linux/drivers/isdn/i4l/isdn_ppp.c

3046 lines
78 KiB
C
Raw Normal View History

/* $Id: isdn_ppp.c,v 1.1.2.3 2004/02/10 01:07:13 keil Exp $
*
* Linux ISDN subsystem, functions for synchronous PPP (linklevel).
*
* Copyright 1995,96 by Michael Hipp (Michael.Hipp@student.uni-tuebingen.de)
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
*/
#include <linux/isdn.h>
#include <linux/poll.h>
#include <linux/ppp-comp.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#ifdef CONFIG_IPPP_FILTER
#include <linux/filter.h>
#endif
#include "isdn_common.h"
#include "isdn_ppp.h"
#include "isdn_net.h"
#ifndef PPP_IPX
#define PPP_IPX 0x002b
#endif
/* Prototypes */
static int isdn_ppp_fill_rq(unsigned char *buf, int len, int proto, int slot);
static int isdn_ppp_closewait(int slot);
static void isdn_ppp_push_higher(isdn_net_dev *net_dev, isdn_net_local *lp,
struct sk_buff *skb, int proto);
static int isdn_ppp_if_get_unit(char *namebuf);
static int isdn_ppp_set_compressor(struct ippp_struct *is, struct isdn_ppp_comp_data *);
static struct sk_buff *isdn_ppp_decompress(struct sk_buff *,
struct ippp_struct *, struct ippp_struct *, int *proto);
static void isdn_ppp_receive_ccp(isdn_net_dev *net_dev, isdn_net_local *lp,
struct sk_buff *skb, int proto);
static struct sk_buff *isdn_ppp_compress(struct sk_buff *skb_in, int *proto,
struct ippp_struct *is, struct ippp_struct *master, int type);
static void isdn_ppp_send_ccp(isdn_net_dev *net_dev, isdn_net_local *lp,
struct sk_buff *skb);
/* New CCP stuff */
static void isdn_ppp_ccp_kickup(struct ippp_struct *is);
static void isdn_ppp_ccp_xmit_reset(struct ippp_struct *is, int proto,
unsigned char code, unsigned char id,
unsigned char *data, int len);
static struct ippp_ccp_reset *isdn_ppp_ccp_reset_alloc(struct ippp_struct *is);
static void isdn_ppp_ccp_reset_free(struct ippp_struct *is);
static void isdn_ppp_ccp_reset_free_state(struct ippp_struct *is,
unsigned char id);
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 05:43:17 +08:00
static void isdn_ppp_ccp_timer_callback(struct timer_list *t);
static struct ippp_ccp_reset_state *isdn_ppp_ccp_reset_alloc_state(struct ippp_struct *is,
unsigned char id);
static void isdn_ppp_ccp_reset_trans(struct ippp_struct *is,
struct isdn_ppp_resetparams *rp);
static void isdn_ppp_ccp_reset_ack_rcvd(struct ippp_struct *is,
unsigned char id);
#ifdef CONFIG_ISDN_MPP
static ippp_bundle *isdn_ppp_bundle_arr = NULL;
static int isdn_ppp_mp_bundle_array_init(void);
static int isdn_ppp_mp_init(isdn_net_local *lp, ippp_bundle *add_to);
static void isdn_ppp_mp_receive(isdn_net_dev *net_dev, isdn_net_local *lp,
struct sk_buff *skb);
static void isdn_ppp_mp_cleanup(isdn_net_local *lp);
static int isdn_ppp_bundle(struct ippp_struct *, int unit);
#endif /* CONFIG_ISDN_MPP */
char *isdn_ppp_revision = "$Revision: 1.1.2.3 $";
static struct ippp_struct *ippp_table[ISDN_MAX_CHANNELS];
static struct isdn_ppp_compressor *ipc_head = NULL;
/*
* frame log (debug)
*/
static void
isdn_ppp_frame_log(char *info, char *data, int len, int maxlen, int unit, int slot)
{
int cnt,
j,
i;
char buf[80];
if (len < maxlen)
maxlen = len;
for (i = 0, cnt = 0; cnt < maxlen; i++) {
for (j = 0; j < 16 && cnt < maxlen; j++, cnt++)
sprintf(buf + j * 3, "%02x ", (unsigned char)data[cnt]);
printk(KERN_DEBUG "[%d/%d].%s[%d]: %s\n", unit, slot, info, i, buf);
}
}
/*
* unbind isdn_net_local <=> ippp-device
* note: it can happen, that we hangup/free the master before the slaves
* in this case we bind another lp to the master device
*/
int
isdn_ppp_free(isdn_net_local *lp)
{
struct ippp_struct *is;
if (lp->ppp_slot < 0 || lp->ppp_slot >= ISDN_MAX_CHANNELS) {
printk(KERN_ERR "%s: ppp_slot(%d) out of range\n",
__func__, lp->ppp_slot);
return 0;
}
#ifdef CONFIG_ISDN_MPP
spin_lock(&lp->netdev->pb->lock);
#endif
isdn_net_rm_from_bundle(lp);
#ifdef CONFIG_ISDN_MPP
if (lp->netdev->pb->ref_ct == 1) /* last link in queue? */
isdn_ppp_mp_cleanup(lp);
lp->netdev->pb->ref_ct--;
spin_unlock(&lp->netdev->pb->lock);
#endif /* CONFIG_ISDN_MPP */
if (lp->ppp_slot < 0 || lp->ppp_slot >= ISDN_MAX_CHANNELS) {
printk(KERN_ERR "%s: ppp_slot(%d) now invalid\n",
__func__, lp->ppp_slot);
return 0;
}
is = ippp_table[lp->ppp_slot];
if ((is->state & IPPP_CONNECT))
isdn_ppp_closewait(lp->ppp_slot); /* force wakeup on ippp device */
else if (is->state & IPPP_ASSIGNED)
is->state = IPPP_OPEN; /* fallback to 'OPEN but not ASSIGNED' state */
if (is->debug & 0x1)
printk(KERN_DEBUG "isdn_ppp_free %d %lx %lx\n", lp->ppp_slot, (long) lp, (long) is->lp);
is->lp = NULL; /* link is down .. set lp to NULL */
lp->ppp_slot = -1; /* is this OK ?? */
return 0;
}
/*
* bind isdn_net_local <=> ippp-device
*
* This function is allways called with holding dev->lock so
* no additional lock is needed
*/
int
isdn_ppp_bind(isdn_net_local *lp)
{
int i;
int unit = 0;
struct ippp_struct *is;
int retval;
if (lp->pppbind < 0) { /* device bounded to ippp device ? */
isdn_net_dev *net_dev = dev->netdev;
char exclusive[ISDN_MAX_CHANNELS]; /* exclusive flags */
memset(exclusive, 0, ISDN_MAX_CHANNELS);
while (net_dev) { /* step through net devices to find exclusive minors */
isdn_net_local *lp = net_dev->local;
if (lp->pppbind >= 0)
exclusive[lp->pppbind] = 1;
net_dev = net_dev->next;
}
/*
* search a free device / slot
*/
for (i = 0; i < ISDN_MAX_CHANNELS; i++) {
if (ippp_table[i]->state == IPPP_OPEN && !exclusive[ippp_table[i]->minor]) { /* OPEN, but not connected! */
break;
}
}
} else {
for (i = 0; i < ISDN_MAX_CHANNELS; i++) {
if (ippp_table[i]->minor == lp->pppbind &&
(ippp_table[i]->state & IPPP_OPEN) == IPPP_OPEN)
break;
}
}
if (i >= ISDN_MAX_CHANNELS) {
printk(KERN_WARNING "isdn_ppp_bind: Can't find a (free) connection to the ipppd daemon.\n");
retval = -1;
goto out;
}
/* get unit number from interface name .. ugly! */
unit = isdn_ppp_if_get_unit(lp->netdev->dev->name);
if (unit < 0) {
printk(KERN_ERR "isdn_ppp_bind: illegal interface name %s.\n",
lp->netdev->dev->name);
retval = -1;
goto out;
}
lp->ppp_slot = i;
is = ippp_table[i];
is->lp = lp;
is->unit = unit;
is->state = IPPP_OPEN | IPPP_ASSIGNED; /* assigned to a netdevice but not connected */
#ifdef CONFIG_ISDN_MPP
retval = isdn_ppp_mp_init(lp, NULL);
if (retval < 0)
goto out;
#endif /* CONFIG_ISDN_MPP */
retval = lp->ppp_slot;
out:
return retval;
}
/*
* kick the ipppd on the device
* (wakes up daemon after B-channel connect)
*/
void
isdn_ppp_wakeup_daemon(isdn_net_local *lp)
{
if (lp->ppp_slot < 0 || lp->ppp_slot >= ISDN_MAX_CHANNELS) {
printk(KERN_ERR "%s: ppp_slot(%d) out of range\n",
__func__, lp->ppp_slot);
return;
}
ippp_table[lp->ppp_slot]->state = IPPP_OPEN | IPPP_CONNECT | IPPP_NOBLOCK;
wake_up_interruptible(&ippp_table[lp->ppp_slot]->wq);
}
/*
* there was a hangup on the netdevice
* force wakeup of the ippp device
* go into 'device waits for release' state
*/
static int
isdn_ppp_closewait(int slot)
{
struct ippp_struct *is;
if (slot < 0 || slot >= ISDN_MAX_CHANNELS) {
printk(KERN_ERR "%s: slot(%d) out of range\n",
__func__, slot);
return 0;
}
is = ippp_table[slot];
if (is->state)
wake_up_interruptible(&is->wq);
is->state = IPPP_CLOSEWAIT;
return 1;
}
/*
* isdn_ppp_find_slot / isdn_ppp_free_slot
*/
static int
isdn_ppp_get_slot(void)
{
int i;
for (i = 0; i < ISDN_MAX_CHANNELS; i++) {
if (!ippp_table[i]->state)
return i;
}
return -1;
}
/*
* isdn_ppp_open
*/
int
isdn_ppp_open(int min, struct file *file)
{
int slot;
struct ippp_struct *is;
if (min < 0 || min >= ISDN_MAX_CHANNELS)
return -ENODEV;
slot = isdn_ppp_get_slot();
if (slot < 0) {
return -EBUSY;
}
is = file->private_data = ippp_table[slot];
printk(KERN_DEBUG "ippp, open, slot: %d, minor: %d, state: %04x\n",
slot, min, is->state);
/* compression stuff */
is->link_compressor = is->compressor = NULL;
is->link_decompressor = is->decompressor = NULL;
is->link_comp_stat = is->comp_stat = NULL;
is->link_decomp_stat = is->decomp_stat = NULL;
is->compflags = 0;
is->reset = isdn_ppp_ccp_reset_alloc(is);
if (!is->reset)
return -ENOMEM;
is->lp = NULL;
is->mp_seqno = 0; /* MP sequence number */
is->pppcfg = 0; /* ppp configuration */
is->mpppcfg = 0; /* mppp configuration */
is->last_link_seqno = -1; /* MP: maybe set to Bundle-MIN, when joining a bundle ?? */
is->unit = -1; /* set, when we have our interface */
is->mru = 1524; /* MRU, default 1524 */
is->maxcid = 16; /* VJ: maxcid */
is->tk = current;
init_waitqueue_head(&is->wq);
is->first = is->rq + NUM_RCV_BUFFS - 1; /* receive queue */
is->last = is->rq;
is->minor = min;
#ifdef CONFIG_ISDN_PPP_VJ
/*
* VJ header compression init
*/
is->slcomp = slhc_init(16, 16); /* not necessary for 2. link in bundle */
if (IS_ERR(is->slcomp)) {
isdn_ppp_ccp_reset_free(is);
return PTR_ERR(is->slcomp);
}
#endif
#ifdef CONFIG_IPPP_FILTER
is->pass_filter = NULL;
is->active_filter = NULL;
#endif
is->state = IPPP_OPEN;
return 0;
}
/*
* release ippp device
*/
void
isdn_ppp_release(int min, struct file *file)
{
int i;
struct ippp_struct *is;
if (min < 0 || min >= ISDN_MAX_CHANNELS)
return;
is = file->private_data;
if (!is) {
printk(KERN_ERR "%s: no file->private_data\n", __func__);
return;
}
if (is->debug & 0x1)
printk(KERN_DEBUG "ippp: release, minor: %d %lx\n", min, (long) is->lp);
if (is->lp) { /* a lp address says: this link is still up */
isdn_net_dev *p = is->lp->netdev;
if (!p) {
printk(KERN_ERR "%s: no lp->netdev\n", __func__);
return;
}
is->state &= ~IPPP_CONNECT; /* -> effect: no call of wakeup */
/*
* isdn_net_hangup() calls isdn_ppp_free()
* isdn_ppp_free() sets is->lp to NULL and lp->ppp_slot to -1
* removing the IPPP_CONNECT flag omits calling of isdn_ppp_wakeup_daemon()
*/
isdn_net_hangup(p->dev);
}
for (i = 0; i < NUM_RCV_BUFFS; i++) {
kfree(is->rq[i].buf);
is->rq[i].buf = NULL;
}
is->first = is->rq + NUM_RCV_BUFFS - 1; /* receive queue */
is->last = is->rq;
#ifdef CONFIG_ISDN_PPP_VJ
/* TODO: if this was the previous master: link the slcomp to the new master */
slhc_free(is->slcomp);
is->slcomp = NULL;
#endif
#ifdef CONFIG_IPPP_FILTER
if (is->pass_filter) {
net: filter: split 'struct sk_filter' into socket and bpf parts clean up names related to socket filtering and bpf in the following way: - everything that deals with sockets keeps 'sk_*' prefix - everything that is pure BPF is changed to 'bpf_*' prefix split 'struct sk_filter' into struct sk_filter { atomic_t refcnt; struct rcu_head rcu; struct bpf_prog *prog; }; and struct bpf_prog { u32 jited:1, len:31; struct sock_fprog_kern *orig_prog; unsigned int (*bpf_func)(const struct sk_buff *skb, const struct bpf_insn *filter); union { struct sock_filter insns[0]; struct bpf_insn insnsi[0]; struct work_struct work; }; }; so that 'struct bpf_prog' can be used independent of sockets and cleans up 'unattached' bpf use cases split SK_RUN_FILTER macro into: SK_RUN_FILTER to be used with 'struct sk_filter *' and BPF_PROG_RUN to be used with 'struct bpf_prog *' __sk_filter_release(struct sk_filter *) gains __bpf_prog_release(struct bpf_prog *) helper function also perform related renames for the functions that work with 'struct bpf_prog *', since they're on the same lines: sk_filter_size -> bpf_prog_size sk_filter_select_runtime -> bpf_prog_select_runtime sk_filter_free -> bpf_prog_free sk_unattached_filter_create -> bpf_prog_create sk_unattached_filter_destroy -> bpf_prog_destroy sk_store_orig_filter -> bpf_prog_store_orig_filter sk_release_orig_filter -> bpf_release_orig_filter __sk_migrate_filter -> bpf_migrate_filter __sk_prepare_filter -> bpf_prepare_filter API for attaching classic BPF to a socket stays the same: sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *) and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program which is used by sockets, tun, af_packet API for 'unattached' BPF programs becomes: bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *) and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 11:34:16 +08:00
bpf_prog_destroy(is->pass_filter);
is->pass_filter = NULL;
}
if (is->active_filter) {
net: filter: split 'struct sk_filter' into socket and bpf parts clean up names related to socket filtering and bpf in the following way: - everything that deals with sockets keeps 'sk_*' prefix - everything that is pure BPF is changed to 'bpf_*' prefix split 'struct sk_filter' into struct sk_filter { atomic_t refcnt; struct rcu_head rcu; struct bpf_prog *prog; }; and struct bpf_prog { u32 jited:1, len:31; struct sock_fprog_kern *orig_prog; unsigned int (*bpf_func)(const struct sk_buff *skb, const struct bpf_insn *filter); union { struct sock_filter insns[0]; struct bpf_insn insnsi[0]; struct work_struct work; }; }; so that 'struct bpf_prog' can be used independent of sockets and cleans up 'unattached' bpf use cases split SK_RUN_FILTER macro into: SK_RUN_FILTER to be used with 'struct sk_filter *' and BPF_PROG_RUN to be used with 'struct bpf_prog *' __sk_filter_release(struct sk_filter *) gains __bpf_prog_release(struct bpf_prog *) helper function also perform related renames for the functions that work with 'struct bpf_prog *', since they're on the same lines: sk_filter_size -> bpf_prog_size sk_filter_select_runtime -> bpf_prog_select_runtime sk_filter_free -> bpf_prog_free sk_unattached_filter_create -> bpf_prog_create sk_unattached_filter_destroy -> bpf_prog_destroy sk_store_orig_filter -> bpf_prog_store_orig_filter sk_release_orig_filter -> bpf_release_orig_filter __sk_migrate_filter -> bpf_migrate_filter __sk_prepare_filter -> bpf_prepare_filter API for attaching classic BPF to a socket stays the same: sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *) and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program which is used by sockets, tun, af_packet API for 'unattached' BPF programs becomes: bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *) and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 11:34:16 +08:00
bpf_prog_destroy(is->active_filter);
is->active_filter = NULL;
}
#endif
/* TODO: if this was the previous master: link the stuff to the new master */
if (is->comp_stat)
is->compressor->free(is->comp_stat);
if (is->link_comp_stat)
is->link_compressor->free(is->link_comp_stat);
if (is->link_decomp_stat)
is->link_decompressor->free(is->link_decomp_stat);
if (is->decomp_stat)
is->decompressor->free(is->decomp_stat);
is->compressor = is->link_compressor = NULL;
is->decompressor = is->link_decompressor = NULL;
is->comp_stat = is->link_comp_stat = NULL;
is->decomp_stat = is->link_decomp_stat = NULL;
/* Clean up if necessary */
if (is->reset)
isdn_ppp_ccp_reset_free(is);
/* this slot is ready for new connections */
is->state = 0;
}
/*
* get_arg .. ioctl helper
*/
static int
get_arg(void __user *b, void *val, int len)
{
if (len <= 0)
len = sizeof(void *);
if (copy_from_user(val, b, len))
return -EFAULT;
return 0;
}
/*
* set arg .. ioctl helper
*/
static int
set_arg(void __user *b, void *val, int len)
{
if (len <= 0)
len = sizeof(void *);
if (copy_to_user(b, val, len))
return -EFAULT;
return 0;
}
#ifdef CONFIG_IPPP_FILTER
static int get_filter(void __user *arg, struct sock_filter **p)
{
struct sock_fprog uprog;
struct sock_filter *code = NULL;
net: ppp: don't call sk_chk_filter twice Commit 568f194e8bd16c353ad50f9ab95d98b20578a39d ("net: ppp: use sk_unattached_filter api") causes sk_chk_filter() to be called twice when setting a PPP pass or active filter. This applies to both the generic PPP subsystem implemented by drivers/net/ppp/ppp_generic.c and the ISDN PPP subsystem implemented by drivers/isdn/i4l/isdn_ppp.c. The first call is from within get_filter(). The second one is through the call chain ppp_ioctl() or isdn_ppp_ioctl() --> sk_unattached_filter_create() --> __sk_prepare_filter() --> sk_chk_filter() The first call from within get_filter() should be deleted as get_filter() is called just before calling sk_unattached_filter_create() later on, which eventually calls sk_chk_filter() anyway. For 3.15.x, this proposed change is a bugfix rather than a pure optimization as in that branch, sk_chk_filter() may replace filter codes by other codes which are not recognized when executing sk_chk_filter() a second time. So with 3.15.x, if sk_chk_filter() is called twice, the second invocation may yield EINVAL (this depends on the filter codes found in the filter to be set, but because the replacement is done for frequently used codes, this is almost always the case). The net effect is that setting pass and/or active PPP filters does not work anymore, since sk_unattached_filter_create() always returns EINVAL due to the second call to sk_chk_filter(), regardless whether the filter was originally sane or not. Signed-off-by: Christoph Schulz <develop@kristov.de> Acked-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-14 14:01:10 +08:00
int len;
if (copy_from_user(&uprog, arg, sizeof(uprog)))
return -EFAULT;
if (!uprog.len) {
*p = NULL;
return 0;
}
/* uprog.len is unsigned short, so no overflow here */
len = uprog.len * sizeof(struct sock_filter);
code = memdup_user(uprog.filter, len);
if (IS_ERR(code))
return PTR_ERR(code);
*p = code;
return uprog.len;
}
#endif /* CONFIG_IPPP_FILTER */
/*
* ippp device ioctl
*/
int
isdn_ppp_ioctl(int min, struct file *file, unsigned int cmd, unsigned long arg)
{
unsigned long val;
int r, i, j;
struct ippp_struct *is;
isdn_net_local *lp;
struct isdn_ppp_comp_data data;
void __user *argp = (void __user *)arg;
is = file->private_data;
lp = is->lp;
if (is->debug & 0x1)
printk(KERN_DEBUG "isdn_ppp_ioctl: minor: %d cmd: %x state: %x\n", min, cmd, is->state);
if (!(is->state & IPPP_OPEN))
return -EINVAL;
switch (cmd) {
case PPPIOCBUNDLE:
#ifdef CONFIG_ISDN_MPP
if (!(is->state & IPPP_CONNECT))
return -EINVAL;
if ((r = get_arg(argp, &val, sizeof(val))))
return r;
printk(KERN_DEBUG "iPPP-bundle: minor: %d, slave unit: %d, master unit: %d\n",
(int) min, (int) is->unit, (int) val);
return isdn_ppp_bundle(is, val);
#else
return -1;
#endif
break;
case PPPIOCGUNIT: /* get ppp/isdn unit number */
if ((r = set_arg(argp, &is->unit, sizeof(is->unit))))
return r;
break;
case PPPIOCGIFNAME:
if (!lp)
return -EINVAL;
if ((r = set_arg(argp, lp->netdev->dev->name,
strlen(lp->netdev->dev->name))))
return r;
break;
case PPPIOCGMPFLAGS: /* get configuration flags */
if ((r = set_arg(argp, &is->mpppcfg, sizeof(is->mpppcfg))))
return r;
break;
case PPPIOCSMPFLAGS: /* set configuration flags */
if ((r = get_arg(argp, &val, sizeof(val))))
return r;
is->mpppcfg = val;
break;
case PPPIOCGFLAGS: /* get configuration flags */
if ((r = set_arg(argp, &is->pppcfg, sizeof(is->pppcfg))))
return r;
break;
case PPPIOCSFLAGS: /* set configuration flags */
if ((r = get_arg(argp, &val, sizeof(val)))) {
return r;
}
if (val & SC_ENABLE_IP && !(is->pppcfg & SC_ENABLE_IP) && (is->state & IPPP_CONNECT)) {
if (lp) {
/* OK .. we are ready to send buffers */
is->pppcfg = val; /* isdn_ppp_xmit test for SC_ENABLE_IP !!! */
netif_wake_queue(lp->netdev->dev);
break;
}
}
is->pppcfg = val;
break;
case PPPIOCGIDLE: /* get idle time information */
if (lp) {
struct ppp_idle pidle;
pidle.xmit_idle = pidle.recv_idle = lp->huptimer;
if ((r = set_arg(argp, &pidle, sizeof(struct ppp_idle))))
return r;
}
break;
case PPPIOCSMRU: /* set receive unit size for PPP */
if ((r = get_arg(argp, &val, sizeof(val))))
return r;
is->mru = val;
break;
case PPPIOCSMPMRU:
break;
case PPPIOCSMPMTU:
break;
case PPPIOCSMAXCID: /* set the maximum compression slot id */
if ((r = get_arg(argp, &val, sizeof(val))))
return r;
val++;
if (is->maxcid != val) {
#ifdef CONFIG_ISDN_PPP_VJ
struct slcompress *sltmp;
#endif
if (is->debug & 0x1)
printk(KERN_DEBUG "ippp, ioctl: changed MAXCID to %ld\n", val);
is->maxcid = val;
#ifdef CONFIG_ISDN_PPP_VJ
sltmp = slhc_init(16, val);
if (IS_ERR(sltmp))
return PTR_ERR(sltmp);
if (is->slcomp)
slhc_free(is->slcomp);
is->slcomp = sltmp;
#endif
}
break;
case PPPIOCGDEBUG:
if ((r = set_arg(argp, &is->debug, sizeof(is->debug))))
return r;
break;
case PPPIOCSDEBUG:
if ((r = get_arg(argp, &val, sizeof(val))))
return r;
is->debug = val;
break;
case PPPIOCGCOMPRESSORS:
{
unsigned long protos[8] = {0,};
struct isdn_ppp_compressor *ipc = ipc_head;
while (ipc) {
j = ipc->num / (sizeof(long) * 8);
i = ipc->num % (sizeof(long) * 8);
if (j < 8)
protos[j] |= (1UL << i);
ipc = ipc->next;
}
if ((r = set_arg(argp, protos, 8 * sizeof(long))))
return r;
}
break;
case PPPIOCSCOMPRESSOR:
if ((r = get_arg(argp, &data, sizeof(struct isdn_ppp_comp_data))))
return r;
return isdn_ppp_set_compressor(is, &data);
case PPPIOCGCALLINFO:
{
struct pppcallinfo pci;
memset((char *)&pci, 0, sizeof(struct pppcallinfo));
if (lp)
{
strncpy(pci.local_num, lp->msn, 63);
if (lp->dial) {
strncpy(pci.remote_num, lp->dial->num, 63);
}
pci.charge_units = lp->charge;
if (lp->outgoing)
pci.calltype = CALLTYPE_OUTGOING;
else
pci.calltype = CALLTYPE_INCOMING;
if (lp->flags & ISDN_NET_CALLBACK)
pci.calltype |= CALLTYPE_CALLBACK;
}
return set_arg(argp, &pci, sizeof(struct pppcallinfo));
}
#ifdef CONFIG_IPPP_FILTER
case PPPIOCSPASS:
{
struct sock_fprog_kern fprog;
struct sock_filter *code;
int err, len = get_filter(argp, &code);
if (len < 0)
return len;
fprog.len = len;
fprog.filter = code;
net: ppp: fix creating PPP pass and active filters Commit 568f194e8bd16c353ad50f9ab95d98b20578a39d ("net: ppp: use sk_unattached_filter api") inadvertently changed the logic when setting PPP pass and active filters. This applies to both the generic PPP subsystem implemented by drivers/net/ppp/ppp_generic.c and the ISDN PPP subsystem implemented by drivers/isdn/i4l/isdn_ppp.c. The original code in ppp_ioctl() (or isdn_ppp_ioctl(), resp.) handling PPPIOCSPASS and PPPIOCSACTIVE allowed to remove a pass/active filter previously set by using a filter of length zero. However, with the new code this is not possible anymore as this case is not explicitly checked for, which leads to passing NULL as a filter to sk_unattached_filter_create(). This results in returning EINVAL to the caller. Additionally, the variables ppp->pass_filter and ppp->active_filter (or is->pass_filter and is->active_filter, resp.) are not reset to NULL, although the filters they point to may have been destroyed by sk_unattached_filter_destroy(), so in this EINVAL case dangling pointers are left behind (provided the pointers were previously non-NULL). This patch corrects both problems by checking whether the filter passed is empty or non-empty, and prevents sk_unattached_filter_create() from being called in the first case. Moreover, the pointers are always reset to NULL as soon as sk_unattached_filter_destroy() returns. Signed-off-by: Christoph Schulz <develop@kristov.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-17 04:10:29 +08:00
if (is->pass_filter) {
net: filter: split 'struct sk_filter' into socket and bpf parts clean up names related to socket filtering and bpf in the following way: - everything that deals with sockets keeps 'sk_*' prefix - everything that is pure BPF is changed to 'bpf_*' prefix split 'struct sk_filter' into struct sk_filter { atomic_t refcnt; struct rcu_head rcu; struct bpf_prog *prog; }; and struct bpf_prog { u32 jited:1, len:31; struct sock_fprog_kern *orig_prog; unsigned int (*bpf_func)(const struct sk_buff *skb, const struct bpf_insn *filter); union { struct sock_filter insns[0]; struct bpf_insn insnsi[0]; struct work_struct work; }; }; so that 'struct bpf_prog' can be used independent of sockets and cleans up 'unattached' bpf use cases split SK_RUN_FILTER macro into: SK_RUN_FILTER to be used with 'struct sk_filter *' and BPF_PROG_RUN to be used with 'struct bpf_prog *' __sk_filter_release(struct sk_filter *) gains __bpf_prog_release(struct bpf_prog *) helper function also perform related renames for the functions that work with 'struct bpf_prog *', since they're on the same lines: sk_filter_size -> bpf_prog_size sk_filter_select_runtime -> bpf_prog_select_runtime sk_filter_free -> bpf_prog_free sk_unattached_filter_create -> bpf_prog_create sk_unattached_filter_destroy -> bpf_prog_destroy sk_store_orig_filter -> bpf_prog_store_orig_filter sk_release_orig_filter -> bpf_release_orig_filter __sk_migrate_filter -> bpf_migrate_filter __sk_prepare_filter -> bpf_prepare_filter API for attaching classic BPF to a socket stays the same: sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *) and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program which is used by sockets, tun, af_packet API for 'unattached' BPF programs becomes: bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *) and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 11:34:16 +08:00
bpf_prog_destroy(is->pass_filter);
net: ppp: fix creating PPP pass and active filters Commit 568f194e8bd16c353ad50f9ab95d98b20578a39d ("net: ppp: use sk_unattached_filter api") inadvertently changed the logic when setting PPP pass and active filters. This applies to both the generic PPP subsystem implemented by drivers/net/ppp/ppp_generic.c and the ISDN PPP subsystem implemented by drivers/isdn/i4l/isdn_ppp.c. The original code in ppp_ioctl() (or isdn_ppp_ioctl(), resp.) handling PPPIOCSPASS and PPPIOCSACTIVE allowed to remove a pass/active filter previously set by using a filter of length zero. However, with the new code this is not possible anymore as this case is not explicitly checked for, which leads to passing NULL as a filter to sk_unattached_filter_create(). This results in returning EINVAL to the caller. Additionally, the variables ppp->pass_filter and ppp->active_filter (or is->pass_filter and is->active_filter, resp.) are not reset to NULL, although the filters they point to may have been destroyed by sk_unattached_filter_destroy(), so in this EINVAL case dangling pointers are left behind (provided the pointers were previously non-NULL). This patch corrects both problems by checking whether the filter passed is empty or non-empty, and prevents sk_unattached_filter_create() from being called in the first case. Moreover, the pointers are always reset to NULL as soon as sk_unattached_filter_destroy() returns. Signed-off-by: Christoph Schulz <develop@kristov.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-17 04:10:29 +08:00
is->pass_filter = NULL;
}
if (fprog.filter != NULL)
net: filter: split 'struct sk_filter' into socket and bpf parts clean up names related to socket filtering and bpf in the following way: - everything that deals with sockets keeps 'sk_*' prefix - everything that is pure BPF is changed to 'bpf_*' prefix split 'struct sk_filter' into struct sk_filter { atomic_t refcnt; struct rcu_head rcu; struct bpf_prog *prog; }; and struct bpf_prog { u32 jited:1, len:31; struct sock_fprog_kern *orig_prog; unsigned int (*bpf_func)(const struct sk_buff *skb, const struct bpf_insn *filter); union { struct sock_filter insns[0]; struct bpf_insn insnsi[0]; struct work_struct work; }; }; so that 'struct bpf_prog' can be used independent of sockets and cleans up 'unattached' bpf use cases split SK_RUN_FILTER macro into: SK_RUN_FILTER to be used with 'struct sk_filter *' and BPF_PROG_RUN to be used with 'struct bpf_prog *' __sk_filter_release(struct sk_filter *) gains __bpf_prog_release(struct bpf_prog *) helper function also perform related renames for the functions that work with 'struct bpf_prog *', since they're on the same lines: sk_filter_size -> bpf_prog_size sk_filter_select_runtime -> bpf_prog_select_runtime sk_filter_free -> bpf_prog_free sk_unattached_filter_create -> bpf_prog_create sk_unattached_filter_destroy -> bpf_prog_destroy sk_store_orig_filter -> bpf_prog_store_orig_filter sk_release_orig_filter -> bpf_release_orig_filter __sk_migrate_filter -> bpf_migrate_filter __sk_prepare_filter -> bpf_prepare_filter API for attaching classic BPF to a socket stays the same: sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *) and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program which is used by sockets, tun, af_packet API for 'unattached' BPF programs becomes: bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *) and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 11:34:16 +08:00
err = bpf_prog_create(&is->pass_filter, &fprog);
net: ppp: fix creating PPP pass and active filters Commit 568f194e8bd16c353ad50f9ab95d98b20578a39d ("net: ppp: use sk_unattached_filter api") inadvertently changed the logic when setting PPP pass and active filters. This applies to both the generic PPP subsystem implemented by drivers/net/ppp/ppp_generic.c and the ISDN PPP subsystem implemented by drivers/isdn/i4l/isdn_ppp.c. The original code in ppp_ioctl() (or isdn_ppp_ioctl(), resp.) handling PPPIOCSPASS and PPPIOCSACTIVE allowed to remove a pass/active filter previously set by using a filter of length zero. However, with the new code this is not possible anymore as this case is not explicitly checked for, which leads to passing NULL as a filter to sk_unattached_filter_create(). This results in returning EINVAL to the caller. Additionally, the variables ppp->pass_filter and ppp->active_filter (or is->pass_filter and is->active_filter, resp.) are not reset to NULL, although the filters they point to may have been destroyed by sk_unattached_filter_destroy(), so in this EINVAL case dangling pointers are left behind (provided the pointers were previously non-NULL). This patch corrects both problems by checking whether the filter passed is empty or non-empty, and prevents sk_unattached_filter_create() from being called in the first case. Moreover, the pointers are always reset to NULL as soon as sk_unattached_filter_destroy() returns. Signed-off-by: Christoph Schulz <develop@kristov.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-17 04:10:29 +08:00
else
err = 0;
kfree(code);
return err;
}
case PPPIOCSACTIVE:
{
struct sock_fprog_kern fprog;
struct sock_filter *code;
int err, len = get_filter(argp, &code);
if (len < 0)
return len;
fprog.len = len;
fprog.filter = code;
net: ppp: fix creating PPP pass and active filters Commit 568f194e8bd16c353ad50f9ab95d98b20578a39d ("net: ppp: use sk_unattached_filter api") inadvertently changed the logic when setting PPP pass and active filters. This applies to both the generic PPP subsystem implemented by drivers/net/ppp/ppp_generic.c and the ISDN PPP subsystem implemented by drivers/isdn/i4l/isdn_ppp.c. The original code in ppp_ioctl() (or isdn_ppp_ioctl(), resp.) handling PPPIOCSPASS and PPPIOCSACTIVE allowed to remove a pass/active filter previously set by using a filter of length zero. However, with the new code this is not possible anymore as this case is not explicitly checked for, which leads to passing NULL as a filter to sk_unattached_filter_create(). This results in returning EINVAL to the caller. Additionally, the variables ppp->pass_filter and ppp->active_filter (or is->pass_filter and is->active_filter, resp.) are not reset to NULL, although the filters they point to may have been destroyed by sk_unattached_filter_destroy(), so in this EINVAL case dangling pointers are left behind (provided the pointers were previously non-NULL). This patch corrects both problems by checking whether the filter passed is empty or non-empty, and prevents sk_unattached_filter_create() from being called in the first case. Moreover, the pointers are always reset to NULL as soon as sk_unattached_filter_destroy() returns. Signed-off-by: Christoph Schulz <develop@kristov.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-17 04:10:29 +08:00
if (is->active_filter) {
net: filter: split 'struct sk_filter' into socket and bpf parts clean up names related to socket filtering and bpf in the following way: - everything that deals with sockets keeps 'sk_*' prefix - everything that is pure BPF is changed to 'bpf_*' prefix split 'struct sk_filter' into struct sk_filter { atomic_t refcnt; struct rcu_head rcu; struct bpf_prog *prog; }; and struct bpf_prog { u32 jited:1, len:31; struct sock_fprog_kern *orig_prog; unsigned int (*bpf_func)(const struct sk_buff *skb, const struct bpf_insn *filter); union { struct sock_filter insns[0]; struct bpf_insn insnsi[0]; struct work_struct work; }; }; so that 'struct bpf_prog' can be used independent of sockets and cleans up 'unattached' bpf use cases split SK_RUN_FILTER macro into: SK_RUN_FILTER to be used with 'struct sk_filter *' and BPF_PROG_RUN to be used with 'struct bpf_prog *' __sk_filter_release(struct sk_filter *) gains __bpf_prog_release(struct bpf_prog *) helper function also perform related renames for the functions that work with 'struct bpf_prog *', since they're on the same lines: sk_filter_size -> bpf_prog_size sk_filter_select_runtime -> bpf_prog_select_runtime sk_filter_free -> bpf_prog_free sk_unattached_filter_create -> bpf_prog_create sk_unattached_filter_destroy -> bpf_prog_destroy sk_store_orig_filter -> bpf_prog_store_orig_filter sk_release_orig_filter -> bpf_release_orig_filter __sk_migrate_filter -> bpf_migrate_filter __sk_prepare_filter -> bpf_prepare_filter API for attaching classic BPF to a socket stays the same: sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *) and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program which is used by sockets, tun, af_packet API for 'unattached' BPF programs becomes: bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *) and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 11:34:16 +08:00
bpf_prog_destroy(is->active_filter);
net: ppp: fix creating PPP pass and active filters Commit 568f194e8bd16c353ad50f9ab95d98b20578a39d ("net: ppp: use sk_unattached_filter api") inadvertently changed the logic when setting PPP pass and active filters. This applies to both the generic PPP subsystem implemented by drivers/net/ppp/ppp_generic.c and the ISDN PPP subsystem implemented by drivers/isdn/i4l/isdn_ppp.c. The original code in ppp_ioctl() (or isdn_ppp_ioctl(), resp.) handling PPPIOCSPASS and PPPIOCSACTIVE allowed to remove a pass/active filter previously set by using a filter of length zero. However, with the new code this is not possible anymore as this case is not explicitly checked for, which leads to passing NULL as a filter to sk_unattached_filter_create(). This results in returning EINVAL to the caller. Additionally, the variables ppp->pass_filter and ppp->active_filter (or is->pass_filter and is->active_filter, resp.) are not reset to NULL, although the filters they point to may have been destroyed by sk_unattached_filter_destroy(), so in this EINVAL case dangling pointers are left behind (provided the pointers were previously non-NULL). This patch corrects both problems by checking whether the filter passed is empty or non-empty, and prevents sk_unattached_filter_create() from being called in the first case. Moreover, the pointers are always reset to NULL as soon as sk_unattached_filter_destroy() returns. Signed-off-by: Christoph Schulz <develop@kristov.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-17 04:10:29 +08:00
is->active_filter = NULL;
}
if (fprog.filter != NULL)
net: filter: split 'struct sk_filter' into socket and bpf parts clean up names related to socket filtering and bpf in the following way: - everything that deals with sockets keeps 'sk_*' prefix - everything that is pure BPF is changed to 'bpf_*' prefix split 'struct sk_filter' into struct sk_filter { atomic_t refcnt; struct rcu_head rcu; struct bpf_prog *prog; }; and struct bpf_prog { u32 jited:1, len:31; struct sock_fprog_kern *orig_prog; unsigned int (*bpf_func)(const struct sk_buff *skb, const struct bpf_insn *filter); union { struct sock_filter insns[0]; struct bpf_insn insnsi[0]; struct work_struct work; }; }; so that 'struct bpf_prog' can be used independent of sockets and cleans up 'unattached' bpf use cases split SK_RUN_FILTER macro into: SK_RUN_FILTER to be used with 'struct sk_filter *' and BPF_PROG_RUN to be used with 'struct bpf_prog *' __sk_filter_release(struct sk_filter *) gains __bpf_prog_release(struct bpf_prog *) helper function also perform related renames for the functions that work with 'struct bpf_prog *', since they're on the same lines: sk_filter_size -> bpf_prog_size sk_filter_select_runtime -> bpf_prog_select_runtime sk_filter_free -> bpf_prog_free sk_unattached_filter_create -> bpf_prog_create sk_unattached_filter_destroy -> bpf_prog_destroy sk_store_orig_filter -> bpf_prog_store_orig_filter sk_release_orig_filter -> bpf_release_orig_filter __sk_migrate_filter -> bpf_migrate_filter __sk_prepare_filter -> bpf_prepare_filter API for attaching classic BPF to a socket stays the same: sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *) and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program which is used by sockets, tun, af_packet API for 'unattached' BPF programs becomes: bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *) and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 11:34:16 +08:00
err = bpf_prog_create(&is->active_filter, &fprog);
net: ppp: fix creating PPP pass and active filters Commit 568f194e8bd16c353ad50f9ab95d98b20578a39d ("net: ppp: use sk_unattached_filter api") inadvertently changed the logic when setting PPP pass and active filters. This applies to both the generic PPP subsystem implemented by drivers/net/ppp/ppp_generic.c and the ISDN PPP subsystem implemented by drivers/isdn/i4l/isdn_ppp.c. The original code in ppp_ioctl() (or isdn_ppp_ioctl(), resp.) handling PPPIOCSPASS and PPPIOCSACTIVE allowed to remove a pass/active filter previously set by using a filter of length zero. However, with the new code this is not possible anymore as this case is not explicitly checked for, which leads to passing NULL as a filter to sk_unattached_filter_create(). This results in returning EINVAL to the caller. Additionally, the variables ppp->pass_filter and ppp->active_filter (or is->pass_filter and is->active_filter, resp.) are not reset to NULL, although the filters they point to may have been destroyed by sk_unattached_filter_destroy(), so in this EINVAL case dangling pointers are left behind (provided the pointers were previously non-NULL). This patch corrects both problems by checking whether the filter passed is empty or non-empty, and prevents sk_unattached_filter_create() from being called in the first case. Moreover, the pointers are always reset to NULL as soon as sk_unattached_filter_destroy() returns. Signed-off-by: Christoph Schulz <develop@kristov.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-17 04:10:29 +08:00
else
err = 0;
kfree(code);
return err;
}
#endif /* CONFIG_IPPP_FILTER */
default:
break;
}
return 0;
}
__poll_t
isdn_ppp_poll(struct file *file, poll_table *wait)
{
__poll_t mask;
struct ippp_buf_queue *bf, *bl;
u_long flags;
struct ippp_struct *is;
is = file->private_data;
if (is->debug & 0x2)
printk(KERN_DEBUG "isdn_ppp_poll: minor: %d\n",
iminor(file_inode(file)));
/* just registers wait_queue hook. This doesn't really wait. */
poll_wait(file, &is->wq, wait);
if (!(is->state & IPPP_OPEN)) {
if (is->state == IPPP_CLOSEWAIT)
return EPOLLHUP;
printk(KERN_DEBUG "isdn_ppp: device not open\n");
return EPOLLERR;
}
/* we're always ready to send .. */
mask = EPOLLOUT | EPOLLWRNORM;
spin_lock_irqsave(&is->buflock, flags);
bl = is->last;
bf = is->first;
/*
* if IPPP_NOBLOCK is set we return even if we have nothing to read
*/
if (bf->next != bl || (is->state & IPPP_NOBLOCK)) {
is->state &= ~IPPP_NOBLOCK;
mask |= EPOLLIN | EPOLLRDNORM;
}
spin_unlock_irqrestore(&is->buflock, flags);
return mask;
}
/*
* fill up isdn_ppp_read() queue ..
*/
static int
isdn_ppp_fill_rq(unsigned char *buf, int len, int proto, int slot)
{
struct ippp_buf_queue *bf, *bl;
u_long flags;
u_char *nbuf;
struct ippp_struct *is;
if (slot < 0 || slot >= ISDN_MAX_CHANNELS) {
printk(KERN_WARNING "ippp: illegal slot(%d).\n", slot);
return 0;
}
is = ippp_table[slot];
if (!(is->state & IPPP_CONNECT)) {
printk(KERN_DEBUG "ippp: device not activated.\n");
return 0;
}
[PATCH] getting rid of all casts of k[cmz]alloc() calls Run this: #!/bin/sh for f in $(grep -Erl "\([^\)]*\) *k[cmz]alloc" *) ; do echo "De-casting $f..." perl -pi -e "s/ ?= ?\([^\)]*\) *(k[cmz]alloc) *\(/ = \1\(/" $f done And then go through and reinstate those cases where code is casting pointers to non-pointers. And then drop a few hunks which conflicted with outstanding work. Cc: Russell King <rmk@arm.linux.org.uk>, Ian Molton <spyro@f2s.com> Cc: Mikael Starvik <starvik@axis.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Greg KH <greg@kroah.com> Cc: Jens Axboe <jens.axboe@oracle.com> Cc: Paul Fulghum <paulkf@microgate.com> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Cc: Karsten Keil <kkeil@suse.de> Cc: Mauro Carvalho Chehab <mchehab@infradead.org> Cc: Jeff Garzik <jeff@garzik.org> Cc: James Bottomley <James.Bottomley@steeleye.com> Cc: Ian Kent <raven@themaw.net> Cc: Steven French <sfrench@us.ibm.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Neil Brown <neilb@cse.unsw.edu.au> Cc: Jaroslav Kysela <perex@suse.cz> Cc: Takashi Iwai <tiwai@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-13 16:35:56 +08:00
nbuf = kmalloc(len + 4, GFP_ATOMIC);
if (!nbuf) {
printk(KERN_WARNING "ippp: Can't alloc buf\n");
return 0;
}
nbuf[0] = PPP_ALLSTATIONS;
nbuf[1] = PPP_UI;
nbuf[2] = proto >> 8;
nbuf[3] = proto & 0xff;
memcpy(nbuf + 4, buf, len);
spin_lock_irqsave(&is->buflock, flags);
bf = is->first;
bl = is->last;
if (bf == bl) {
printk(KERN_WARNING "ippp: Queue is full; discarding first buffer\n");
bf = bf->next;
kfree(bf->buf);
is->first = bf;
}
bl->buf = (char *) nbuf;
bl->len = len + 4;
is->last = bl->next;
spin_unlock_irqrestore(&is->buflock, flags);
wake_up_interruptible(&is->wq);
return len;
}
/*
* read() .. non-blocking: ipppd calls it only after select()
* reports, that there is data
*/
int
isdn_ppp_read(int min, struct file *file, char __user *buf, int count)
{
struct ippp_struct *is;
struct ippp_buf_queue *b;
u_long flags;
u_char *save_buf;
is = file->private_data;
if (!(is->state & IPPP_OPEN))
return 0;
spin_lock_irqsave(&is->buflock, flags);
b = is->first->next;
save_buf = b->buf;
if (!save_buf) {
spin_unlock_irqrestore(&is->buflock, flags);
return -EAGAIN;
}
if (b->len < count)
count = b->len;
b->buf = NULL;
is->first = b;
spin_unlock_irqrestore(&is->buflock, flags);
if (copy_to_user(buf, save_buf, count))
count = -EFAULT;
kfree(save_buf);
return count;
}
/*
* ipppd wanna write a packet to the card .. non-blocking
*/
int
isdn_ppp_write(int min, struct file *file, const char __user *buf, int count)
{
isdn_net_local *lp;
struct ippp_struct *is;
int proto;
is = file->private_data;
if (!(is->state & IPPP_CONNECT))
return 0;
lp = is->lp;
/* -> push it directly to the lowlevel interface */
if (!lp)
printk(KERN_DEBUG "isdn_ppp_write: lp == NULL\n");
else {
if (lp->isdn_device < 0 || lp->isdn_channel < 0) {
unsigned char protobuf[4];
/*
* Don't reset huptimer for
* LCP packets. (Echo requests).
*/
if (copy_from_user(protobuf, buf, 4))
return -EFAULT;
proto = PPP_PROTOCOL(protobuf);
if (proto != PPP_LCP)
lp->huptimer = 0;
return 0;
}
if ((dev->drv[lp->isdn_device]->flags & DRV_FLAG_RUNNING) &&
lp->dialstate == 0 &&
(lp->flags & ISDN_NET_CONNECTED)) {
unsigned short hl;
struct sk_buff *skb;
unsigned char *cpy_buf;
/*
* we need to reserve enough space in front of
* sk_buff. old call to dev_alloc_skb only reserved
* 16 bytes, now we are looking what the driver want
*/
hl = dev->drv[lp->isdn_device]->interface->hl_hdrlen;
skb = alloc_skb(hl + count, GFP_ATOMIC);
if (!skb) {
printk(KERN_WARNING "isdn_ppp_write: out of memory!\n");
return count;
}
skb_reserve(skb, hl);
cpy_buf = skb_put(skb, count);
if (copy_from_user(cpy_buf, buf, count))
{
kfree_skb(skb);
return -EFAULT;
}
/*
* Don't reset huptimer for
* LCP packets. (Echo requests).
*/
proto = PPP_PROTOCOL(cpy_buf);
if (proto != PPP_LCP)
lp->huptimer = 0;
if (is->debug & 0x40) {
printk(KERN_DEBUG "ppp xmit: len %d\n", (int) skb->len);
isdn_ppp_frame_log("xmit", skb->data, skb->len, 32, is->unit, lp->ppp_slot);
}
isdn_ppp_send_ccp(lp->netdev, lp, skb); /* keeps CCP/compression states in sync */
isdn_net_write_super(lp, skb);
}
}
return count;
}
/*
* init memory, structures etc.
*/
int
isdn_ppp_init(void)
{
int i,
j;
#ifdef CONFIG_ISDN_MPP
if (isdn_ppp_mp_bundle_array_init() < 0)
return -ENOMEM;
#endif /* CONFIG_ISDN_MPP */
for (i = 0; i < ISDN_MAX_CHANNELS; i++) {
if (!(ippp_table[i] = kzalloc(sizeof(struct ippp_struct), GFP_KERNEL))) {
printk(KERN_WARNING "isdn_ppp_init: Could not alloc ippp_table\n");
for (j = 0; j < i; j++)
kfree(ippp_table[j]);
return -1;
}
spin_lock_init(&ippp_table[i]->buflock);
ippp_table[i]->state = 0;
ippp_table[i]->first = ippp_table[i]->rq + NUM_RCV_BUFFS - 1;
ippp_table[i]->last = ippp_table[i]->rq;
for (j = 0; j < NUM_RCV_BUFFS; j++) {
ippp_table[i]->rq[j].buf = NULL;
ippp_table[i]->rq[j].last = ippp_table[i]->rq +
(NUM_RCV_BUFFS + j - 1) % NUM_RCV_BUFFS;
ippp_table[i]->rq[j].next = ippp_table[i]->rq + (j + 1) % NUM_RCV_BUFFS;
}
}
return 0;
}
void
isdn_ppp_cleanup(void)
{
int i;
for (i = 0; i < ISDN_MAX_CHANNELS; i++)
kfree(ippp_table[i]);
#ifdef CONFIG_ISDN_MPP
kfree(isdn_ppp_bundle_arr);
#endif /* CONFIG_ISDN_MPP */
}
/*
* check for address/control field and skip if allowed
* retval != 0 -> discard packet silently
*/
static int isdn_ppp_skip_ac(struct ippp_struct *is, struct sk_buff *skb)
{
if (skb->len < 1)
return -1;
if (skb->data[0] == 0xff) {
if (skb->len < 2)
return -1;
if (skb->data[1] != 0x03)
return -1;
// skip address/control (AC) field
skb_pull(skb, 2);
} else {
if (is->pppcfg & SC_REJ_COMP_AC)
// if AC compression was not negotiated, but used, discard packet
return -1;
}
return 0;
}
/*
* get the PPP protocol header and pull skb
* retval < 0 -> discard packet silently
*/
static int isdn_ppp_strip_proto(struct sk_buff *skb)
{
int proto;
if (skb->len < 1)
return -1;
if (skb->data[0] & 0x1) {
// protocol field is compressed
proto = skb->data[0];
skb_pull(skb, 1);
} else {
if (skb->len < 2)
return -1;
proto = ((int) skb->data[0] << 8) + skb->data[1];
skb_pull(skb, 2);
}
return proto;
}
/*
* handler for incoming packets on a syncPPP interface
*/
void isdn_ppp_receive(isdn_net_dev *net_dev, isdn_net_local *lp, struct sk_buff *skb)
{
struct ippp_struct *is;
int slot;
int proto;
BUG_ON(net_dev->local->master); // we're called with the master device always
slot = lp->ppp_slot;
if (slot < 0 || slot >= ISDN_MAX_CHANNELS) {
printk(KERN_ERR "isdn_ppp_receive: lp->ppp_slot(%d)\n",
lp->ppp_slot);
kfree_skb(skb);
return;
}
is = ippp_table[slot];
if (is->debug & 0x4) {
printk(KERN_DEBUG "ippp_receive: is:%08lx lp:%08lx slot:%d unit:%d len:%d\n",
(long)is, (long)lp, lp->ppp_slot, is->unit, (int)skb->len);
isdn_ppp_frame_log("receive", skb->data, skb->len, 32, is->unit, lp->ppp_slot);
}
if (isdn_ppp_skip_ac(is, skb) < 0) {
kfree_skb(skb);
return;
}
proto = isdn_ppp_strip_proto(skb);
if (proto < 0) {
kfree_skb(skb);
return;
}
#ifdef CONFIG_ISDN_MPP
if (is->compflags & SC_LINK_DECOMP_ON) {
skb = isdn_ppp_decompress(skb, is, NULL, &proto);
if (!skb) // decompression error
return;
}
if (!(is->mpppcfg & SC_REJ_MP_PROT)) { // we agreed to receive MPPP
if (proto == PPP_MP) {
isdn_ppp_mp_receive(net_dev, lp, skb);
return;
}
}
#endif
isdn_ppp_push_higher(net_dev, lp, skb, proto);
}
/*
* we receive a reassembled frame, MPPP has been taken care of before.
* address/control and protocol have been stripped from the skb
* note: net_dev has to be master net_dev
*/
static void
isdn_ppp_push_higher(isdn_net_dev *net_dev, isdn_net_local *lp, struct sk_buff *skb, int proto)
{
struct net_device *dev = net_dev->dev;
struct ippp_struct *is, *mis;
isdn_net_local *mlp = NULL;
int slot;
slot = lp->ppp_slot;
if (slot < 0 || slot >= ISDN_MAX_CHANNELS) {
printk(KERN_ERR "isdn_ppp_push_higher: lp->ppp_slot(%d)\n",
lp->ppp_slot);
goto drop_packet;
}
is = ippp_table[slot];
if (lp->master) { // FIXME?
mlp = ISDN_MASTER_PRIV(lp);
slot = mlp->ppp_slot;
if (slot < 0 || slot >= ISDN_MAX_CHANNELS) {
printk(KERN_ERR "isdn_ppp_push_higher: master->ppp_slot(%d)\n",
lp->ppp_slot);
goto drop_packet;
}
}
mis = ippp_table[slot];
if (is->debug & 0x10) {
printk(KERN_DEBUG "push, skb %d %04x\n", (int) skb->len, proto);
isdn_ppp_frame_log("rpush", skb->data, skb->len, 32, is->unit, lp->ppp_slot);
}
if (mis->compflags & SC_DECOMP_ON) {
skb = isdn_ppp_decompress(skb, is, mis, &proto);
if (!skb) // decompression error
return;
}
switch (proto) {
case PPP_IPX: /* untested */
if (is->debug & 0x20)
printk(KERN_DEBUG "isdn_ppp: IPX\n");
skb->protocol = htons(ETH_P_IPX);
break;
case PPP_IP:
if (is->debug & 0x20)
printk(KERN_DEBUG "isdn_ppp: IP\n");
skb->protocol = htons(ETH_P_IP);
break;
case PPP_COMP:
case PPP_COMPFRAG:
printk(KERN_INFO "isdn_ppp: unexpected compressed frame dropped\n");
goto drop_packet;
#ifdef CONFIG_ISDN_PPP_VJ
case PPP_VJC_UNCOMP:
if (is->debug & 0x20)
printk(KERN_DEBUG "isdn_ppp: VJC_UNCOMP\n");
if (net_dev->local->ppp_slot < 0) {
printk(KERN_ERR "%s: net_dev->local->ppp_slot(%d) out of range\n",
__func__, net_dev->local->ppp_slot);
goto drop_packet;
}
if (slhc_remember(ippp_table[net_dev->local->ppp_slot]->slcomp, skb->data, skb->len) <= 0) {
printk(KERN_WARNING "isdn_ppp: received illegal VJC_UNCOMP frame!\n");
goto drop_packet;
}
skb->protocol = htons(ETH_P_IP);
break;
case PPP_VJC_COMP:
if (is->debug & 0x20)
printk(KERN_DEBUG "isdn_ppp: VJC_COMP\n");
{
struct sk_buff *skb_old = skb;
int pkt_len;
skb = dev_alloc_skb(skb_old->len + 128);
if (!skb) {
printk(KERN_WARNING "%s: Memory squeeze, dropping packet.\n", dev->name);
skb = skb_old;
goto drop_packet;
}
skb_put(skb, skb_old->len + 128);
skb_copy_from_linear_data(skb_old, skb->data,
skb_old->len);
if (net_dev->local->ppp_slot < 0) {
printk(KERN_ERR "%s: net_dev->local->ppp_slot(%d) out of range\n",
__func__, net_dev->local->ppp_slot);
goto drop_packet;
}
pkt_len = slhc_uncompress(ippp_table[net_dev->local->ppp_slot]->slcomp,
skb->data, skb_old->len);
kfree_skb(skb_old);
if (pkt_len < 0)
goto drop_packet;
skb_trim(skb, pkt_len);
skb->protocol = htons(ETH_P_IP);
}
break;
#endif
case PPP_CCP:
case PPP_CCPFRAG:
isdn_ppp_receive_ccp(net_dev, lp, skb, proto);
/* Dont pop up ResetReq/Ack stuff to the daemon any
longer - the job is done already */
if (skb->data[0] == CCP_RESETREQ ||
skb->data[0] == CCP_RESETACK)
break;
/* fall through */
default:
isdn_ppp_fill_rq(skb->data, skb->len, proto, lp->ppp_slot); /* push data to pppd device */
kfree_skb(skb);
return;
}
#ifdef CONFIG_IPPP_FILTER
/* check if the packet passes the pass and active filters
* the filter instructions are constructed assuming
* a four-byte PPP header on each packet (which is still present) */
skb_push(skb, 4);
{
u_int16_t *p = (u_int16_t *) skb->data;
*p = 0; /* indicate inbound */
}
if (is->pass_filter
net: filter: split 'struct sk_filter' into socket and bpf parts clean up names related to socket filtering and bpf in the following way: - everything that deals with sockets keeps 'sk_*' prefix - everything that is pure BPF is changed to 'bpf_*' prefix split 'struct sk_filter' into struct sk_filter { atomic_t refcnt; struct rcu_head rcu; struct bpf_prog *prog; }; and struct bpf_prog { u32 jited:1, len:31; struct sock_fprog_kern *orig_prog; unsigned int (*bpf_func)(const struct sk_buff *skb, const struct bpf_insn *filter); union { struct sock_filter insns[0]; struct bpf_insn insnsi[0]; struct work_struct work; }; }; so that 'struct bpf_prog' can be used independent of sockets and cleans up 'unattached' bpf use cases split SK_RUN_FILTER macro into: SK_RUN_FILTER to be used with 'struct sk_filter *' and BPF_PROG_RUN to be used with 'struct bpf_prog *' __sk_filter_release(struct sk_filter *) gains __bpf_prog_release(struct bpf_prog *) helper function also perform related renames for the functions that work with 'struct bpf_prog *', since they're on the same lines: sk_filter_size -> bpf_prog_size sk_filter_select_runtime -> bpf_prog_select_runtime sk_filter_free -> bpf_prog_free sk_unattached_filter_create -> bpf_prog_create sk_unattached_filter_destroy -> bpf_prog_destroy sk_store_orig_filter -> bpf_prog_store_orig_filter sk_release_orig_filter -> bpf_release_orig_filter __sk_migrate_filter -> bpf_migrate_filter __sk_prepare_filter -> bpf_prepare_filter API for attaching classic BPF to a socket stays the same: sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *) and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program which is used by sockets, tun, af_packet API for 'unattached' BPF programs becomes: bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *) and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 11:34:16 +08:00
&& BPF_PROG_RUN(is->pass_filter, skb) == 0) {
if (is->debug & 0x2)
printk(KERN_DEBUG "IPPP: inbound frame filtered.\n");
kfree_skb(skb);
return;
}
if (!(is->active_filter
net: filter: split 'struct sk_filter' into socket and bpf parts clean up names related to socket filtering and bpf in the following way: - everything that deals with sockets keeps 'sk_*' prefix - everything that is pure BPF is changed to 'bpf_*' prefix split 'struct sk_filter' into struct sk_filter { atomic_t refcnt; struct rcu_head rcu; struct bpf_prog *prog; }; and struct bpf_prog { u32 jited:1, len:31; struct sock_fprog_kern *orig_prog; unsigned int (*bpf_func)(const struct sk_buff *skb, const struct bpf_insn *filter); union { struct sock_filter insns[0]; struct bpf_insn insnsi[0]; struct work_struct work; }; }; so that 'struct bpf_prog' can be used independent of sockets and cleans up 'unattached' bpf use cases split SK_RUN_FILTER macro into: SK_RUN_FILTER to be used with 'struct sk_filter *' and BPF_PROG_RUN to be used with 'struct bpf_prog *' __sk_filter_release(struct sk_filter *) gains __bpf_prog_release(struct bpf_prog *) helper function also perform related renames for the functions that work with 'struct bpf_prog *', since they're on the same lines: sk_filter_size -> bpf_prog_size sk_filter_select_runtime -> bpf_prog_select_runtime sk_filter_free -> bpf_prog_free sk_unattached_filter_create -> bpf_prog_create sk_unattached_filter_destroy -> bpf_prog_destroy sk_store_orig_filter -> bpf_prog_store_orig_filter sk_release_orig_filter -> bpf_release_orig_filter __sk_migrate_filter -> bpf_migrate_filter __sk_prepare_filter -> bpf_prepare_filter API for attaching classic BPF to a socket stays the same: sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *) and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program which is used by sockets, tun, af_packet API for 'unattached' BPF programs becomes: bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *) and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 11:34:16 +08:00
&& BPF_PROG_RUN(is->active_filter, skb) == 0)) {
if (is->debug & 0x2)
printk(KERN_DEBUG "IPPP: link-active filter: resetting huptimer.\n");
lp->huptimer = 0;
if (mlp)
mlp->huptimer = 0;
}
skb_pull(skb, 4);
#else /* CONFIG_IPPP_FILTER */
lp->huptimer = 0;
if (mlp)
mlp->huptimer = 0;
#endif /* CONFIG_IPPP_FILTER */
skb->dev = dev;
skb_reset_mac_header(skb);
netif_rx(skb);
/* net_dev->local->stats.rx_packets++; done in isdn_net.c */
return;
drop_packet:
net_dev->local->stats.rx_dropped++;
kfree_skb(skb);
}
/*
* isdn_ppp_skb_push ..
* checks whether we have enough space at the beginning of the skb
* and allocs a new SKB if necessary
*/
static unsigned char *isdn_ppp_skb_push(struct sk_buff **skb_p, int len)
{
struct sk_buff *skb = *skb_p;
if (skb_headroom(skb) < len) {
struct sk_buff *nskb = skb_realloc_headroom(skb, len);
if (!nskb) {
printk(KERN_ERR "isdn_ppp_skb_push: can't realloc headroom!\n");
dev_kfree_skb(skb);
return NULL;
}
printk(KERN_DEBUG "isdn_ppp_skb_push:under %d %d\n", skb_headroom(skb), len);
dev_kfree_skb(skb);
*skb_p = nskb;
return skb_push(nskb, len);
}
return skb_push(skb, len);
}
/*
* send ppp frame .. we expect a PIDCOMPressable proto --
* (here: currently always PPP_IP,PPP_VJC_COMP,PPP_VJC_UNCOMP)
*
* VJ compression may change skb pointer!!! .. requeue with old
* skb isn't allowed!!
*/
int
isdn_ppp_xmit(struct sk_buff *skb, struct net_device *netdev)
{
isdn_net_local *lp, *mlp;
isdn_net_dev *nd;
unsigned int proto = PPP_IP; /* 0x21 */
struct ippp_struct *ipt, *ipts;
int slot, retval = NETDEV_TX_OK;
mlp = netdev_priv(netdev);
nd = mlp->netdev; /* get master lp */
slot = mlp->ppp_slot;
if (slot < 0 || slot >= ISDN_MAX_CHANNELS) {
printk(KERN_ERR "isdn_ppp_xmit: lp->ppp_slot(%d)\n",
mlp->ppp_slot);
kfree_skb(skb);
goto out;
}
ipts = ippp_table[slot];
if (!(ipts->pppcfg & SC_ENABLE_IP)) { /* PPP connected ? */
if (ipts->debug & 0x1)
printk(KERN_INFO "%s: IP frame delayed.\n", netdev->name);
retval = NETDEV_TX_BUSY;
goto out;
}
switch (ntohs(skb->protocol)) {
case ETH_P_IP:
proto = PPP_IP;
break;
case ETH_P_IPX:
proto = PPP_IPX; /* untested */
break;
default:
printk(KERN_ERR "isdn_ppp: skipped unsupported protocol: %#x.\n",
skb->protocol);
dev_kfree_skb(skb);
goto out;
}
lp = isdn_net_get_locked_lp(nd);
if (!lp) {
printk(KERN_WARNING "%s: all channels busy - requeuing!\n", netdev->name);
retval = NETDEV_TX_BUSY;
goto out;
}
/* we have our lp locked from now on */
slot = lp->ppp_slot;
if (slot < 0 || slot >= ISDN_MAX_CHANNELS) {
printk(KERN_ERR "isdn_ppp_xmit: lp->ppp_slot(%d)\n",
lp->ppp_slot);
kfree_skb(skb);
goto unlock;
}
ipt = ippp_table[slot];
/*
* after this line .. requeueing in the device queue is no longer allowed!!!
*/
/* Pull off the fake header we stuck on earlier to keep
* the fragmentation code happy.
*/
skb_pull(skb, IPPP_MAX_HEADER);
#ifdef CONFIG_IPPP_FILTER
/* check if we should pass this packet
* the filter instructions are constructed assuming
* a four-byte PPP header on each packet */
*(u8 *)skb_push(skb, 4) = 1; /* indicate outbound */
{
__be16 *p = (__be16 *)skb->data;
p++;
*p = htons(proto);
}
if (ipt->pass_filter
net: filter: split 'struct sk_filter' into socket and bpf parts clean up names related to socket filtering and bpf in the following way: - everything that deals with sockets keeps 'sk_*' prefix - everything that is pure BPF is changed to 'bpf_*' prefix split 'struct sk_filter' into struct sk_filter { atomic_t refcnt; struct rcu_head rcu; struct bpf_prog *prog; }; and struct bpf_prog { u32 jited:1, len:31; struct sock_fprog_kern *orig_prog; unsigned int (*bpf_func)(const struct sk_buff *skb, const struct bpf_insn *filter); union { struct sock_filter insns[0]; struct bpf_insn insnsi[0]; struct work_struct work; }; }; so that 'struct bpf_prog' can be used independent of sockets and cleans up 'unattached' bpf use cases split SK_RUN_FILTER macro into: SK_RUN_FILTER to be used with 'struct sk_filter *' and BPF_PROG_RUN to be used with 'struct bpf_prog *' __sk_filter_release(struct sk_filter *) gains __bpf_prog_release(struct bpf_prog *) helper function also perform related renames for the functions that work with 'struct bpf_prog *', since they're on the same lines: sk_filter_size -> bpf_prog_size sk_filter_select_runtime -> bpf_prog_select_runtime sk_filter_free -> bpf_prog_free sk_unattached_filter_create -> bpf_prog_create sk_unattached_filter_destroy -> bpf_prog_destroy sk_store_orig_filter -> bpf_prog_store_orig_filter sk_release_orig_filter -> bpf_release_orig_filter __sk_migrate_filter -> bpf_migrate_filter __sk_prepare_filter -> bpf_prepare_filter API for attaching classic BPF to a socket stays the same: sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *) and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program which is used by sockets, tun, af_packet API for 'unattached' BPF programs becomes: bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *) and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 11:34:16 +08:00
&& BPF_PROG_RUN(ipt->pass_filter, skb) == 0) {
if (ipt->debug & 0x4)
printk(KERN_DEBUG "IPPP: outbound frame filtered.\n");
kfree_skb(skb);
goto unlock;
}
if (!(ipt->active_filter
net: filter: split 'struct sk_filter' into socket and bpf parts clean up names related to socket filtering and bpf in the following way: - everything that deals with sockets keeps 'sk_*' prefix - everything that is pure BPF is changed to 'bpf_*' prefix split 'struct sk_filter' into struct sk_filter { atomic_t refcnt; struct rcu_head rcu; struct bpf_prog *prog; }; and struct bpf_prog { u32 jited:1, len:31; struct sock_fprog_kern *orig_prog; unsigned int (*bpf_func)(const struct sk_buff *skb, const struct bpf_insn *filter); union { struct sock_filter insns[0]; struct bpf_insn insnsi[0]; struct work_struct work; }; }; so that 'struct bpf_prog' can be used independent of sockets and cleans up 'unattached' bpf use cases split SK_RUN_FILTER macro into: SK_RUN_FILTER to be used with 'struct sk_filter *' and BPF_PROG_RUN to be used with 'struct bpf_prog *' __sk_filter_release(struct sk_filter *) gains __bpf_prog_release(struct bpf_prog *) helper function also perform related renames for the functions that work with 'struct bpf_prog *', since they're on the same lines: sk_filter_size -> bpf_prog_size sk_filter_select_runtime -> bpf_prog_select_runtime sk_filter_free -> bpf_prog_free sk_unattached_filter_create -> bpf_prog_create sk_unattached_filter_destroy -> bpf_prog_destroy sk_store_orig_filter -> bpf_prog_store_orig_filter sk_release_orig_filter -> bpf_release_orig_filter __sk_migrate_filter -> bpf_migrate_filter __sk_prepare_filter -> bpf_prepare_filter API for attaching classic BPF to a socket stays the same: sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *) and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program which is used by sockets, tun, af_packet API for 'unattached' BPF programs becomes: bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *) and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 11:34:16 +08:00
&& BPF_PROG_RUN(ipt->active_filter, skb) == 0)) {
if (ipt->debug & 0x4)
printk(KERN_DEBUG "IPPP: link-active filter: resetting huptimer.\n");
lp->huptimer = 0;
}
skb_pull(skb, 4);
#else /* CONFIG_IPPP_FILTER */
lp->huptimer = 0;
#endif /* CONFIG_IPPP_FILTER */
if (ipt->debug & 0x4)
printk(KERN_DEBUG "xmit skb, len %d\n", (int) skb->len);
if (ipts->debug & 0x40)
isdn_ppp_frame_log("xmit0", skb->data, skb->len, 32, ipts->unit, lp->ppp_slot);
#ifdef CONFIG_ISDN_PPP_VJ
if (proto == PPP_IP && ipts->pppcfg & SC_COMP_TCP) { /* ipts here? probably yes, but check this again */
struct sk_buff *new_skb;
unsigned short hl;
/*
* we need to reserve enough space in front of
* sk_buff. old call to dev_alloc_skb only reserved
* 16 bytes, now we are looking what the driver want.
*/
hl = dev->drv[lp->isdn_device]->interface->hl_hdrlen + IPPP_MAX_HEADER;
/*
* Note: hl might still be insufficient because the method
* above does not account for a possibible MPPP slave channel
* which had larger HL header space requirements than the
* master.
*/
new_skb = alloc_skb(hl + skb->len, GFP_ATOMIC);
if (new_skb) {
u_char *buf;
int pktlen;
skb_reserve(new_skb, hl);
new_skb->dev = skb->dev;
skb_put(new_skb, skb->len);
buf = skb->data;
pktlen = slhc_compress(ipts->slcomp, skb->data, skb->len, new_skb->data,
&buf, !(ipts->pppcfg & SC_NO_TCP_CCID));
if (buf != skb->data) {
if (new_skb->data != buf)
printk(KERN_ERR "isdn_ppp: FATAL error after slhc_compress!!\n");
dev_kfree_skb(skb);
skb = new_skb;
} else {
dev_kfree_skb(new_skb);
}
skb_trim(skb, pktlen);
if (skb->data[0] & SL_TYPE_COMPRESSED_TCP) { /* cslip? style -> PPP */
proto = PPP_VJC_COMP;
skb->data[0] ^= SL_TYPE_COMPRESSED_TCP;
} else {
if (skb->data[0] >= SL_TYPE_UNCOMPRESSED_TCP)
proto = PPP_VJC_UNCOMP;
skb->data[0] = (skb->data[0] & 0x0f) | 0x40;
}
}
}
#endif
/*
* normal (single link) or bundle compression
*/
if (ipts->compflags & SC_COMP_ON) {
/* We send compressed only if both down- und upstream
compression is negotiated, that means, CCP is up */
if (ipts->compflags & SC_DECOMP_ON) {
skb = isdn_ppp_compress(skb, &proto, ipt, ipts, 0);
} else {
printk(KERN_DEBUG "isdn_ppp: CCP not yet up - sending as-is\n");
}
}
if (ipt->debug & 0x24)
printk(KERN_DEBUG "xmit2 skb, len %d, proto %04x\n", (int) skb->len, proto);
#ifdef CONFIG_ISDN_MPP
if (ipt->mpppcfg & SC_MP_PROT) {
/* we get mp_seqno from static isdn_net_local */
long mp_seqno = ipts->mp_seqno;
ipts->mp_seqno++;
if (ipt->mpppcfg & SC_OUT_SHORT_SEQ) {
unsigned char *data = isdn_ppp_skb_push(&skb, 3);
if (!data)
goto unlock;
mp_seqno &= 0xfff;
data[0] = MP_BEGIN_FRAG | MP_END_FRAG | ((mp_seqno >> 8) & 0xf); /* (B)egin & (E)ndbit .. */
data[1] = mp_seqno & 0xff;
data[2] = proto; /* PID compression */
} else {
unsigned char *data = isdn_ppp_skb_push(&skb, 5);
if (!data)
goto unlock;
data[0] = MP_BEGIN_FRAG | MP_END_FRAG; /* (B)egin & (E)ndbit .. */
data[1] = (mp_seqno >> 16) & 0xff; /* sequence number: 24bit */
data[2] = (mp_seqno >> 8) & 0xff;
data[3] = (mp_seqno >> 0) & 0xff;
data[4] = proto; /* PID compression */
}
proto = PPP_MP; /* MP Protocol, 0x003d */
}
#endif
/*
* 'link in bundle' compression ...
*/
if (ipt->compflags & SC_LINK_COMP_ON)
skb = isdn_ppp_compress(skb, &proto, ipt, ipts, 1);
if ((ipt->pppcfg & SC_COMP_PROT) && (proto <= 0xff)) {
unsigned char *data = isdn_ppp_skb_push(&skb, 1);
if (!data)
goto unlock;
data[0] = proto & 0xff;
}
else {
unsigned char *data = isdn_ppp_skb_push(&skb, 2);
if (!data)
goto unlock;
data[0] = (proto >> 8) & 0xff;
data[1] = proto & 0xff;
}
if (!(ipt->pppcfg & SC_COMP_AC)) {
unsigned char *data = isdn_ppp_skb_push(&skb, 2);
if (!data)
goto unlock;
data[0] = 0xff; /* All Stations */
data[1] = 0x03; /* Unnumbered information */
}
/* tx-stats are now updated via BSENT-callback */
if (ipts->debug & 0x40) {
printk(KERN_DEBUG "skb xmit: len: %d\n", (int) skb->len);
isdn_ppp_frame_log("xmit", skb->data, skb->len, 32, ipt->unit, lp->ppp_slot);
}
isdn_net_writebuf_skb(lp, skb);
unlock:
spin_unlock_bh(&lp->xmit_lock);
out:
return retval;
}
#ifdef CONFIG_IPPP_FILTER
/*
* check if this packet may trigger auto-dial.
*/
int isdn_ppp_autodial_filter(struct sk_buff *skb, isdn_net_local *lp)
{
struct ippp_struct *is = ippp_table[lp->ppp_slot];
u_int16_t proto;
int drop = 0;
switch (ntohs(skb->protocol)) {
case ETH_P_IP:
proto = PPP_IP;
break;
case ETH_P_IPX:
proto = PPP_IPX;
break;
default:
printk(KERN_ERR "isdn_ppp_autodial_filter: unsupported protocol 0x%x.\n",
skb->protocol);
return 1;
}
/* the filter instructions are constructed assuming
* a four-byte PPP header on each packet. we have to
* temporarily remove part of the fake header stuck on
* earlier.
*/
*(u8 *)skb_pull(skb, IPPP_MAX_HEADER - 4) = 1; /* indicate outbound */
{
__be16 *p = (__be16 *)skb->data;
p++;
*p = htons(proto);
}
drop |= is->pass_filter
net: filter: split 'struct sk_filter' into socket and bpf parts clean up names related to socket filtering and bpf in the following way: - everything that deals with sockets keeps 'sk_*' prefix - everything that is pure BPF is changed to 'bpf_*' prefix split 'struct sk_filter' into struct sk_filter { atomic_t refcnt; struct rcu_head rcu; struct bpf_prog *prog; }; and struct bpf_prog { u32 jited:1, len:31; struct sock_fprog_kern *orig_prog; unsigned int (*bpf_func)(const struct sk_buff *skb, const struct bpf_insn *filter); union { struct sock_filter insns[0]; struct bpf_insn insnsi[0]; struct work_struct work; }; }; so that 'struct bpf_prog' can be used independent of sockets and cleans up 'unattached' bpf use cases split SK_RUN_FILTER macro into: SK_RUN_FILTER to be used with 'struct sk_filter *' and BPF_PROG_RUN to be used with 'struct bpf_prog *' __sk_filter_release(struct sk_filter *) gains __bpf_prog_release(struct bpf_prog *) helper function also perform related renames for the functions that work with 'struct bpf_prog *', since they're on the same lines: sk_filter_size -> bpf_prog_size sk_filter_select_runtime -> bpf_prog_select_runtime sk_filter_free -> bpf_prog_free sk_unattached_filter_create -> bpf_prog_create sk_unattached_filter_destroy -> bpf_prog_destroy sk_store_orig_filter -> bpf_prog_store_orig_filter sk_release_orig_filter -> bpf_release_orig_filter __sk_migrate_filter -> bpf_migrate_filter __sk_prepare_filter -> bpf_prepare_filter API for attaching classic BPF to a socket stays the same: sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *) and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program which is used by sockets, tun, af_packet API for 'unattached' BPF programs becomes: bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *) and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 11:34:16 +08:00
&& BPF_PROG_RUN(is->pass_filter, skb) == 0;
drop |= is->active_filter
net: filter: split 'struct sk_filter' into socket and bpf parts clean up names related to socket filtering and bpf in the following way: - everything that deals with sockets keeps 'sk_*' prefix - everything that is pure BPF is changed to 'bpf_*' prefix split 'struct sk_filter' into struct sk_filter { atomic_t refcnt; struct rcu_head rcu; struct bpf_prog *prog; }; and struct bpf_prog { u32 jited:1, len:31; struct sock_fprog_kern *orig_prog; unsigned int (*bpf_func)(const struct sk_buff *skb, const struct bpf_insn *filter); union { struct sock_filter insns[0]; struct bpf_insn insnsi[0]; struct work_struct work; }; }; so that 'struct bpf_prog' can be used independent of sockets and cleans up 'unattached' bpf use cases split SK_RUN_FILTER macro into: SK_RUN_FILTER to be used with 'struct sk_filter *' and BPF_PROG_RUN to be used with 'struct bpf_prog *' __sk_filter_release(struct sk_filter *) gains __bpf_prog_release(struct bpf_prog *) helper function also perform related renames for the functions that work with 'struct bpf_prog *', since they're on the same lines: sk_filter_size -> bpf_prog_size sk_filter_select_runtime -> bpf_prog_select_runtime sk_filter_free -> bpf_prog_free sk_unattached_filter_create -> bpf_prog_create sk_unattached_filter_destroy -> bpf_prog_destroy sk_store_orig_filter -> bpf_prog_store_orig_filter sk_release_orig_filter -> bpf_release_orig_filter __sk_migrate_filter -> bpf_migrate_filter __sk_prepare_filter -> bpf_prepare_filter API for attaching classic BPF to a socket stays the same: sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *) and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program which is used by sockets, tun, af_packet API for 'unattached' BPF programs becomes: bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *) and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 11:34:16 +08:00
&& BPF_PROG_RUN(is->active_filter, skb) == 0;
skb_push(skb, IPPP_MAX_HEADER - 4);
return drop;
}
#endif
#ifdef CONFIG_ISDN_MPP
/* this is _not_ rfc1990 header, but something we convert both short and long
* headers to for convinience's sake:
* byte 0 is flags as in rfc1990
* bytes 1...4 is 24-bit seqence number converted to host byte order
*/
#define MP_HEADER_LEN 5
#define MP_LONGSEQ_MASK 0x00ffffff
#define MP_SHORTSEQ_MASK 0x00000fff
#define MP_LONGSEQ_MAX MP_LONGSEQ_MASK
#define MP_SHORTSEQ_MAX MP_SHORTSEQ_MASK
#define MP_LONGSEQ_MAXBIT ((MP_LONGSEQ_MASK + 1) >> 1)
#define MP_SHORTSEQ_MAXBIT ((MP_SHORTSEQ_MASK + 1) >> 1)
/* sequence-wrap safe comparisons (for long sequence)*/
#define MP_LT(a, b) ((a - b) & MP_LONGSEQ_MAXBIT)
#define MP_LE(a, b) !((b - a) & MP_LONGSEQ_MAXBIT)
#define MP_GT(a, b) ((b - a) & MP_LONGSEQ_MAXBIT)
#define MP_GE(a, b) !((a - b) & MP_LONGSEQ_MAXBIT)
#define MP_SEQ(f) ((*(u32 *)(f->data + 1)))
#define MP_FLAGS(f) (f->data[0])
static int isdn_ppp_mp_bundle_array_init(void)
{
int i;
int sz = ISDN_MAX_CHANNELS * sizeof(ippp_bundle);
if ((isdn_ppp_bundle_arr = kzalloc(sz, GFP_KERNEL)) == NULL)
return -ENOMEM;
for (i = 0; i < ISDN_MAX_CHANNELS; i++)
spin_lock_init(&isdn_ppp_bundle_arr[i].lock);
return 0;
}
static ippp_bundle *isdn_ppp_mp_bundle_alloc(void)
{
int i;
for (i = 0; i < ISDN_MAX_CHANNELS; i++)
if (isdn_ppp_bundle_arr[i].ref_ct <= 0)
return (isdn_ppp_bundle_arr + i);
return NULL;
}
static int isdn_ppp_mp_init(isdn_net_local *lp, ippp_bundle *add_to)
{
struct ippp_struct *is;
if (lp->ppp_slot < 0) {
printk(KERN_ERR "%s: lp->ppp_slot(%d) out of range\n",
__func__, lp->ppp_slot);
return (-EINVAL);
}
is = ippp_table[lp->ppp_slot];
if (add_to) {
if (lp->netdev->pb)
lp->netdev->pb->ref_ct--;
lp->netdev->pb = add_to;
} else { /* first link in a bundle */
is->mp_seqno = 0;
if ((lp->netdev->pb = isdn_ppp_mp_bundle_alloc()) == NULL)
return -ENOMEM;
lp->next = lp->last = lp; /* nobody else in a queue */
lp->netdev->pb->frags = NULL;
lp->netdev->pb->frames = 0;
lp->netdev->pb->seq = UINT_MAX;
}
lp->netdev->pb->ref_ct++;
is->last_link_seqno = 0;
return 0;
}
static u32 isdn_ppp_mp_get_seq(int short_seq,
struct sk_buff *skb, u32 last_seq);
static struct sk_buff *isdn_ppp_mp_discard(ippp_bundle *mp,
struct sk_buff *from, struct sk_buff *to);
static void isdn_ppp_mp_reassembly(isdn_net_dev *net_dev, isdn_net_local *lp,
struct sk_buff *from, struct sk_buff *to);
static void isdn_ppp_mp_free_skb(ippp_bundle *mp, struct sk_buff *skb);
static void isdn_ppp_mp_print_recv_pkt(int slot, struct sk_buff *skb);
static void isdn_ppp_mp_receive(isdn_net_dev *net_dev, isdn_net_local *lp,
struct sk_buff *skb)
{
struct ippp_struct *is;
isdn_net_local *lpq;
ippp_bundle *mp;
isdn_mppp_stats *stats;
struct sk_buff *newfrag, *frag, *start, *nextf;
u32 newseq, minseq, thisseq;
unsigned long flags;
int slot;
spin_lock_irqsave(&net_dev->pb->lock, flags);
mp = net_dev->pb;
stats = &mp->stats;
slot = lp->ppp_slot;
if (slot < 0 || slot >= ISDN_MAX_CHANNELS) {
printk(KERN_ERR "%s: lp->ppp_slot(%d)\n",
__func__, lp->ppp_slot);
stats->frame_drops++;
dev_kfree_skb(skb);
spin_unlock_irqrestore(&mp->lock, flags);
return;
}
is = ippp_table[slot];
if (++mp->frames > stats->max_queue_len)
stats->max_queue_len = mp->frames;
if (is->debug & 0x8)
isdn_ppp_mp_print_recv_pkt(lp->ppp_slot, skb);
newseq = isdn_ppp_mp_get_seq(is->mpppcfg & SC_IN_SHORT_SEQ,
skb, is->last_link_seqno);
/* if this packet seq # is less than last already processed one,
* toss it right away, but check for sequence start case first
*/
if (mp->seq > MP_LONGSEQ_MAX && (newseq & MP_LONGSEQ_MAXBIT)) {
mp->seq = newseq; /* the first packet: required for
* rfc1990 non-compliant clients --
* prevents constant packet toss */
} else if (MP_LT(newseq, mp->seq)) {
stats->frame_drops++;
isdn_ppp_mp_free_skb(mp, skb);
spin_unlock_irqrestore(&mp->lock, flags);
return;
}
/* find the minimum received sequence number over all links */
is->last_link_seqno = minseq = newseq;
for (lpq = net_dev->queue;;) {
slot = lpq->ppp_slot;
if (slot < 0 || slot >= ISDN_MAX_CHANNELS) {
printk(KERN_ERR "%s: lpq->ppp_slot(%d)\n",
__func__, lpq->ppp_slot);
} else {
u32 lls = ippp_table[slot]->last_link_seqno;
if (MP_LT(lls, minseq))
minseq = lls;
}
if ((lpq = lpq->next) == net_dev->queue)
break;
}
if (MP_LT(minseq, mp->seq))
minseq = mp->seq; /* can't go beyond already processed
* packets */
newfrag = skb;
/* if this new fragment is before the first one, then enqueue it now. */
if ((frag = mp->frags) == NULL || MP_LT(newseq, MP_SEQ(frag))) {
newfrag->next = frag;
mp->frags = frag = newfrag;
newfrag = NULL;
}
start = MP_FLAGS(frag) & MP_BEGIN_FRAG &&
MP_SEQ(frag) == mp->seq ? frag : NULL;
/*
* main fragment traversing loop
*
* try to accomplish several tasks:
* - insert new fragment into the proper sequence slot (once that's done
* newfrag will be set to NULL)
* - reassemble any complete fragment sequence (non-null 'start'
* indicates there is a contiguous sequence present)
* - discard any incomplete sequences that are below minseq -- due
* to the fact that sender always increment sequence number, if there
* is an incomplete sequence below minseq, no new fragments would
* come to complete such sequence and it should be discarded
*
* loop completes when we accomplished the following tasks:
* - new fragment is inserted in the proper sequence ('newfrag' is
* set to NULL)
* - we hit a gap in the sequence, so no reassembly/processing is
* possible ('start' would be set to NULL)
*
* algorithm for this code is derived from code in the book
* 'PPP Design And Debugging' by James Carlson (Addison-Wesley)
*/
while (start != NULL || newfrag != NULL) {
thisseq = MP_SEQ(frag);
nextf = frag->next;
/* drop any duplicate fragments */
if (newfrag != NULL && thisseq == newseq) {
isdn_ppp_mp_free_skb(mp, newfrag);
newfrag = NULL;
}
/* insert new fragment before next element if possible. */
if (newfrag != NULL && (nextf == NULL ||
MP_LT(newseq, MP_SEQ(nextf)))) {
newfrag->next = nextf;
frag->next = nextf = newfrag;
newfrag = NULL;
}
if (start != NULL) {
/* check for misplaced start */
if (start != frag && (MP_FLAGS(frag) & MP_BEGIN_FRAG)) {
printk(KERN_WARNING"isdn_mppp(seq %d): new "
"BEGIN flag with no prior END", thisseq);
stats->seqerrs++;
stats->frame_drops++;
start = isdn_ppp_mp_discard(mp, start, frag);
nextf = frag->next;
}
} else if (MP_LE(thisseq, minseq)) {
if (MP_FLAGS(frag) & MP_BEGIN_FRAG)
start = frag;
else {
if (MP_FLAGS(frag) & MP_END_FRAG)
stats->frame_drops++;
if (mp->frags == frag)
mp->frags = nextf;
isdn_ppp_mp_free_skb(mp, frag);
frag = nextf;
continue;
}
}
/* if start is non-null and we have end fragment, then
* we have full reassembly sequence -- reassemble
* and process packet now
*/
if (start != NULL && (MP_FLAGS(frag) & MP_END_FRAG)) {
minseq = mp->seq = (thisseq + 1) & MP_LONGSEQ_MASK;
/* Reassemble the packet then dispatch it */
isdn_ppp_mp_reassembly(net_dev, lp, start, nextf);
start = NULL;
frag = NULL;
mp->frags = nextf;
}
/* check if need to update start pointer: if we just
* reassembled the packet and sequence is contiguous
* then next fragment should be the start of new reassembly
* if sequence is contiguous, but we haven't reassembled yet,
* keep going.
* if sequence is not contiguous, either clear everything
* below low watermark and set start to the next frag or
* clear start ptr.
*/
if (nextf != NULL &&
((thisseq + 1) & MP_LONGSEQ_MASK) == MP_SEQ(nextf)) {
/* if we just reassembled and the next one is here,
* then start another reassembly. */
if (frag == NULL) {
if (MP_FLAGS(nextf) & MP_BEGIN_FRAG)
start = nextf;
else
{
printk(KERN_WARNING"isdn_mppp(seq %d):"
" END flag with no following "
"BEGIN", thisseq);
stats->seqerrs++;
}
}
} else {
if (nextf != NULL && frag != NULL &&
MP_LT(thisseq, minseq)) {
/* we've got a break in the sequence
* and we not at the end yet
* and we did not just reassembled
*(if we did, there wouldn't be anything before)
* and we below the low watermark
* discard all the frames below low watermark
* and start over */
stats->frame_drops++;
mp->frags = isdn_ppp_mp_discard(mp, start, nextf);
}
/* break in the sequence, no reassembly */
start = NULL;
}
frag = nextf;
} /* while -- main loop */
if (mp->frags == NULL)
mp->frags = frag;
/* rather straighforward way to deal with (not very) possible
* queue overflow */
if (mp->frames > MP_MAX_QUEUE_LEN) {
stats->overflows++;
while (mp->frames > MP_MAX_QUEUE_LEN) {
frag = mp->frags->next;
isdn_ppp_mp_free_skb(mp, mp->frags);
mp->frags = frag;
}
}
spin_unlock_irqrestore(&mp->lock, flags);
}
static void isdn_ppp_mp_cleanup(isdn_net_local *lp)
{
struct sk_buff *frag = lp->netdev->pb->frags;
struct sk_buff *nextfrag;
while (frag) {
nextfrag = frag->next;
isdn_ppp_mp_free_skb(lp->netdev->pb, frag);
frag = nextfrag;
}
lp->netdev->pb->frags = NULL;
}
static u32 isdn_ppp_mp_get_seq(int short_seq,
struct sk_buff *skb, u32 last_seq)
{
u32 seq;
int flags = skb->data[0] & (MP_BEGIN_FRAG | MP_END_FRAG);
if (!short_seq)
{
seq = ntohl(*(__be32 *)skb->data) & MP_LONGSEQ_MASK;
skb_push(skb, 1);
}
else
{
/* convert 12-bit short seq number to 24-bit long one
*/
seq = ntohs(*(__be16 *)skb->data) & MP_SHORTSEQ_MASK;
/* check for seqence wrap */
if (!(seq & MP_SHORTSEQ_MAXBIT) &&
(last_seq & MP_SHORTSEQ_MAXBIT) &&
(unsigned long)last_seq <= MP_LONGSEQ_MAX)
seq |= (last_seq + MP_SHORTSEQ_MAX + 1) &
(~MP_SHORTSEQ_MASK & MP_LONGSEQ_MASK);
else
seq |= last_seq & (~MP_SHORTSEQ_MASK & MP_LONGSEQ_MASK);
skb_push(skb, 3); /* put converted seqence back in skb */
}
*(u32 *)(skb->data + 1) = seq; /* put seqence back in _host_ byte
* order */
skb->data[0] = flags; /* restore flags */
return seq;
}
struct sk_buff *isdn_ppp_mp_discard(ippp_bundle *mp,
struct sk_buff *from, struct sk_buff *to)
{
if (from)
while (from != to) {
struct sk_buff *next = from->next;
isdn_ppp_mp_free_skb(mp, from);
from = next;
}
return from;
}
void isdn_ppp_mp_reassembly(isdn_net_dev *net_dev, isdn_net_local *lp,
struct sk_buff *from, struct sk_buff *to)
{
ippp_bundle *mp = net_dev->pb;
int proto;
struct sk_buff *skb;
unsigned int tot_len;
if (lp->ppp_slot < 0 || lp->ppp_slot >= ISDN_MAX_CHANNELS) {
printk(KERN_ERR "%s: lp->ppp_slot(%d) out of range\n",
__func__, lp->ppp_slot);
return;
}
if (MP_FLAGS(from) == (MP_BEGIN_FRAG | MP_END_FRAG)) {
if (ippp_table[lp->ppp_slot]->debug & 0x40)
printk(KERN_DEBUG "isdn_mppp: reassembly: frame %d, "
"len %d\n", MP_SEQ(from), from->len);
skb = from;
skb_pull(skb, MP_HEADER_LEN);
mp->frames--;
} else {
struct sk_buff *frag;
int n;
for (tot_len = n = 0, frag = from; frag != to; frag = frag->next, n++)
tot_len += frag->len - MP_HEADER_LEN;
if (ippp_table[lp->ppp_slot]->debug & 0x40)
printk(KERN_DEBUG"isdn_mppp: reassembling frames %d "
"to %d, len %d\n", MP_SEQ(from),
(MP_SEQ(from) + n - 1) & MP_LONGSEQ_MASK, tot_len);
if ((skb = dev_alloc_skb(tot_len)) == NULL) {
printk(KERN_ERR "isdn_mppp: cannot allocate sk buff "
"of size %d\n", tot_len);
isdn_ppp_mp_discard(mp, from, to);
return;
}
while (from != to) {
unsigned int len = from->len - MP_HEADER_LEN;
skb_copy_from_linear_data_offset(from, MP_HEADER_LEN,
skb_put(skb, len),
len);
frag = from->next;
isdn_ppp_mp_free_skb(mp, from);
from = frag;
}
}
proto = isdn_ppp_strip_proto(skb);
isdn_ppp_push_higher(net_dev, lp, skb, proto);
}
static void isdn_ppp_mp_free_skb(ippp_bundle *mp, struct sk_buff *skb)
{
dev_kfree_skb(skb);
mp->frames--;
}
static void isdn_ppp_mp_print_recv_pkt(int slot, struct sk_buff *skb)
{
printk(KERN_DEBUG "mp_recv: %d/%d -> %02x %02x %02x %02x %02x %02x\n",
slot, (int) skb->len,
(int) skb->data[0], (int) skb->data[1], (int) skb->data[2],
(int) skb->data[3], (int) skb->data[4], (int) skb->data[5]);
}
static int
isdn_ppp_bundle(struct ippp_struct *is, int unit)
{
char ifn[IFNAMSIZ + 1];
isdn_net_dev *p;
isdn_net_local *lp, *nlp;
int rc;
unsigned long flags;
sprintf(ifn, "ippp%d", unit);
p = isdn_net_findif(ifn);
if (!p) {
printk(KERN_ERR "ippp_bundle: cannot find %s\n", ifn);
return -EINVAL;
}
spin_lock_irqsave(&p->pb->lock, flags);
nlp = is->lp;
lp = p->queue;
if (nlp->ppp_slot < 0 || nlp->ppp_slot >= ISDN_MAX_CHANNELS ||
lp->ppp_slot < 0 || lp->ppp_slot >= ISDN_MAX_CHANNELS) {
printk(KERN_ERR "ippp_bundle: binding to invalid slot %d\n",
nlp->ppp_slot < 0 || nlp->ppp_slot >= ISDN_MAX_CHANNELS ?
nlp->ppp_slot : lp->ppp_slot);
rc = -EINVAL;
goto out;
}
isdn_net_add_to_bundle(p, nlp);
ippp_table[nlp->ppp_slot]->unit = ippp_table[lp->ppp_slot]->unit;
/* maybe also SC_CCP stuff */
ippp_table[nlp->ppp_slot]->pppcfg |= ippp_table[lp->ppp_slot]->pppcfg &
(SC_ENABLE_IP | SC_NO_TCP_CCID | SC_REJ_COMP_TCP);
ippp_table[nlp->ppp_slot]->mpppcfg |= ippp_table[lp->ppp_slot]->mpppcfg &
(SC_MP_PROT | SC_REJ_MP_PROT | SC_OUT_SHORT_SEQ | SC_IN_SHORT_SEQ);
rc = isdn_ppp_mp_init(nlp, p->pb);
out:
spin_unlock_irqrestore(&p->pb->lock, flags);
return rc;
}
#endif /* CONFIG_ISDN_MPP */
/*
* network device ioctl handlers
*/
static int
isdn_ppp_dev_ioctl_stats(int slot, struct ifreq *ifr, struct net_device *dev)
{
struct ppp_stats __user *res = ifr->ifr_data;
struct ppp_stats t;
isdn_net_local *lp = netdev_priv(dev);
/* build a temporary stat struct and copy it to user space */
memset(&t, 0, sizeof(struct ppp_stats));
if (dev->flags & IFF_UP) {
t.p.ppp_ipackets = lp->stats.rx_packets;
t.p.ppp_ibytes = lp->stats.rx_bytes;
t.p.ppp_ierrors = lp->stats.rx_errors;
t.p.ppp_opackets = lp->stats.tx_packets;
t.p.ppp_obytes = lp->stats.tx_bytes;
t.p.ppp_oerrors = lp->stats.tx_errors;
#ifdef CONFIG_ISDN_PPP_VJ
if (slot >= 0 && ippp_table[slot]->slcomp) {
struct slcompress *slcomp = ippp_table[slot]->slcomp;
t.vj.vjs_packets = slcomp->sls_o_compressed + slcomp->sls_o_uncompressed;
t.vj.vjs_compressed = slcomp->sls_o_compressed;
t.vj.vjs_searches = slcomp->sls_o_searches;
t.vj.vjs_misses = slcomp->sls_o_misses;
t.vj.vjs_errorin = slcomp->sls_i_error;
t.vj.vjs_tossed = slcomp->sls_i_tossed;
t.vj.vjs_uncompressedin = slcomp->sls_i_uncompressed;
t.vj.vjs_compressedin = slcomp->sls_i_compressed;
}
#endif
}
if (copy_to_user(res, &t, sizeof(struct ppp_stats)))
return -EFAULT;
return 0;
}
int
isdn_ppp_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
int error = 0;
int len;
isdn_net_local *lp = netdev_priv(dev);
if (lp->p_encap != ISDN_NET_ENCAP_SYNCPPP)
return -EINVAL;
switch (cmd) {
#define PPP_VERSION "2.3.7"
case SIOCGPPPVER:
len = strlen(PPP_VERSION) + 1;
if (copy_to_user(ifr->ifr_data, PPP_VERSION, len))
error = -EFAULT;
break;
case SIOCGPPPSTATS:
error = isdn_ppp_dev_ioctl_stats(lp->ppp_slot, ifr, dev);
break;
default:
error = -EINVAL;
break;
}
return error;
}
static int
isdn_ppp_if_get_unit(char *name)
{
int len,
i,
unit = 0,
deci;
len = strlen(name);
if (strncmp("ippp", name, 4) || len > 8)
return -1;
for (i = 0, deci = 1; i < len; i++, deci *= 10) {
char a = name[len - i - 1];
if (a >= '0' && a <= '9')
unit += (a - '0') * deci;
else
break;
}
if (!i || len - i != 4)
unit = -1;
return unit;
}
int
isdn_ppp_dial_slave(char *name)
{
#ifdef CONFIG_ISDN_MPP
isdn_net_dev *ndev;
isdn_net_local *lp;
struct net_device *sdev;
if (!(ndev = isdn_net_findif(name)))
return 1;
lp = ndev->local;
if (!(lp->flags & ISDN_NET_CONNECTED))
return 5;
sdev = lp->slave;
while (sdev) {
isdn_net_local *mlp = netdev_priv(sdev);
if (!(mlp->flags & ISDN_NET_CONNECTED))
break;
sdev = mlp->slave;
}
if (!sdev)
return 2;
isdn_net_dial_req(netdev_priv(sdev));
return 0;
#else
return -1;
#endif
}
int
isdn_ppp_hangup_slave(char *name)
{
#ifdef CONFIG_ISDN_MPP
isdn_net_dev *ndev;
isdn_net_local *lp;
struct net_device *sdev;
if (!(ndev = isdn_net_findif(name)))
return 1;
lp = ndev->local;
if (!(lp->flags & ISDN_NET_CONNECTED))
return 5;
sdev = lp->slave;
while (sdev) {
isdn_net_local *mlp = netdev_priv(sdev);
if (mlp->slave) { /* find last connected link in chain */
isdn_net_local *nlp = ISDN_SLAVE_PRIV(mlp);
if (!(nlp->flags & ISDN_NET_CONNECTED))
break;
} else if (mlp->flags & ISDN_NET_CONNECTED)
break;
sdev = mlp->slave;
}
if (!sdev)
return 2;
isdn_net_hangup(sdev);
return 0;
#else
return -1;
#endif
}
/*
* PPP compression stuff
*/
/* Push an empty CCP Data Frame up to the daemon to wake it up and let it
generate a CCP Reset-Request or tear down CCP altogether */
static void isdn_ppp_ccp_kickup(struct ippp_struct *is)
{
isdn_ppp_fill_rq(NULL, 0, PPP_COMP, is->lp->ppp_slot);
}
/* In-kernel handling of CCP Reset-Request and Reset-Ack is necessary,
but absolutely nontrivial. The most abstruse problem we are facing is
that the generation, reception and all the handling of timeouts and
resends including proper request id management should be entirely left
to the (de)compressor, but indeed is not covered by the current API to
the (de)compressor. The API is a prototype version from PPP where only
some (de)compressors have yet been implemented and all of them are
rather simple in their reset handling. Especially, their is only one
outstanding ResetAck at a time with all of them and ResetReq/-Acks do
not have parameters. For this very special case it was sufficient to
just return an error code from the decompressor and have a single
reset() entry to communicate all the necessary information between
the framework and the (de)compressor. Bad enough, LZS is different
(and any other compressor may be different, too). It has multiple
histories (eventually) and needs to Reset each of them independently
and thus uses multiple outstanding Acks and history numbers as an
additional parameter to Reqs/Acks.
All that makes it harder to port the reset state engine into the
kernel because it is not just the same simple one as in (i)pppd but
it must be able to pass additional parameters and have multiple out-
standing Acks. We are trying to achieve the impossible by handling
reset transactions independent by their id. The id MUST change when
the data portion changes, thus any (de)compressor who uses more than
one resettable state must provide and recognize individual ids for
each individual reset transaction. The framework itself does _only_
differentiate them by id, because it has no other semantics like the
(de)compressor might.
This looks like a major redesign of the interface would be nice,
but I don't have an idea how to do it better. */
/* Send a CCP Reset-Request or Reset-Ack directly from the kernel. This is
getting that lengthy because there is no simple "send-this-frame-out"
function above but every wrapper does a bit different. Hope I guess
correct in this hack... */
static void isdn_ppp_ccp_xmit_reset(struct ippp_struct *is, int proto,
unsigned char code, unsigned char id,
unsigned char *data, int len)
{
struct sk_buff *skb;
unsigned char *p;
int hl;
int cnt = 0;
isdn_net_local *lp = is->lp;
/* Alloc large enough skb */
hl = dev->drv[lp->isdn_device]->interface->hl_hdrlen;
skb = alloc_skb(len + hl + 16, GFP_ATOMIC);
if (!skb) {
printk(KERN_WARNING
"ippp: CCP cannot send reset - out of memory\n");
return;
}
skb_reserve(skb, hl);
/* We may need to stuff an address and control field first */
if (!(is->pppcfg & SC_COMP_AC)) {
p = skb_put(skb, 2);
*p++ = 0xff;
*p++ = 0x03;
}
/* Stuff proto, code, id and length */
p = skb_put(skb, 6);
*p++ = (proto >> 8);
*p++ = (proto & 0xff);
*p++ = code;
*p++ = id;
cnt = 4 + len;
*p++ = (cnt >> 8);
*p++ = (cnt & 0xff);
/* Now stuff remaining bytes */
if (len) {
skb_put_data(skb, data, len);
}
/* skb is now ready for xmit */
printk(KERN_DEBUG "Sending CCP Frame:\n");
isdn_ppp_frame_log("ccp-xmit", skb->data, skb->len, 32, is->unit, lp->ppp_slot);
isdn_net_write_super(lp, skb);
}
/* Allocate the reset state vector */
static struct ippp_ccp_reset *isdn_ppp_ccp_reset_alloc(struct ippp_struct *is)
{
struct ippp_ccp_reset *r;
r = kzalloc(sizeof(struct ippp_ccp_reset), GFP_KERNEL);
if (!r) {
printk(KERN_ERR "ippp_ccp: failed to allocate reset data"
" structure - no mem\n");
return NULL;
}
printk(KERN_DEBUG "ippp_ccp: allocated reset data structure %p\n", r);
is->reset = r;
return r;
}
/* Destroy the reset state vector. Kill all pending timers first. */
static void isdn_ppp_ccp_reset_free(struct ippp_struct *is)
{
unsigned int id;
printk(KERN_DEBUG "ippp_ccp: freeing reset data structure %p\n",
is->reset);
for (id = 0; id < 256; id++) {
if (is->reset->rs[id]) {
isdn_ppp_ccp_reset_free_state(is, (unsigned char)id);
}
}
kfree(is->reset);
is->reset = NULL;
}
/* Free a given state and clear everything up for later reallocation */
static void isdn_ppp_ccp_reset_free_state(struct ippp_struct *is,
unsigned char id)
{
struct ippp_ccp_reset_state *rs;
if (is->reset->rs[id]) {
printk(KERN_DEBUG "ippp_ccp: freeing state for id %d\n", id);
rs = is->reset->rs[id];
/* Make sure the kernel will not call back later */
if (rs->ta)
del_timer(&rs->timer);
is->reset->rs[id] = NULL;
kfree(rs);
} else {
printk(KERN_WARNING "ippp_ccp: id %d is not allocated\n", id);
}
}
/* The timer callback function which is called when a ResetReq has timed out,
aka has never been answered by a ResetAck */
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 05:43:17 +08:00
static void isdn_ppp_ccp_timer_callback(struct timer_list *t)
{
struct ippp_ccp_reset_state *rs =
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 05:43:17 +08:00
from_timer(rs, t, timer);
if (!rs) {
printk(KERN_ERR "ippp_ccp: timer cb with zero closure.\n");
return;
}
if (rs->ta && rs->state == CCPResetSentReq) {
/* We are correct here */
if (!rs->expra) {
/* Hmm, there is no Ack really expected. We can clean
up the state now, it will be reallocated if the
decompressor insists on another reset */
rs->ta = 0;
isdn_ppp_ccp_reset_free_state(rs->is, rs->id);
return;
}
printk(KERN_DEBUG "ippp_ccp: CCP Reset timed out for id %d\n",
rs->id);
/* Push it again */
isdn_ppp_ccp_xmit_reset(rs->is, PPP_CCP, CCP_RESETREQ, rs->id,
rs->data, rs->dlen);
/* Restart timer */
rs->timer.expires = jiffies + HZ * 5;
add_timer(&rs->timer);
} else {
printk(KERN_WARNING "ippp_ccp: timer cb in wrong state %d\n",
rs->state);
}
}
/* Allocate a new reset transaction state */
static struct ippp_ccp_reset_state *isdn_ppp_ccp_reset_alloc_state(struct ippp_struct *is,
unsigned char id)
{
struct ippp_ccp_reset_state *rs;
if (is->reset->rs[id]) {
printk(KERN_WARNING "ippp_ccp: old state exists for id %d\n",
id);
return NULL;
} else {
rs = kzalloc(sizeof(struct ippp_ccp_reset_state), GFP_ATOMIC);
if (!rs)
return NULL;
rs->state = CCPResetIdle;
rs->is = is;
rs->id = id;
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 05:43:17 +08:00
timer_setup(&rs->timer, isdn_ppp_ccp_timer_callback, 0);
is->reset->rs[id] = rs;
}
return rs;
}
/* A decompressor wants a reset with a set of parameters - do what is
necessary to fulfill it */
static void isdn_ppp_ccp_reset_trans(struct ippp_struct *is,
struct isdn_ppp_resetparams *rp)
{
struct ippp_ccp_reset_state *rs;
if (rp->valid) {
/* The decompressor defines parameters by itself */
if (rp->rsend) {
/* And he wants us to send a request */
if (!(rp->idval)) {
printk(KERN_ERR "ippp_ccp: decompressor must"
" specify reset id\n");
return;
}
if (is->reset->rs[rp->id]) {
/* There is already a transaction in existence
for this id. May be still waiting for a
Ack or may be wrong. */
rs = is->reset->rs[rp->id];
if (rs->state == CCPResetSentReq && rs->ta) {
printk(KERN_DEBUG "ippp_ccp: reset"
" trans still in progress"
" for id %d\n", rp->id);
} else {
printk(KERN_WARNING "ippp_ccp: reset"
" trans in wrong state %d for"
" id %d\n", rs->state, rp->id);
}
} else {
/* Ok, this is a new transaction */
printk(KERN_DEBUG "ippp_ccp: new trans for id"
" %d to be started\n", rp->id);
rs = isdn_ppp_ccp_reset_alloc_state(is, rp->id);
if (!rs) {
printk(KERN_ERR "ippp_ccp: out of mem"
" allocing ccp trans\n");
return;
}
rs->state = CCPResetSentReq;
rs->expra = rp->expra;
if (rp->dtval) {
rs->dlen = rp->dlen;
memcpy(rs->data, rp->data, rp->dlen);
}
/* HACK TODO - add link comp here */
isdn_ppp_ccp_xmit_reset(is, PPP_CCP,
CCP_RESETREQ, rs->id,
rs->data, rs->dlen);
/* Start the timer */
rs->timer.expires = jiffies + 5 * HZ;
add_timer(&rs->timer);
rs->ta = 1;
}
} else {
printk(KERN_DEBUG "ippp_ccp: no reset sent\n");
}
} else {
/* The reset params are invalid. The decompressor does not
care about them, so we just send the minimal requests
and increase ids only when an Ack is received for a
given id */
if (is->reset->rs[is->reset->lastid]) {
/* There is already a transaction in existence
for this id. May be still waiting for a
Ack or may be wrong. */
rs = is->reset->rs[is->reset->lastid];
if (rs->state == CCPResetSentReq && rs->ta) {
printk(KERN_DEBUG "ippp_ccp: reset"
" trans still in progress"
" for id %d\n", rp->id);
} else {
printk(KERN_WARNING "ippp_ccp: reset"
" trans in wrong state %d for"
" id %d\n", rs->state, rp->id);
}
} else {
printk(KERN_DEBUG "ippp_ccp: new trans for id"
" %d to be started\n", is->reset->lastid);
rs = isdn_ppp_ccp_reset_alloc_state(is,
is->reset->lastid);
if (!rs) {
printk(KERN_ERR "ippp_ccp: out of mem"
" allocing ccp trans\n");
return;
}
rs->state = CCPResetSentReq;
/* We always expect an Ack if the decompressor doesn't
know better */
rs->expra = 1;
rs->dlen = 0;
/* HACK TODO - add link comp here */
isdn_ppp_ccp_xmit_reset(is, PPP_CCP, CCP_RESETREQ,
rs->id, NULL, 0);
/* Start the timer */
rs->timer.expires = jiffies + 5 * HZ;
add_timer(&rs->timer);
rs->ta = 1;
}
}
}
/* An Ack was received for this id. This means we stop the timer and clean
up the state prior to calling the decompressors reset routine. */
static void isdn_ppp_ccp_reset_ack_rcvd(struct ippp_struct *is,
unsigned char id)
{
struct ippp_ccp_reset_state *rs = is->reset->rs[id];
if (rs) {
if (rs->ta && rs->state == CCPResetSentReq) {
/* Great, we are correct */
if (!rs->expra)
printk(KERN_DEBUG "ippp_ccp: ResetAck received"
" for id %d but not expected\n", id);
} else {
printk(KERN_INFO "ippp_ccp: ResetAck received out of"
"sync for id %d\n", id);
}
if (rs->ta) {
rs->ta = 0;
del_timer(&rs->timer);
}
isdn_ppp_ccp_reset_free_state(is, id);
} else {
printk(KERN_INFO "ippp_ccp: ResetAck received for unknown id"
" %d\n", id);
}
/* Make sure the simple reset stuff uses a new id next time */
is->reset->lastid++;
}
/*
* decompress packet
*
* if master = 0, we're trying to uncompress an per-link compressed packet,
* as opposed to an compressed reconstructed-from-MPPP packet.
* proto is updated to protocol field of uncompressed packet.
*
* retval: decompressed packet,
* same packet if uncompressed,
* NULL if decompression error
*/
static struct sk_buff *isdn_ppp_decompress(struct sk_buff *skb, struct ippp_struct *is, struct ippp_struct *master,
int *proto)
{
void *stat = NULL;
struct isdn_ppp_compressor *ipc = NULL;
struct sk_buff *skb_out;
int len;
struct ippp_struct *ri;
struct isdn_ppp_resetparams rsparm;
unsigned char rsdata[IPPP_RESET_MAXDATABYTES];
if (!master) {
// per-link decompression
stat = is->link_decomp_stat;
ipc = is->link_decompressor;
ri = is;
} else {
stat = master->decomp_stat;
ipc = master->decompressor;
ri = master;
}
if (!ipc) {
// no decompressor -> we can't decompress.
printk(KERN_DEBUG "ippp: no decompressor defined!\n");
return skb;
}
BUG_ON(!stat); // if we have a compressor, stat has been set as well
if ((master && *proto == PPP_COMP) || (!master && *proto == PPP_COMPFRAG)) {
// compressed packets are compressed by their protocol type
// Set up reset params for the decompressor
memset(&rsparm, 0, sizeof(rsparm));
rsparm.data = rsdata;
rsparm.maxdlen = IPPP_RESET_MAXDATABYTES;
skb_out = dev_alloc_skb(is->mru + PPP_HDRLEN);
if (!skb_out) {
kfree_skb(skb);
printk(KERN_ERR "ippp: decomp memory allocation failure\n");
return NULL;
}
len = ipc->decompress(stat, skb, skb_out, &rsparm);
kfree_skb(skb);
if (len <= 0) {
switch (len) {
case DECOMP_ERROR:
printk(KERN_INFO "ippp: decomp wants reset %s params\n",
rsparm.valid ? "with" : "without");
isdn_ppp_ccp_reset_trans(ri, &rsparm);
break;
case DECOMP_FATALERROR:
ri->pppcfg |= SC_DC_FERROR;
/* Kick ipppd to recognize the error */
isdn_ppp_ccp_kickup(ri);
break;
}
kfree_skb(skb_out);
return NULL;
}
*proto = isdn_ppp_strip_proto(skb_out);
if (*proto < 0) {
kfree_skb(skb_out);
return NULL;
}
return skb_out;
} else {
// uncompressed packets are fed through the decompressor to
// update the decompressor state
ipc->incomp(stat, skb, *proto);
return skb;
}
}
/*
* compress a frame
* type=0: normal/bundle compression
* =1: link compression
* returns original skb if we haven't compressed the frame
* and a new skb pointer if we've done it
*/
static struct sk_buff *isdn_ppp_compress(struct sk_buff *skb_in, int *proto,
struct ippp_struct *is, struct ippp_struct *master, int type)
{
int ret;
int new_proto;
struct isdn_ppp_compressor *compressor;
void *stat;
struct sk_buff *skb_out;
/* we do not compress control protocols */
if (*proto < 0 || *proto > 0x3fff) {
return skb_in;
}
if (type) { /* type=1 => Link compression */
return skb_in;
}
else {
if (!master) {
compressor = is->compressor;
stat = is->comp_stat;
}
else {
compressor = master->compressor;
stat = master->comp_stat;
}
new_proto = PPP_COMP;
}
if (!compressor) {
printk(KERN_ERR "isdn_ppp: No compressor set!\n");
return skb_in;
}
if (!stat) {
printk(KERN_ERR "isdn_ppp: Compressor not initialized?\n");
return skb_in;
}
/* Allow for at least 150 % expansion (for now) */
skb_out = alloc_skb(skb_in->len + skb_in->len / 2 + 32 +
skb_headroom(skb_in), GFP_ATOMIC);
if (!skb_out)
return skb_in;
skb_reserve(skb_out, skb_headroom(skb_in));
ret = (compressor->compress)(stat, skb_in, skb_out, *proto);
if (!ret) {
dev_kfree_skb(skb_out);
return skb_in;
}
dev_kfree_skb(skb_in);
*proto = new_proto;
return skb_out;
}
/*
* we received a CCP frame ..
* not a clean solution, but we MUST handle a few cases in the kernel
*/
static void isdn_ppp_receive_ccp(isdn_net_dev *net_dev, isdn_net_local *lp,
struct sk_buff *skb, int proto)
{
struct ippp_struct *is;
struct ippp_struct *mis;
int len;
struct isdn_ppp_resetparams rsparm;
unsigned char rsdata[IPPP_RESET_MAXDATABYTES];
printk(KERN_DEBUG "Received CCP frame from peer slot(%d)\n",
lp->ppp_slot);
if (lp->ppp_slot < 0 || lp->ppp_slot >= ISDN_MAX_CHANNELS) {
printk(KERN_ERR "%s: lp->ppp_slot(%d) out of range\n",
__func__, lp->ppp_slot);
return;
}
is = ippp_table[lp->ppp_slot];
isdn_ppp_frame_log("ccp-rcv", skb->data, skb->len, 32, is->unit, lp->ppp_slot);
if (lp->master) {
int slot = ISDN_MASTER_PRIV(lp)->ppp_slot;
if (slot < 0 || slot >= ISDN_MAX_CHANNELS) {
printk(KERN_ERR "%s: slot(%d) out of range\n",
__func__, slot);
return;
}
mis = ippp_table[slot];
} else
mis = is;
switch (skb->data[0]) {
case CCP_CONFREQ:
if (is->debug & 0x10)
printk(KERN_DEBUG "Disable compression here!\n");
if (proto == PPP_CCP)
mis->compflags &= ~SC_COMP_ON;
else
is->compflags &= ~SC_LINK_COMP_ON;
break;
case CCP_TERMREQ:
case CCP_TERMACK:
if (is->debug & 0x10)
printk(KERN_DEBUG "Disable (de)compression here!\n");
if (proto == PPP_CCP)
mis->compflags &= ~(SC_DECOMP_ON | SC_COMP_ON);
else
is->compflags &= ~(SC_LINK_DECOMP_ON | SC_LINK_COMP_ON);
break;
case CCP_CONFACK:
/* if we RECEIVE an ackowledge we enable the decompressor */
if (is->debug & 0x10)
printk(KERN_DEBUG "Enable decompression here!\n");
if (proto == PPP_CCP) {
if (!mis->decompressor)
break;
mis->compflags |= SC_DECOMP_ON;
} else {
if (!is->decompressor)
break;
is->compflags |= SC_LINK_DECOMP_ON;
}
break;
case CCP_RESETACK:
printk(KERN_DEBUG "Received ResetAck from peer\n");
len = (skb->data[2] << 8) | skb->data[3];
len -= 4;
if (proto == PPP_CCP) {
/* If a reset Ack was outstanding for this id, then
clean up the state engine */
isdn_ppp_ccp_reset_ack_rcvd(mis, skb->data[1]);
if (mis->decompressor && mis->decomp_stat)
mis->decompressor->
reset(mis->decomp_stat,
skb->data[0],
skb->data[1],
len ? &skb->data[4] : NULL,
len, NULL);
/* TODO: This is not easy to decide here */
mis->compflags &= ~SC_DECOMP_DISCARD;
}
else {
isdn_ppp_ccp_reset_ack_rcvd(is, skb->data[1]);
if (is->link_decompressor && is->link_decomp_stat)
is->link_decompressor->
reset(is->link_decomp_stat,
skb->data[0],
skb->data[1],
len ? &skb->data[4] : NULL,
len, NULL);
/* TODO: neither here */
is->compflags &= ~SC_LINK_DECOMP_DISCARD;
}
break;
case CCP_RESETREQ:
printk(KERN_DEBUG "Received ResetReq from peer\n");
/* Receiving a ResetReq means we must reset our compressor */
/* Set up reset params for the reset entry */
memset(&rsparm, 0, sizeof(rsparm));
rsparm.data = rsdata;
rsparm.maxdlen = IPPP_RESET_MAXDATABYTES;
/* Isolate data length */
len = (skb->data[2] << 8) | skb->data[3];
len -= 4;
if (proto == PPP_CCP) {
if (mis->compressor && mis->comp_stat)
mis->compressor->
reset(mis->comp_stat,
skb->data[0],
skb->data[1],
len ? &skb->data[4] : NULL,
len, &rsparm);
}
else {
if (is->link_compressor && is->link_comp_stat)
is->link_compressor->
reset(is->link_comp_stat,
skb->data[0],
skb->data[1],
len ? &skb->data[4] : NULL,
len, &rsparm);
}
/* Ack the Req as specified by rsparm */
if (rsparm.valid) {
/* Compressor reset handler decided how to answer */
if (rsparm.rsend) {
/* We should send a Frame */
isdn_ppp_ccp_xmit_reset(is, proto, CCP_RESETACK,
rsparm.idval ? rsparm.id
: skb->data[1],
rsparm.dtval ?
rsparm.data : NULL,
rsparm.dtval ?
rsparm.dlen : 0);
} else {
printk(KERN_DEBUG "ResetAck suppressed\n");
}
} else {
/* We answer with a straight reflected Ack */
isdn_ppp_ccp_xmit_reset(is, proto, CCP_RESETACK,
skb->data[1],
len ? &skb->data[4] : NULL,
len);
}
break;
}
}
/*
* Daemon sends a CCP frame ...
*/
/* TODO: Clean this up with new Reset semantics */
/* I believe the CCP handling as-is is done wrong. Compressed frames
* should only be sent/received after CCP reaches UP state, which means
* both sides have sent CONF_ACK. Currently, we handle both directions
* independently, which means we may accept compressed frames too early
* (supposedly not a problem), but may also mean we send compressed frames
* too early, which may turn out to be a problem.
* This part of state machine should actually be handled by (i)pppd, but
* that's too big of a change now. --kai
*/
/* Actually, we might turn this into an advantage: deal with the RFC in
* the old tradition of beeing generous on what we accept, but beeing
* strict on what we send. Thus we should just
* - accept compressed frames as soon as decompression is negotiated
* - send compressed frames only when decomp *and* comp are negotiated
* - drop rx compressed frames if we cannot decomp (instead of pushing them
* up to ipppd)
* and I tried to modify this file according to that. --abp
*/
static void isdn_ppp_send_ccp(isdn_net_dev *net_dev, isdn_net_local *lp, struct sk_buff *skb)
{
struct ippp_struct *mis, *is;
int proto, slot = lp->ppp_slot;
unsigned char *data;
if (!skb || skb->len < 3)
return;
if (slot < 0 || slot >= ISDN_MAX_CHANNELS) {
printk(KERN_ERR "%s: lp->ppp_slot(%d) out of range\n",
__func__, slot);
return;
}
is = ippp_table[slot];
/* Daemon may send with or without address and control field comp */
data = skb->data;
if (!(is->pppcfg & SC_COMP_AC) && data[0] == 0xff && data[1] == 0x03) {
data += 2;
if (skb->len < 5)
return;
}
proto = ((int)data[0]<<8) + data[1];
if (proto != PPP_CCP && proto != PPP_CCPFRAG)
return;
printk(KERN_DEBUG "Received CCP frame from daemon:\n");
isdn_ppp_frame_log("ccp-xmit", skb->data, skb->len, 32, is->unit, lp->ppp_slot);
if (lp->master) {
slot = ISDN_MASTER_PRIV(lp)->ppp_slot;
if (slot < 0 || slot >= ISDN_MAX_CHANNELS) {
printk(KERN_ERR "%s: slot(%d) out of range\n",
__func__, slot);
return;
}
mis = ippp_table[slot];
} else
mis = is;
if (mis != is)
printk(KERN_DEBUG "isdn_ppp: Ouch! Master CCP sends on slave slot!\n");
switch (data[2]) {
case CCP_CONFREQ:
if (is->debug & 0x10)
printk(KERN_DEBUG "Disable decompression here!\n");
if (proto == PPP_CCP)
is->compflags &= ~SC_DECOMP_ON;
else
is->compflags &= ~SC_LINK_DECOMP_ON;
break;
case CCP_TERMREQ:
case CCP_TERMACK:
if (is->debug & 0x10)
printk(KERN_DEBUG "Disable (de)compression here!\n");
if (proto == PPP_CCP)
is->compflags &= ~(SC_DECOMP_ON | SC_COMP_ON);
else
is->compflags &= ~(SC_LINK_DECOMP_ON | SC_LINK_COMP_ON);
break;
case CCP_CONFACK:
/* if we SEND an ackowledge we can/must enable the compressor */
if (is->debug & 0x10)
printk(KERN_DEBUG "Enable compression here!\n");
if (proto == PPP_CCP) {
if (!is->compressor)
break;
is->compflags |= SC_COMP_ON;
} else {
if (!is->compressor)
break;
is->compflags |= SC_LINK_COMP_ON;
}
break;
case CCP_RESETACK:
/* If we send a ACK we should reset our compressor */
if (is->debug & 0x10)
printk(KERN_DEBUG "Reset decompression state here!\n");
printk(KERN_DEBUG "ResetAck from daemon passed by\n");
if (proto == PPP_CCP) {
/* link to master? */
if (is->compressor && is->comp_stat)
is->compressor->reset(is->comp_stat, 0, 0,
NULL, 0, NULL);
is->compflags &= ~SC_COMP_DISCARD;
}
else {
if (is->link_compressor && is->link_comp_stat)
is->link_compressor->reset(is->link_comp_stat,
0, 0, NULL, 0, NULL);
is->compflags &= ~SC_LINK_COMP_DISCARD;
}
break;
case CCP_RESETREQ:
/* Just let it pass by */
printk(KERN_DEBUG "ResetReq from daemon passed by\n");
break;
}
}
int isdn_ppp_register_compressor(struct isdn_ppp_compressor *ipc)
{
ipc->next = ipc_head;
ipc->prev = NULL;
if (ipc_head) {
ipc_head->prev = ipc;
}
ipc_head = ipc;
return 0;
}
int isdn_ppp_unregister_compressor(struct isdn_ppp_compressor *ipc)
{
if (ipc->prev)
ipc->prev->next = ipc->next;
else
ipc_head = ipc->next;
if (ipc->next)
ipc->next->prev = ipc->prev;
ipc->prev = ipc->next = NULL;
return 0;
}
static int isdn_ppp_set_compressor(struct ippp_struct *is, struct isdn_ppp_comp_data *data)
{
struct isdn_ppp_compressor *ipc = ipc_head;
int ret;
void *stat;
int num = data->num;
if (is->debug & 0x10)
printk(KERN_DEBUG "[%d] Set %s type %d\n", is->unit,
(data->flags & IPPP_COMP_FLAG_XMIT) ? "compressor" : "decompressor", num);
/* If is has no valid reset state vector, we cannot allocate a
decompressor. The decompressor would cause reset transactions
sooner or later, and they need that vector. */
if (!(data->flags & IPPP_COMP_FLAG_XMIT) && !is->reset) {
printk(KERN_ERR "ippp_ccp: no reset data structure - can't"
" allow decompression.\n");
return -ENOMEM;
}
while (ipc) {
if (ipc->num == num) {
stat = ipc->alloc(data);
if (stat) {
ret = ipc->init(stat, data, is->unit, 0);
if (!ret) {
printk(KERN_ERR "Can't init (de)compression!\n");
ipc->free(stat);
stat = NULL;
break;
}
}
else {
printk(KERN_ERR "Can't alloc (de)compression!\n");
break;
}
if (data->flags & IPPP_COMP_FLAG_XMIT) {
if (data->flags & IPPP_COMP_FLAG_LINK) {
if (is->link_comp_stat)
is->link_compressor->free(is->link_comp_stat);
is->link_comp_stat = stat;
is->link_compressor = ipc;
}
else {
if (is->comp_stat)
is->compressor->free(is->comp_stat);
is->comp_stat = stat;
is->compressor = ipc;
}
}
else {
if (data->flags & IPPP_COMP_FLAG_LINK) {
if (is->link_decomp_stat)
is->link_decompressor->free(is->link_decomp_stat);
is->link_decomp_stat = stat;
is->link_decompressor = ipc;
}
else {
if (is->decomp_stat)
is->decompressor->free(is->decomp_stat);
is->decomp_stat = stat;
is->decompressor = ipc;
}
}
return 0;
}
ipc = ipc->next;
}
return -EINVAL;
}