keep a list of all active contexts and their active signalers that we inspect from inside the irq handler. By moving the waiters onto the fence signal list, we can combine the client wakeup with the dma_fence signaling (a dramatic reduction in complexity, but does require the HW being coherent, the seqno must be visible from the cpu before the interrupt is raised - we keep a timer backup just in case). Having previously fixed all the issues with irq-seqno serialisation (by inserting delays onto the GPU after each request instead of random delays on the CPU after each interrupt), we can rely on the seqno state to perfom direct wakeups from the interrupt handler. This allows us to preserve our single context switch behaviour of the current routine, with the only downside that we lose the RT priority sorting of wakeups. In general, direct wakeup latency of multiple clients is about the same (about 10% better in most cases) with a reduction in total CPU time spent in the waiter (about 20-50% depending on gen). Average herd behaviour is improved, but at the cost of not delegating wakeups on task_prio. v2: Capture fence signaling state for error state and add comments to warm even the most cold of hearts. v3: Check if the request is still active before busywaiting v4: Reduce the amount of pointer misdirection with list_for_each_safe and using a local i915_request variable inside the loops v5: Add a missing pluralisation to a purely informative selftest message. References: 688e6c725816 ("drm/i915: Slaughter the thundering i915_wait_request herd") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190129205230.19056-2-chris@chris-wilson.co.uk
2019-01-30 04:52:29 +08:00
return __i915_request_has_started(rq);
}
/**
* i915_request_is_running - check if the request may actually be executing
* @rq: the request
*
* Returns true if the request is currently submitted to hardware, has passed
* its start point (i.e. the context is setup and not busywaiting). Note that
* it may no longer be running by the time the function returns!
*/
static inline bool i915_request_is_running(const struct i915_request *rq)
{
if (!i915_request_is_active(rq))
return false;
return __i915_request_has_started(rq);
}
static inline bool i915_request_completed(const struct i915_request *rq)
{
if (i915_request_signaled(rq))
return true;
return i915_seqno_passed(hwsp_seqno(rq), rq->fence.seqno);
}
static inline void i915_request_mark_complete(struct i915_request *rq)
{
rq->hwsp_seqno = (u32 *)&rq->fence.seqno; /* decouple from HWSP */
}
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-25 04:07:17 +08:00
bool i915_retire_requests(struct drm_i915_private *i915);
#endif /* I915_REQUEST_H */