linux/drivers/net/wireless/ath/ath6kl/txrx.c

1458 lines
34 KiB
C
Raw Normal View History

Add ath6kl cleaned up driver Last May we started working on cleaning up ath6kl driver which is currently in staging. The work has happened in a separate ath6kl-cleanup tree: http://git.kernel.org/?p=linux/kernel/git/kvalo/ath6kl-cleanup.git;a=summary After over 1100 (!) patches we have now reached a state where I would like to start discussing about pushing the driver to the wireless trees and replacing the staging driver. The driver is now a lot smaller and looks like a proper Linux driver. The size of the driver (measured with simple wc -l) dropped from 49 kLOC to 18 kLOC and the number of the .c and .h files dropped from 107 to 22. Most importantly the number of subdirectories reduced from 26 to zero :) There are two remaining checkpatch warnings in the driver which we decided to omit for now: drivers/net/wireless/ath/ath6kl/debug.c:31: WARNING: printk() should include KERN_ facility level drivers/net/wireless/ath/ath6kl/sdio.c:527: WARNING: msleep < 20ms can sleep for up to 20ms; see Documentation/timers/timers-howto.txt The driver has endian annotations for all the hardware specific structures and there are no sparse errors. Unfortunately I don't have any big endian hardware to test that right now. We have been testing the driver both on x86 and arm platforms. The code is also compiled with sparc and parisc cross compilers. Notable missing features compared to the current staging driver are: o HCI over SDIO support o nl80211 testmode o firmware logging o suspend support Testmode, firmware logging and suspend support will be added soon. HCI over SDIO support will be more difficult as the HCI driver needs to share code with the wifi driver. This is something we need to research more. Also I want to point out the changes I did for signed endian support. As I wasn't able to find any support for signed endian annotations I decided to follow what NTFS has done and added my own. Grep for sle16 and sle32, especially from wmi.h. Various people have been working on the cleanup, the hall of fame based on number of patches is: 543 Vasanthakumar Thiagarajan 403 Raja Mani 252 Kalle Valo 16 Vivek Natarajan 12 Suraj Sumangala 3 Joe Perches 2 Jouni Malinen Signed-off-by: Vasanthakumar Thiagarajan <vthiagar@qca.qualcomm.com> Signed-off-by: Raja Mani <rmani@qca.qualcomm.com> Signed-off-by: Vivek Natarajan <nataraja@qca.qualcomm.com> Signed-off-by: Suraj Sumangala <surajs@qca.qualcomm.com> Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Jouni Malinen <jouni@qca.qualcomm.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2011-07-18 05:22:30 +08:00
/*
* Copyright (c) 2004-2011 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "core.h"
#include "debug.h"
static u8 ath6kl_ibss_map_epid(struct sk_buff *skb, struct net_device *dev,
u32 *map_no)
{
struct ath6kl *ar = ath6kl_priv(dev);
struct ethhdr *eth_hdr;
u32 i, ep_map = -1;
u8 *datap;
*map_no = 0;
datap = skb->data;
eth_hdr = (struct ethhdr *) (datap + sizeof(struct wmi_data_hdr));
if (is_multicast_ether_addr(eth_hdr->h_dest))
return ENDPOINT_2;
for (i = 0; i < ar->node_num; i++) {
if (memcmp(eth_hdr->h_dest, ar->node_map[i].mac_addr,
ETH_ALEN) == 0) {
*map_no = i + 1;
ar->node_map[i].tx_pend++;
return ar->node_map[i].ep_id;
}
if ((ep_map == -1) && !ar->node_map[i].tx_pend)
ep_map = i;
}
if (ep_map == -1) {
ep_map = ar->node_num;
ar->node_num++;
if (ar->node_num > MAX_NODE_NUM)
return ENDPOINT_UNUSED;
}
memcpy(ar->node_map[ep_map].mac_addr, eth_hdr->h_dest, ETH_ALEN);
for (i = ENDPOINT_2; i <= ENDPOINT_5; i++) {
if (!ar->tx_pending[i]) {
ar->node_map[ep_map].ep_id = i;
break;
}
/*
* No free endpoint is available, start redistribution on
* the inuse endpoints.
*/
if (i == ENDPOINT_5) {
ar->node_map[ep_map].ep_id = ar->next_ep_id;
ar->next_ep_id++;
if (ar->next_ep_id > ENDPOINT_5)
ar->next_ep_id = ENDPOINT_2;
}
}
*map_no = ep_map + 1;
ar->node_map[ep_map].tx_pend++;
return ar->node_map[ep_map].ep_id;
}
static bool ath6kl_powersave_ap(struct ath6kl *ar, struct sk_buff *skb,
bool *more_data)
{
struct ethhdr *datap = (struct ethhdr *) skb->data;
struct ath6kl_sta *conn = NULL;
bool ps_queued = false, is_psq_empty = false;
if (is_multicast_ether_addr(datap->h_dest)) {
u8 ctr = 0;
bool q_mcast = false;
for (ctr = 0; ctr < AP_MAX_NUM_STA; ctr++) {
if (ar->sta_list[ctr].sta_flags & STA_PS_SLEEP) {
q_mcast = true;
break;
}
}
if (q_mcast) {
/*
* If this transmit is not because of a Dtim Expiry
* q it.
*/
if (!test_bit(DTIM_EXPIRED, &ar->flag)) {
bool is_mcastq_empty = false;
spin_lock_bh(&ar->mcastpsq_lock);
is_mcastq_empty =
skb_queue_empty(&ar->mcastpsq);
skb_queue_tail(&ar->mcastpsq, skb);
spin_unlock_bh(&ar->mcastpsq_lock);
/*
* If this is the first Mcast pkt getting
* queued indicate to the target to set the
* BitmapControl LSB of the TIM IE.
*/
if (is_mcastq_empty)
ath6kl_wmi_set_pvb_cmd(ar->wmi,
MCAST_AID, 1);
ps_queued = true;
} else {
/*
* This transmit is because of Dtim expiry.
* Determine if MoreData bit has to be set.
*/
spin_lock_bh(&ar->mcastpsq_lock);
if (!skb_queue_empty(&ar->mcastpsq))
*more_data = true;
spin_unlock_bh(&ar->mcastpsq_lock);
}
}
} else {
conn = ath6kl_find_sta(ar, datap->h_dest);
if (!conn) {
dev_kfree_skb(skb);
/* Inform the caller that the skb is consumed */
return true;
}
if (conn->sta_flags & STA_PS_SLEEP) {
if (!(conn->sta_flags & STA_PS_POLLED)) {
/* Queue the frames if the STA is sleeping */
spin_lock_bh(&conn->psq_lock);
is_psq_empty = skb_queue_empty(&conn->psq);
skb_queue_tail(&conn->psq, skb);
spin_unlock_bh(&conn->psq_lock);
/*
* If this is the first pkt getting queued
* for this STA, update the PVB for this
* STA.
*/
if (is_psq_empty)
ath6kl_wmi_set_pvb_cmd(ar->wmi,
conn->aid, 1);
ps_queued = true;
} else {
/*
* This tx is because of a PsPoll.
* Determine if MoreData bit has to be set.
*/
spin_lock_bh(&conn->psq_lock);
if (!skb_queue_empty(&conn->psq))
*more_data = true;
spin_unlock_bh(&conn->psq_lock);
}
}
}
return ps_queued;
}
/* Tx functions */
int ath6kl_control_tx(void *devt, struct sk_buff *skb,
enum htc_endpoint_id eid)
{
struct ath6kl *ar = devt;
int status = 0;
struct ath6kl_cookie *cookie = NULL;
spin_lock_bh(&ar->lock);
ath6kl_dbg(ATH6KL_DBG_WLAN_TX,
"%s: skb=0x%p, len=0x%x eid =%d\n", __func__,
skb, skb->len, eid);
if (test_bit(WMI_CTRL_EP_FULL, &ar->flag) && (eid == ar->ctrl_ep)) {
/*
* Control endpoint is full, don't allocate resources, we
* are just going to drop this packet.
*/
cookie = NULL;
ath6kl_err("wmi ctrl ep full, dropping pkt : 0x%p, len:%d\n",
skb, skb->len);
} else
cookie = ath6kl_alloc_cookie(ar);
if (cookie == NULL) {
spin_unlock_bh(&ar->lock);
status = -ENOMEM;
goto fail_ctrl_tx;
}
ar->tx_pending[eid]++;
if (eid != ar->ctrl_ep)
ar->total_tx_data_pend++;
spin_unlock_bh(&ar->lock);
cookie->skb = skb;
cookie->map_no = 0;
set_htc_pkt_info(&cookie->htc_pkt, cookie, skb->data, skb->len,
eid, ATH6KL_CONTROL_PKT_TAG);
/*
* This interface is asynchronous, if there is an error, cleanup
* will happen in the TX completion callback.
*/
ath6kl_htc_tx(ar->htc_target, &cookie->htc_pkt);
Add ath6kl cleaned up driver Last May we started working on cleaning up ath6kl driver which is currently in staging. The work has happened in a separate ath6kl-cleanup tree: http://git.kernel.org/?p=linux/kernel/git/kvalo/ath6kl-cleanup.git;a=summary After over 1100 (!) patches we have now reached a state where I would like to start discussing about pushing the driver to the wireless trees and replacing the staging driver. The driver is now a lot smaller and looks like a proper Linux driver. The size of the driver (measured with simple wc -l) dropped from 49 kLOC to 18 kLOC and the number of the .c and .h files dropped from 107 to 22. Most importantly the number of subdirectories reduced from 26 to zero :) There are two remaining checkpatch warnings in the driver which we decided to omit for now: drivers/net/wireless/ath/ath6kl/debug.c:31: WARNING: printk() should include KERN_ facility level drivers/net/wireless/ath/ath6kl/sdio.c:527: WARNING: msleep < 20ms can sleep for up to 20ms; see Documentation/timers/timers-howto.txt The driver has endian annotations for all the hardware specific structures and there are no sparse errors. Unfortunately I don't have any big endian hardware to test that right now. We have been testing the driver both on x86 and arm platforms. The code is also compiled with sparc and parisc cross compilers. Notable missing features compared to the current staging driver are: o HCI over SDIO support o nl80211 testmode o firmware logging o suspend support Testmode, firmware logging and suspend support will be added soon. HCI over SDIO support will be more difficult as the HCI driver needs to share code with the wifi driver. This is something we need to research more. Also I want to point out the changes I did for signed endian support. As I wasn't able to find any support for signed endian annotations I decided to follow what NTFS has done and added my own. Grep for sle16 and sle32, especially from wmi.h. Various people have been working on the cleanup, the hall of fame based on number of patches is: 543 Vasanthakumar Thiagarajan 403 Raja Mani 252 Kalle Valo 16 Vivek Natarajan 12 Suraj Sumangala 3 Joe Perches 2 Jouni Malinen Signed-off-by: Vasanthakumar Thiagarajan <vthiagar@qca.qualcomm.com> Signed-off-by: Raja Mani <rmani@qca.qualcomm.com> Signed-off-by: Vivek Natarajan <nataraja@qca.qualcomm.com> Signed-off-by: Suraj Sumangala <surajs@qca.qualcomm.com> Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Jouni Malinen <jouni@qca.qualcomm.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2011-07-18 05:22:30 +08:00
return 0;
fail_ctrl_tx:
dev_kfree_skb(skb);
return status;
}
int ath6kl_data_tx(struct sk_buff *skb, struct net_device *dev)
{
struct ath6kl *ar = ath6kl_priv(dev);
struct ath6kl_cookie *cookie = NULL;
enum htc_endpoint_id eid = ENDPOINT_UNUSED;
u32 map_no = 0;
u16 htc_tag = ATH6KL_DATA_PKT_TAG;
u8 ac = 99 ; /* initialize to unmapped ac */
bool chk_adhoc_ps_mapping = false, more_data = false;
struct wmi_tx_meta_v2 meta_v2;
int ret;
ath6kl_dbg(ATH6KL_DBG_WLAN_TX,
"%s: skb=0x%p, data=0x%p, len=0x%x\n", __func__,
skb, skb->data, skb->len);
/* If target is not associated */
if (!test_bit(CONNECTED, &ar->flag)) {
dev_kfree_skb(skb);
return 0;
}
if (!test_bit(WMI_READY, &ar->flag))
goto fail_tx;
/* AP mode Power saving processing */
if (ar->nw_type == AP_NETWORK) {
if (ath6kl_powersave_ap(ar, skb, &more_data))
return 0;
}
if (test_bit(WMI_ENABLED, &ar->flag)) {
memset(&meta_v2, 0, sizeof(meta_v2));
if (skb_headroom(skb) < dev->needed_headroom) {
WARN_ON(1);
goto fail_tx;
}
if (ath6kl_wmi_dix_2_dot3(ar->wmi, skb)) {
ath6kl_err("ath6kl_wmi_dix_2_dot3 failed\n");
goto fail_tx;
}
if (ath6kl_wmi_data_hdr_add(ar->wmi, skb, DATA_MSGTYPE,
more_data, 0, 0, NULL)) {
ath6kl_err("wmi_data_hdr_add failed\n");
goto fail_tx;
}
if ((ar->nw_type == ADHOC_NETWORK) &&
ar->ibss_ps_enable && test_bit(CONNECTED, &ar->flag))
chk_adhoc_ps_mapping = true;
else {
/* get the stream mapping */
ret = ath6kl_wmi_implicit_create_pstream(ar->wmi, skb,
0, test_bit(WMM_ENABLED, &ar->flag), &ac);
if (ret)
goto fail_tx;
}
} else
goto fail_tx;
spin_lock_bh(&ar->lock);
if (chk_adhoc_ps_mapping)
eid = ath6kl_ibss_map_epid(skb, dev, &map_no);
else
eid = ar->ac2ep_map[ac];
if (eid == 0 || eid == ENDPOINT_UNUSED) {
ath6kl_err("eid %d is not mapped!\n", eid);
spin_unlock_bh(&ar->lock);
goto fail_tx;
}
/* allocate resource for this packet */
cookie = ath6kl_alloc_cookie(ar);
if (!cookie) {
spin_unlock_bh(&ar->lock);
goto fail_tx;
}
/* update counts while the lock is held */
ar->tx_pending[eid]++;
ar->total_tx_data_pend++;
spin_unlock_bh(&ar->lock);
cookie->skb = skb;
cookie->map_no = map_no;
set_htc_pkt_info(&cookie->htc_pkt, cookie, skb->data, skb->len,
eid, htc_tag);
ath6kl_dbg_dump(ATH6KL_DBG_RAW_BYTES, __func__, skb->data, skb->len);
/*
* HTC interface is asynchronous, if this fails, cleanup will
* happen in the ath6kl_tx_complete callback.
*/
ath6kl_htc_tx(ar->htc_target, &cookie->htc_pkt);
Add ath6kl cleaned up driver Last May we started working on cleaning up ath6kl driver which is currently in staging. The work has happened in a separate ath6kl-cleanup tree: http://git.kernel.org/?p=linux/kernel/git/kvalo/ath6kl-cleanup.git;a=summary After over 1100 (!) patches we have now reached a state where I would like to start discussing about pushing the driver to the wireless trees and replacing the staging driver. The driver is now a lot smaller and looks like a proper Linux driver. The size of the driver (measured with simple wc -l) dropped from 49 kLOC to 18 kLOC and the number of the .c and .h files dropped from 107 to 22. Most importantly the number of subdirectories reduced from 26 to zero :) There are two remaining checkpatch warnings in the driver which we decided to omit for now: drivers/net/wireless/ath/ath6kl/debug.c:31: WARNING: printk() should include KERN_ facility level drivers/net/wireless/ath/ath6kl/sdio.c:527: WARNING: msleep < 20ms can sleep for up to 20ms; see Documentation/timers/timers-howto.txt The driver has endian annotations for all the hardware specific structures and there are no sparse errors. Unfortunately I don't have any big endian hardware to test that right now. We have been testing the driver both on x86 and arm platforms. The code is also compiled with sparc and parisc cross compilers. Notable missing features compared to the current staging driver are: o HCI over SDIO support o nl80211 testmode o firmware logging o suspend support Testmode, firmware logging and suspend support will be added soon. HCI over SDIO support will be more difficult as the HCI driver needs to share code with the wifi driver. This is something we need to research more. Also I want to point out the changes I did for signed endian support. As I wasn't able to find any support for signed endian annotations I decided to follow what NTFS has done and added my own. Grep for sle16 and sle32, especially from wmi.h. Various people have been working on the cleanup, the hall of fame based on number of patches is: 543 Vasanthakumar Thiagarajan 403 Raja Mani 252 Kalle Valo 16 Vivek Natarajan 12 Suraj Sumangala 3 Joe Perches 2 Jouni Malinen Signed-off-by: Vasanthakumar Thiagarajan <vthiagar@qca.qualcomm.com> Signed-off-by: Raja Mani <rmani@qca.qualcomm.com> Signed-off-by: Vivek Natarajan <nataraja@qca.qualcomm.com> Signed-off-by: Suraj Sumangala <surajs@qca.qualcomm.com> Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Jouni Malinen <jouni@qca.qualcomm.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2011-07-18 05:22:30 +08:00
return 0;
fail_tx:
dev_kfree_skb(skb);
ar->net_stats.tx_dropped++;
ar->net_stats.tx_aborted_errors++;
return 0;
}
/* indicate tx activity or inactivity on a WMI stream */
void ath6kl_indicate_tx_activity(void *devt, u8 traffic_class, bool active)
{
struct ath6kl *ar = devt;
enum htc_endpoint_id eid;
int i;
eid = ar->ac2ep_map[traffic_class];
if (!test_bit(WMI_ENABLED, &ar->flag))
goto notify_htc;
spin_lock_bh(&ar->lock);
ar->ac_stream_active[traffic_class] = active;
if (active) {
/*
* Keep track of the active stream with the highest
* priority.
*/
if (ar->ac_stream_pri_map[traffic_class] >
ar->hiac_stream_active_pri)
/* set the new highest active priority */
ar->hiac_stream_active_pri =
ar->ac_stream_pri_map[traffic_class];
} else {
/*
* We may have to search for the next active stream
* that is the highest priority.
*/
if (ar->hiac_stream_active_pri ==
ar->ac_stream_pri_map[traffic_class]) {
/*
* The highest priority stream just went inactive
* reset and search for the "next" highest "active"
* priority stream.
*/
ar->hiac_stream_active_pri = 0;
for (i = 0; i < WMM_NUM_AC; i++) {
if (ar->ac_stream_active[i] &&
(ar->ac_stream_pri_map[i] >
ar->hiac_stream_active_pri))
/*
* Set the new highest active
* priority.
*/
ar->hiac_stream_active_pri =
ar->ac_stream_pri_map[i];
}
}
}
spin_unlock_bh(&ar->lock);
notify_htc:
/* notify HTC, this may cause credit distribution changes */
ath6kl_htc_indicate_activity_change(ar->htc_target, eid, active);
Add ath6kl cleaned up driver Last May we started working on cleaning up ath6kl driver which is currently in staging. The work has happened in a separate ath6kl-cleanup tree: http://git.kernel.org/?p=linux/kernel/git/kvalo/ath6kl-cleanup.git;a=summary After over 1100 (!) patches we have now reached a state where I would like to start discussing about pushing the driver to the wireless trees and replacing the staging driver. The driver is now a lot smaller and looks like a proper Linux driver. The size of the driver (measured with simple wc -l) dropped from 49 kLOC to 18 kLOC and the number of the .c and .h files dropped from 107 to 22. Most importantly the number of subdirectories reduced from 26 to zero :) There are two remaining checkpatch warnings in the driver which we decided to omit for now: drivers/net/wireless/ath/ath6kl/debug.c:31: WARNING: printk() should include KERN_ facility level drivers/net/wireless/ath/ath6kl/sdio.c:527: WARNING: msleep < 20ms can sleep for up to 20ms; see Documentation/timers/timers-howto.txt The driver has endian annotations for all the hardware specific structures and there are no sparse errors. Unfortunately I don't have any big endian hardware to test that right now. We have been testing the driver both on x86 and arm platforms. The code is also compiled with sparc and parisc cross compilers. Notable missing features compared to the current staging driver are: o HCI over SDIO support o nl80211 testmode o firmware logging o suspend support Testmode, firmware logging and suspend support will be added soon. HCI over SDIO support will be more difficult as the HCI driver needs to share code with the wifi driver. This is something we need to research more. Also I want to point out the changes I did for signed endian support. As I wasn't able to find any support for signed endian annotations I decided to follow what NTFS has done and added my own. Grep for sle16 and sle32, especially from wmi.h. Various people have been working on the cleanup, the hall of fame based on number of patches is: 543 Vasanthakumar Thiagarajan 403 Raja Mani 252 Kalle Valo 16 Vivek Natarajan 12 Suraj Sumangala 3 Joe Perches 2 Jouni Malinen Signed-off-by: Vasanthakumar Thiagarajan <vthiagar@qca.qualcomm.com> Signed-off-by: Raja Mani <rmani@qca.qualcomm.com> Signed-off-by: Vivek Natarajan <nataraja@qca.qualcomm.com> Signed-off-by: Suraj Sumangala <surajs@qca.qualcomm.com> Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Jouni Malinen <jouni@qca.qualcomm.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2011-07-18 05:22:30 +08:00
}
enum htc_send_full_action ath6kl_tx_queue_full(struct htc_target *target,
struct htc_packet *packet)
{
struct ath6kl *ar = target->dev->ar;
enum htc_endpoint_id endpoint = packet->endpoint;
if (endpoint == ar->ctrl_ep) {
/*
* Under normal WMI if this is getting full, then something
* is running rampant the host should not be exhausting the
* WMI queue with too many commands the only exception to
* this is during testing using endpointping.
*/
spin_lock_bh(&ar->lock);
set_bit(WMI_CTRL_EP_FULL, &ar->flag);
spin_unlock_bh(&ar->lock);
ath6kl_err("wmi ctrl ep is full\n");
return HTC_SEND_FULL_KEEP;
}
if (packet->info.tx.tag == ATH6KL_CONTROL_PKT_TAG)
return HTC_SEND_FULL_KEEP;
if (ar->nw_type == ADHOC_NETWORK)
/*
* In adhoc mode, we cannot differentiate traffic
* priorities so there is no need to continue, however we
* should stop the network.
*/
goto stop_net_queues;
/*
* The last MAX_HI_COOKIE_NUM "batch" of cookies are reserved for
* the highest active stream.
*/
if (ar->ac_stream_pri_map[ar->ep2ac_map[endpoint]] <
ar->hiac_stream_active_pri &&
ar->cookie_count <= MAX_HI_COOKIE_NUM)
/*
* Give preference to the highest priority stream by
* dropping the packets which overflowed.
*/
return HTC_SEND_FULL_DROP;
stop_net_queues:
spin_lock_bh(&ar->lock);
set_bit(NETQ_STOPPED, &ar->flag);
spin_unlock_bh(&ar->lock);
netif_stop_queue(ar->net_dev);
return HTC_SEND_FULL_KEEP;
}
/* TODO this needs to be looked at */
static void ath6kl_tx_clear_node_map(struct ath6kl *ar,
enum htc_endpoint_id eid, u32 map_no)
{
u32 i;
if (ar->nw_type != ADHOC_NETWORK)
return;
if (!ar->ibss_ps_enable)
return;
if (eid == ar->ctrl_ep)
return;
if (map_no == 0)
return;
map_no--;
ar->node_map[map_no].tx_pend--;
if (ar->node_map[map_no].tx_pend)
return;
if (map_no != (ar->node_num - 1))
return;
for (i = ar->node_num; i > 0; i--) {
if (ar->node_map[i - 1].tx_pend)
break;
memset(&ar->node_map[i - 1], 0,
sizeof(struct ath6kl_node_mapping));
ar->node_num--;
}
}
void ath6kl_tx_complete(void *context, struct list_head *packet_queue)
{
struct ath6kl *ar = context;
struct sk_buff_head skb_queue;
struct htc_packet *packet;
struct sk_buff *skb;
struct ath6kl_cookie *ath6kl_cookie;
u32 map_no = 0;
int status;
enum htc_endpoint_id eid;
bool wake_event = false;
bool flushing = false;
skb_queue_head_init(&skb_queue);
/* lock the driver as we update internal state */
spin_lock_bh(&ar->lock);
/* reap completed packets */
while (!list_empty(packet_queue)) {
packet = list_first_entry(packet_queue, struct htc_packet,
list);
list_del(&packet->list);
ath6kl_cookie = (struct ath6kl_cookie *)packet->pkt_cntxt;
if (!ath6kl_cookie)
goto fatal;
status = packet->status;
skb = ath6kl_cookie->skb;
eid = packet->endpoint;
map_no = ath6kl_cookie->map_no;
if (!skb || !skb->data)
goto fatal;
packet->buf = skb->data;
__skb_queue_tail(&skb_queue, skb);
if (!status && (packet->act_len != skb->len))
goto fatal;
ar->tx_pending[eid]--;
if (eid != ar->ctrl_ep)
ar->total_tx_data_pend--;
if (eid == ar->ctrl_ep) {
if (test_bit(WMI_CTRL_EP_FULL, &ar->flag))
clear_bit(WMI_CTRL_EP_FULL, &ar->flag);
if (ar->tx_pending[eid] == 0)
wake_event = true;
}
if (status) {
if (status == -ECANCELED)
/* a packet was flushed */
flushing = true;
ar->net_stats.tx_errors++;
if (status != -ENOSPC)
ath6kl_err("tx error, status: 0x%x\n", status);
ath6kl_dbg(ATH6KL_DBG_WLAN_TX,
"%s: skb=0x%p data=0x%p len=0x%x eid=%d %s\n",
__func__, skb, packet->buf, packet->act_len,
eid, "error!");
} else {
ath6kl_dbg(ATH6KL_DBG_WLAN_TX,
"%s: skb=0x%p data=0x%p len=0x%x eid=%d %s\n",
__func__, skb, packet->buf, packet->act_len,
eid, "OK");
flushing = false;
ar->net_stats.tx_packets++;
ar->net_stats.tx_bytes += skb->len;
}
ath6kl_tx_clear_node_map(ar, eid, map_no);
ath6kl_free_cookie(ar, ath6kl_cookie);
if (test_bit(NETQ_STOPPED, &ar->flag))
clear_bit(NETQ_STOPPED, &ar->flag);
}
spin_unlock_bh(&ar->lock);
__skb_queue_purge(&skb_queue);
if (test_bit(CONNECTED, &ar->flag)) {
if (!flushing)
netif_wake_queue(ar->net_dev);
}
if (wake_event)
wake_up(&ar->event_wq);
return;
fatal:
WARN_ON(1);
spin_unlock_bh(&ar->lock);
return;
}
void ath6kl_tx_data_cleanup(struct ath6kl *ar)
{
int i;
/* flush all the data (non-control) streams */
for (i = 0; i < WMM_NUM_AC; i++)
ath6kl_htc_flush_txep(ar->htc_target, ar->ac2ep_map[i],
ATH6KL_DATA_PKT_TAG);
Add ath6kl cleaned up driver Last May we started working on cleaning up ath6kl driver which is currently in staging. The work has happened in a separate ath6kl-cleanup tree: http://git.kernel.org/?p=linux/kernel/git/kvalo/ath6kl-cleanup.git;a=summary After over 1100 (!) patches we have now reached a state where I would like to start discussing about pushing the driver to the wireless trees and replacing the staging driver. The driver is now a lot smaller and looks like a proper Linux driver. The size of the driver (measured with simple wc -l) dropped from 49 kLOC to 18 kLOC and the number of the .c and .h files dropped from 107 to 22. Most importantly the number of subdirectories reduced from 26 to zero :) There are two remaining checkpatch warnings in the driver which we decided to omit for now: drivers/net/wireless/ath/ath6kl/debug.c:31: WARNING: printk() should include KERN_ facility level drivers/net/wireless/ath/ath6kl/sdio.c:527: WARNING: msleep < 20ms can sleep for up to 20ms; see Documentation/timers/timers-howto.txt The driver has endian annotations for all the hardware specific structures and there are no sparse errors. Unfortunately I don't have any big endian hardware to test that right now. We have been testing the driver both on x86 and arm platforms. The code is also compiled with sparc and parisc cross compilers. Notable missing features compared to the current staging driver are: o HCI over SDIO support o nl80211 testmode o firmware logging o suspend support Testmode, firmware logging and suspend support will be added soon. HCI over SDIO support will be more difficult as the HCI driver needs to share code with the wifi driver. This is something we need to research more. Also I want to point out the changes I did for signed endian support. As I wasn't able to find any support for signed endian annotations I decided to follow what NTFS has done and added my own. Grep for sle16 and sle32, especially from wmi.h. Various people have been working on the cleanup, the hall of fame based on number of patches is: 543 Vasanthakumar Thiagarajan 403 Raja Mani 252 Kalle Valo 16 Vivek Natarajan 12 Suraj Sumangala 3 Joe Perches 2 Jouni Malinen Signed-off-by: Vasanthakumar Thiagarajan <vthiagar@qca.qualcomm.com> Signed-off-by: Raja Mani <rmani@qca.qualcomm.com> Signed-off-by: Vivek Natarajan <nataraja@qca.qualcomm.com> Signed-off-by: Suraj Sumangala <surajs@qca.qualcomm.com> Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Jouni Malinen <jouni@qca.qualcomm.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2011-07-18 05:22:30 +08:00
}
/* Rx functions */
static void ath6kl_deliver_frames_to_nw_stack(struct net_device *dev,
struct sk_buff *skb)
{
if (!skb)
return;
skb->dev = dev;
if (!(skb->dev->flags & IFF_UP)) {
dev_kfree_skb(skb);
return;
}
skb->protocol = eth_type_trans(skb, skb->dev);
netif_rx_ni(skb);
}
static void ath6kl_alloc_netbufs(struct sk_buff_head *q, u16 num)
{
struct sk_buff *skb;
while (num) {
skb = ath6kl_buf_alloc(ATH6KL_BUFFER_SIZE);
if (!skb) {
ath6kl_err("netbuf allocation failed\n");
return;
}
skb_queue_tail(q, skb);
num--;
}
}
static struct sk_buff *aggr_get_free_skb(struct aggr_info *p_aggr)
{
struct sk_buff *skb = NULL;
if (skb_queue_len(&p_aggr->free_q) < (AGGR_NUM_OF_FREE_NETBUFS >> 2))
ath6kl_alloc_netbufs(&p_aggr->free_q, AGGR_NUM_OF_FREE_NETBUFS);
skb = skb_dequeue(&p_aggr->free_q);
return skb;
}
void ath6kl_rx_refill(struct htc_target *target, enum htc_endpoint_id endpoint)
{
struct ath6kl *ar = target->dev->ar;
struct sk_buff *skb;
int rx_buf;
int n_buf_refill;
struct htc_packet *packet;
struct list_head queue;
n_buf_refill = ATH6KL_MAX_RX_BUFFERS -
ath6kl_htc_get_rxbuf_num(ar->htc_target, endpoint);
Add ath6kl cleaned up driver Last May we started working on cleaning up ath6kl driver which is currently in staging. The work has happened in a separate ath6kl-cleanup tree: http://git.kernel.org/?p=linux/kernel/git/kvalo/ath6kl-cleanup.git;a=summary After over 1100 (!) patches we have now reached a state where I would like to start discussing about pushing the driver to the wireless trees and replacing the staging driver. The driver is now a lot smaller and looks like a proper Linux driver. The size of the driver (measured with simple wc -l) dropped from 49 kLOC to 18 kLOC and the number of the .c and .h files dropped from 107 to 22. Most importantly the number of subdirectories reduced from 26 to zero :) There are two remaining checkpatch warnings in the driver which we decided to omit for now: drivers/net/wireless/ath/ath6kl/debug.c:31: WARNING: printk() should include KERN_ facility level drivers/net/wireless/ath/ath6kl/sdio.c:527: WARNING: msleep < 20ms can sleep for up to 20ms; see Documentation/timers/timers-howto.txt The driver has endian annotations for all the hardware specific structures and there are no sparse errors. Unfortunately I don't have any big endian hardware to test that right now. We have been testing the driver both on x86 and arm platforms. The code is also compiled with sparc and parisc cross compilers. Notable missing features compared to the current staging driver are: o HCI over SDIO support o nl80211 testmode o firmware logging o suspend support Testmode, firmware logging and suspend support will be added soon. HCI over SDIO support will be more difficult as the HCI driver needs to share code with the wifi driver. This is something we need to research more. Also I want to point out the changes I did for signed endian support. As I wasn't able to find any support for signed endian annotations I decided to follow what NTFS has done and added my own. Grep for sle16 and sle32, especially from wmi.h. Various people have been working on the cleanup, the hall of fame based on number of patches is: 543 Vasanthakumar Thiagarajan 403 Raja Mani 252 Kalle Valo 16 Vivek Natarajan 12 Suraj Sumangala 3 Joe Perches 2 Jouni Malinen Signed-off-by: Vasanthakumar Thiagarajan <vthiagar@qca.qualcomm.com> Signed-off-by: Raja Mani <rmani@qca.qualcomm.com> Signed-off-by: Vivek Natarajan <nataraja@qca.qualcomm.com> Signed-off-by: Suraj Sumangala <surajs@qca.qualcomm.com> Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Jouni Malinen <jouni@qca.qualcomm.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2011-07-18 05:22:30 +08:00
if (n_buf_refill <= 0)
return;
INIT_LIST_HEAD(&queue);
ath6kl_dbg(ATH6KL_DBG_WLAN_RX,
"%s: providing htc with %d buffers at eid=%d\n",
__func__, n_buf_refill, endpoint);
for (rx_buf = 0; rx_buf < n_buf_refill; rx_buf++) {
skb = ath6kl_buf_alloc(ATH6KL_BUFFER_SIZE);
if (!skb)
break;
packet = (struct htc_packet *) skb->head;
set_htc_rxpkt_info(packet, skb, skb->data,
ATH6KL_BUFFER_SIZE, endpoint);
list_add_tail(&packet->list, &queue);
}
if (!list_empty(&queue))
ath6kl_htc_add_rxbuf_multiple(ar->htc_target, &queue);
Add ath6kl cleaned up driver Last May we started working on cleaning up ath6kl driver which is currently in staging. The work has happened in a separate ath6kl-cleanup tree: http://git.kernel.org/?p=linux/kernel/git/kvalo/ath6kl-cleanup.git;a=summary After over 1100 (!) patches we have now reached a state where I would like to start discussing about pushing the driver to the wireless trees and replacing the staging driver. The driver is now a lot smaller and looks like a proper Linux driver. The size of the driver (measured with simple wc -l) dropped from 49 kLOC to 18 kLOC and the number of the .c and .h files dropped from 107 to 22. Most importantly the number of subdirectories reduced from 26 to zero :) There are two remaining checkpatch warnings in the driver which we decided to omit for now: drivers/net/wireless/ath/ath6kl/debug.c:31: WARNING: printk() should include KERN_ facility level drivers/net/wireless/ath/ath6kl/sdio.c:527: WARNING: msleep < 20ms can sleep for up to 20ms; see Documentation/timers/timers-howto.txt The driver has endian annotations for all the hardware specific structures and there are no sparse errors. Unfortunately I don't have any big endian hardware to test that right now. We have been testing the driver both on x86 and arm platforms. The code is also compiled with sparc and parisc cross compilers. Notable missing features compared to the current staging driver are: o HCI over SDIO support o nl80211 testmode o firmware logging o suspend support Testmode, firmware logging and suspend support will be added soon. HCI over SDIO support will be more difficult as the HCI driver needs to share code with the wifi driver. This is something we need to research more. Also I want to point out the changes I did for signed endian support. As I wasn't able to find any support for signed endian annotations I decided to follow what NTFS has done and added my own. Grep for sle16 and sle32, especially from wmi.h. Various people have been working on the cleanup, the hall of fame based on number of patches is: 543 Vasanthakumar Thiagarajan 403 Raja Mani 252 Kalle Valo 16 Vivek Natarajan 12 Suraj Sumangala 3 Joe Perches 2 Jouni Malinen Signed-off-by: Vasanthakumar Thiagarajan <vthiagar@qca.qualcomm.com> Signed-off-by: Raja Mani <rmani@qca.qualcomm.com> Signed-off-by: Vivek Natarajan <nataraja@qca.qualcomm.com> Signed-off-by: Suraj Sumangala <surajs@qca.qualcomm.com> Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Jouni Malinen <jouni@qca.qualcomm.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2011-07-18 05:22:30 +08:00
}
void ath6kl_refill_amsdu_rxbufs(struct ath6kl *ar, int count)
{
struct htc_packet *packet;
struct sk_buff *skb;
while (count) {
skb = ath6kl_buf_alloc(ATH6KL_AMSDU_BUFFER_SIZE);
if (!skb)
return;
packet = (struct htc_packet *) skb->head;
set_htc_rxpkt_info(packet, skb, skb->data,
ATH6KL_AMSDU_BUFFER_SIZE, 0);
spin_lock_bh(&ar->lock);
list_add_tail(&packet->list, &ar->amsdu_rx_buffer_queue);
spin_unlock_bh(&ar->lock);
count--;
}
}
/*
* Callback to allocate a receive buffer for a pending packet. We use a
* pre-allocated list of buffers of maximum AMSDU size (4K).
*/
struct htc_packet *ath6kl_alloc_amsdu_rxbuf(struct htc_target *target,
enum htc_endpoint_id endpoint,
int len)
{
struct ath6kl *ar = target->dev->ar;
struct htc_packet *packet = NULL;
struct list_head *pkt_pos;
int refill_cnt = 0, depth = 0;
ath6kl_dbg(ATH6KL_DBG_WLAN_RX, "%s: eid=%d, len:%d\n",
__func__, endpoint, len);
if ((len <= ATH6KL_BUFFER_SIZE) ||
(len > ATH6KL_AMSDU_BUFFER_SIZE))
return NULL;
spin_lock_bh(&ar->lock);
if (list_empty(&ar->amsdu_rx_buffer_queue)) {
spin_unlock_bh(&ar->lock);
refill_cnt = ATH6KL_MAX_AMSDU_RX_BUFFERS;
goto refill_buf;
}
packet = list_first_entry(&ar->amsdu_rx_buffer_queue,
struct htc_packet, list);
list_del(&packet->list);
list_for_each(pkt_pos, &ar->amsdu_rx_buffer_queue)
depth++;
refill_cnt = ATH6KL_MAX_AMSDU_RX_BUFFERS - depth;
spin_unlock_bh(&ar->lock);
/* set actual endpoint ID */
packet->endpoint = endpoint;
refill_buf:
if (refill_cnt >= ATH6KL_AMSDU_REFILL_THRESHOLD)
ath6kl_refill_amsdu_rxbufs(ar, refill_cnt);
return packet;
}
static void aggr_slice_amsdu(struct aggr_info *p_aggr,
struct rxtid *rxtid, struct sk_buff *skb)
{
struct sk_buff *new_skb;
struct ethhdr *hdr;
u16 frame_8023_len, payload_8023_len, mac_hdr_len, amsdu_len;
u8 *framep;
mac_hdr_len = sizeof(struct ethhdr);
framep = skb->data + mac_hdr_len;
amsdu_len = skb->len - mac_hdr_len;
while (amsdu_len > mac_hdr_len) {
hdr = (struct ethhdr *) framep;
payload_8023_len = ntohs(hdr->h_proto);
if (payload_8023_len < MIN_MSDU_SUBFRAME_PAYLOAD_LEN ||
payload_8023_len > MAX_MSDU_SUBFRAME_PAYLOAD_LEN) {
ath6kl_err("802.3 AMSDU frame bound check failed. len %d\n",
payload_8023_len);
break;
}
frame_8023_len = payload_8023_len + mac_hdr_len;
new_skb = aggr_get_free_skb(p_aggr);
if (!new_skb) {
ath6kl_err("no buffer available\n");
break;
}
memcpy(new_skb->data, framep, frame_8023_len);
skb_put(new_skb, frame_8023_len);
if (ath6kl_wmi_dot3_2_dix(new_skb)) {
ath6kl_err("dot3_2_dix error\n");
dev_kfree_skb(new_skb);
break;
}
skb_queue_tail(&rxtid->q, new_skb);
/* Is this the last subframe within this aggregate ? */
if ((amsdu_len - frame_8023_len) == 0)
break;
/* Add the length of A-MSDU subframe padding bytes -
* Round to nearest word.
*/
frame_8023_len = ALIGN(frame_8023_len + 3, 3);
framep += frame_8023_len;
amsdu_len -= frame_8023_len;
}
dev_kfree_skb(skb);
}
static void aggr_deque_frms(struct aggr_info *p_aggr, u8 tid,
u16 seq_no, u8 order)
{
struct sk_buff *skb;
struct rxtid *rxtid;
struct skb_hold_q *node;
u16 idx, idx_end, seq_end;
struct rxtid_stats *stats;
if (!p_aggr)
return;
rxtid = &p_aggr->rx_tid[tid];
stats = &p_aggr->stat[tid];
idx = AGGR_WIN_IDX(rxtid->seq_next, rxtid->hold_q_sz);
/*
* idx_end is typically the last possible frame in the window,
* but changes to 'the' seq_no, when BAR comes. If seq_no
* is non-zero, we will go up to that and stop.
* Note: last seq no in current window will occupy the same
* index position as index that is just previous to start.
* An imp point : if win_sz is 7, for seq_no space of 4095,
* then, there would be holes when sequence wrap around occurs.
* Target should judiciously choose the win_sz, based on
* this condition. For 4095, (TID_WINDOW_SZ = 2 x win_sz
* 2, 4, 8, 16 win_sz works fine).
* We must deque from "idx" to "idx_end", including both.
*/
seq_end = seq_no ? seq_no : rxtid->seq_next;
idx_end = AGGR_WIN_IDX(seq_end, rxtid->hold_q_sz);
spin_lock_bh(&rxtid->lock);
do {
node = &rxtid->hold_q[idx];
if ((order == 1) && (!node->skb))
break;
if (node->skb) {
if (node->is_amsdu)
aggr_slice_amsdu(p_aggr, rxtid, node->skb);
else
skb_queue_tail(&rxtid->q, node->skb);
node->skb = NULL;
} else
stats->num_hole++;
rxtid->seq_next = ATH6KL_NEXT_SEQ_NO(rxtid->seq_next);
idx = AGGR_WIN_IDX(rxtid->seq_next, rxtid->hold_q_sz);
} while (idx != idx_end);
spin_unlock_bh(&rxtid->lock);
stats->num_delivered += skb_queue_len(&rxtid->q);
while ((skb = skb_dequeue(&rxtid->q)))
ath6kl_deliver_frames_to_nw_stack(p_aggr->dev, skb);
}
static bool aggr_process_recv_frm(struct aggr_info *agg_info, u8 tid,
u16 seq_no,
bool is_amsdu, struct sk_buff *frame)
{
struct rxtid *rxtid;
struct rxtid_stats *stats;
struct sk_buff *skb;
struct skb_hold_q *node;
u16 idx, st, cur, end;
bool is_queued = false;
u16 extended_end;
rxtid = &agg_info->rx_tid[tid];
stats = &agg_info->stat[tid];
stats->num_into_aggr++;
if (!rxtid->aggr) {
if (is_amsdu) {
aggr_slice_amsdu(agg_info, rxtid, frame);
is_queued = true;
stats->num_amsdu++;
while ((skb = skb_dequeue(&rxtid->q)))
ath6kl_deliver_frames_to_nw_stack(agg_info->dev,
skb);
}
return is_queued;
}
/* Check the incoming sequence no, if it's in the window */
st = rxtid->seq_next;
cur = seq_no;
end = (st + rxtid->hold_q_sz-1) & ATH6KL_MAX_SEQ_NO;
if (((st < end) && (cur < st || cur > end)) ||
((st > end) && (cur > end) && (cur < st))) {
extended_end = (end + rxtid->hold_q_sz - 1) &
ATH6KL_MAX_SEQ_NO;
if (((end < extended_end) &&
(cur < end || cur > extended_end)) ||
((end > extended_end) && (cur > extended_end) &&
(cur < end))) {
aggr_deque_frms(agg_info, tid, 0, 0);
if (cur >= rxtid->hold_q_sz - 1)
rxtid->seq_next = cur - (rxtid->hold_q_sz - 1);
else
rxtid->seq_next = ATH6KL_MAX_SEQ_NO -
(rxtid->hold_q_sz - 2 - cur);
} else {
/*
* Dequeue only those frames that are outside the
* new shifted window.
*/
if (cur >= rxtid->hold_q_sz - 1)
st = cur - (rxtid->hold_q_sz - 1);
else
st = ATH6KL_MAX_SEQ_NO -
(rxtid->hold_q_sz - 2 - cur);
aggr_deque_frms(agg_info, tid, st, 0);
}
stats->num_oow++;
}
idx = AGGR_WIN_IDX(seq_no, rxtid->hold_q_sz);
node = &rxtid->hold_q[idx];
spin_lock_bh(&rxtid->lock);
/*
* Is the cur frame duplicate or something beyond our window(hold_q
* -> which is 2x, already)?
*
* 1. Duplicate is easy - drop incoming frame.
* 2. Not falling in current sliding window.
* 2a. is the frame_seq_no preceding current tid_seq_no?
* -> drop the frame. perhaps sender did not get our ACK.
* this is taken care of above.
* 2b. is the frame_seq_no beyond window(st, TID_WINDOW_SZ);
* -> Taken care of it above, by moving window forward.
*/
dev_kfree_skb(node->skb);
stats->num_dups++;
node->skb = frame;
is_queued = true;
node->is_amsdu = is_amsdu;
node->seq_no = seq_no;
if (node->is_amsdu)
stats->num_amsdu++;
else
stats->num_mpdu++;
spin_unlock_bh(&rxtid->lock);
aggr_deque_frms(agg_info, tid, 0, 1);
if (agg_info->timer_scheduled)
rxtid->progress = true;
else
for (idx = 0 ; idx < rxtid->hold_q_sz; idx++) {
if (rxtid->hold_q[idx].skb) {
/*
* There is a frame in the queue and no
* timer so start a timer to ensure that
* the frame doesn't remain stuck
* forever.
*/
agg_info->timer_scheduled = true;
mod_timer(&agg_info->timer,
(jiffies +
HZ * (AGGR_RX_TIMEOUT) / 1000));
rxtid->progress = false;
rxtid->timer_mon = true;
break;
}
}
return is_queued;
}
void ath6kl_rx(struct htc_target *target, struct htc_packet *packet)
{
struct ath6kl *ar = target->dev->ar;
struct sk_buff *skb = packet->pkt_cntxt;
struct wmi_rx_meta_v2 *meta;
struct wmi_data_hdr *dhdr;
int min_hdr_len;
u8 meta_type, dot11_hdr = 0;
int status = packet->status;
enum htc_endpoint_id ept = packet->endpoint;
bool is_amsdu, prev_ps, ps_state = false;
struct ath6kl_sta *conn = NULL;
struct sk_buff *skb1 = NULL;
struct ethhdr *datap = NULL;
u16 seq_no, offset;
u8 tid;
ath6kl_dbg(ATH6KL_DBG_WLAN_RX,
"%s: ar=0x%p eid=%d, skb=0x%p, data=0x%p, len=0x%x status:%d",
__func__, ar, ept, skb, packet->buf,
packet->act_len, status);
if (status || !(skb->data + HTC_HDR_LENGTH)) {
ar->net_stats.rx_errors++;
dev_kfree_skb(skb);
return;
}
/*
* Take lock to protect buffer counts and adaptive power throughput
* state.
*/
spin_lock_bh(&ar->lock);
ar->net_stats.rx_packets++;
ar->net_stats.rx_bytes += packet->act_len;
spin_unlock_bh(&ar->lock);
Add ath6kl cleaned up driver Last May we started working on cleaning up ath6kl driver which is currently in staging. The work has happened in a separate ath6kl-cleanup tree: http://git.kernel.org/?p=linux/kernel/git/kvalo/ath6kl-cleanup.git;a=summary After over 1100 (!) patches we have now reached a state where I would like to start discussing about pushing the driver to the wireless trees and replacing the staging driver. The driver is now a lot smaller and looks like a proper Linux driver. The size of the driver (measured with simple wc -l) dropped from 49 kLOC to 18 kLOC and the number of the .c and .h files dropped from 107 to 22. Most importantly the number of subdirectories reduced from 26 to zero :) There are two remaining checkpatch warnings in the driver which we decided to omit for now: drivers/net/wireless/ath/ath6kl/debug.c:31: WARNING: printk() should include KERN_ facility level drivers/net/wireless/ath/ath6kl/sdio.c:527: WARNING: msleep < 20ms can sleep for up to 20ms; see Documentation/timers/timers-howto.txt The driver has endian annotations for all the hardware specific structures and there are no sparse errors. Unfortunately I don't have any big endian hardware to test that right now. We have been testing the driver both on x86 and arm platforms. The code is also compiled with sparc and parisc cross compilers. Notable missing features compared to the current staging driver are: o HCI over SDIO support o nl80211 testmode o firmware logging o suspend support Testmode, firmware logging and suspend support will be added soon. HCI over SDIO support will be more difficult as the HCI driver needs to share code with the wifi driver. This is something we need to research more. Also I want to point out the changes I did for signed endian support. As I wasn't able to find any support for signed endian annotations I decided to follow what NTFS has done and added my own. Grep for sle16 and sle32, especially from wmi.h. Various people have been working on the cleanup, the hall of fame based on number of patches is: 543 Vasanthakumar Thiagarajan 403 Raja Mani 252 Kalle Valo 16 Vivek Natarajan 12 Suraj Sumangala 3 Joe Perches 2 Jouni Malinen Signed-off-by: Vasanthakumar Thiagarajan <vthiagar@qca.qualcomm.com> Signed-off-by: Raja Mani <rmani@qca.qualcomm.com> Signed-off-by: Vivek Natarajan <nataraja@qca.qualcomm.com> Signed-off-by: Suraj Sumangala <surajs@qca.qualcomm.com> Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Jouni Malinen <jouni@qca.qualcomm.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2011-07-18 05:22:30 +08:00
skb_put(skb, packet->act_len + HTC_HDR_LENGTH);
skb_pull(skb, HTC_HDR_LENGTH);
ath6kl_dbg_dump(ATH6KL_DBG_RAW_BYTES, __func__, skb->data, skb->len);
skb->dev = ar->net_dev;
if (!test_bit(WMI_ENABLED, &ar->flag)) {
if (EPPING_ALIGNMENT_PAD > 0)
skb_pull(skb, EPPING_ALIGNMENT_PAD);
ath6kl_deliver_frames_to_nw_stack(ar->net_dev, skb);
return;
}
if (ept == ar->ctrl_ep) {
ath6kl_wmi_control_rx(ar->wmi, skb);
return;
}
min_hdr_len = sizeof(struct ethhdr);
min_hdr_len += sizeof(struct wmi_data_hdr) +
sizeof(struct ath6kl_llc_snap_hdr);
dhdr = (struct wmi_data_hdr *) skb->data;
/*
* In the case of AP mode we may receive NULL data frames
* that do not have LLC hdr. They are 16 bytes in size.
* Allow these frames in the AP mode.
*/
if (ar->nw_type != AP_NETWORK &&
((packet->act_len < min_hdr_len) ||
(packet->act_len > WMI_MAX_AMSDU_RX_DATA_FRAME_LENGTH))) {
ath6kl_info("frame len is too short or too long\n");
ar->net_stats.rx_errors++;
ar->net_stats.rx_length_errors++;
dev_kfree_skb(skb);
return;
}
/* Get the Power save state of the STA */
if (ar->nw_type == AP_NETWORK) {
meta_type = wmi_data_hdr_get_meta(dhdr);
ps_state = !!((dhdr->info >> WMI_DATA_HDR_PS_SHIFT) &
WMI_DATA_HDR_PS_MASK);
offset = sizeof(struct wmi_data_hdr);
switch (meta_type) {
case 0:
break;
case WMI_META_VERSION_1:
offset += sizeof(struct wmi_rx_meta_v1);
break;
case WMI_META_VERSION_2:
offset += sizeof(struct wmi_rx_meta_v2);
break;
default:
break;
}
datap = (struct ethhdr *) (skb->data + offset);
conn = ath6kl_find_sta(ar, datap->h_source);
if (!conn) {
dev_kfree_skb(skb);
return;
}
/*
* If there is a change in PS state of the STA,
* take appropriate steps:
*
* 1. If Sleep-->Awake, flush the psq for the STA
* Clear the PVB for the STA.
* 2. If Awake-->Sleep, Starting queueing frames
* the STA.
*/
prev_ps = !!(conn->sta_flags & STA_PS_SLEEP);
if (ps_state)
conn->sta_flags |= STA_PS_SLEEP;
else
conn->sta_flags &= ~STA_PS_SLEEP;
if (prev_ps ^ !!(conn->sta_flags & STA_PS_SLEEP)) {
if (!(conn->sta_flags & STA_PS_SLEEP)) {
struct sk_buff *skbuff = NULL;
spin_lock_bh(&conn->psq_lock);
while ((skbuff = skb_dequeue(&conn->psq))
!= NULL) {
spin_unlock_bh(&conn->psq_lock);
ath6kl_data_tx(skbuff, ar->net_dev);
spin_lock_bh(&conn->psq_lock);
}
spin_unlock_bh(&conn->psq_lock);
/* Clear the PVB for this STA */
ath6kl_wmi_set_pvb_cmd(ar->wmi, conn->aid, 0);
}
}
/* drop NULL data frames here */
if ((packet->act_len < min_hdr_len) ||
(packet->act_len >
WMI_MAX_AMSDU_RX_DATA_FRAME_LENGTH)) {
dev_kfree_skb(skb);
return;
}
}
is_amsdu = wmi_data_hdr_is_amsdu(dhdr) ? true : false;
tid = wmi_data_hdr_get_up(dhdr);
seq_no = wmi_data_hdr_get_seqno(dhdr);
meta_type = wmi_data_hdr_get_meta(dhdr);
dot11_hdr = wmi_data_hdr_get_dot11(dhdr);
ath6kl_wmi_data_hdr_remove(ar->wmi, skb);
switch (meta_type) {
case WMI_META_VERSION_1:
skb_pull(skb, sizeof(struct wmi_rx_meta_v1));
break;
case WMI_META_VERSION_2:
meta = (struct wmi_rx_meta_v2 *) skb->data;
if (meta->csum_flags & 0x1) {
skb->ip_summed = CHECKSUM_COMPLETE;
skb->csum = (__force __wsum) meta->csum;
}
skb_pull(skb, sizeof(struct wmi_rx_meta_v2));
break;
default:
break;
}
if (dot11_hdr)
status = ath6kl_wmi_dot11_hdr_remove(ar->wmi, skb);
else if (!is_amsdu)
status = ath6kl_wmi_dot3_2_dix(skb);
if (status) {
/*
* Drop frames that could not be processed (lack of
* memory, etc.)
*/
dev_kfree_skb(skb);
return;
}
if (!(ar->net_dev->flags & IFF_UP)) {
dev_kfree_skb(skb);
return;
}
if (ar->nw_type == AP_NETWORK) {
datap = (struct ethhdr *) skb->data;
if (is_multicast_ether_addr(datap->h_dest))
/*
* Bcast/Mcast frames should be sent to the
* OS stack as well as on the air.
*/
skb1 = skb_copy(skb, GFP_ATOMIC);
else {
/*
* Search for a connected STA with dstMac
* as the Mac address. If found send the
* frame to it on the air else send the
* frame up the stack.
*/
struct ath6kl_sta *conn = NULL;
conn = ath6kl_find_sta(ar, datap->h_dest);
if (conn && ar->intra_bss) {
skb1 = skb;
skb = NULL;
} else if (conn && !ar->intra_bss) {
dev_kfree_skb(skb);
skb = NULL;
}
}
if (skb1)
ath6kl_data_tx(skb1, ar->net_dev);
}
if (!aggr_process_recv_frm(ar->aggr_cntxt, tid, seq_no,
is_amsdu, skb))
ath6kl_deliver_frames_to_nw_stack(ar->net_dev, skb);
}
static void aggr_timeout(unsigned long arg)
{
u8 i, j;
struct aggr_info *p_aggr = (struct aggr_info *) arg;
struct rxtid *rxtid;
struct rxtid_stats *stats;
for (i = 0; i < NUM_OF_TIDS; i++) {
rxtid = &p_aggr->rx_tid[i];
stats = &p_aggr->stat[i];
if (!rxtid->aggr || !rxtid->timer_mon || rxtid->progress)
continue;
/*
* FIXME: these timeouts happen quite fruently, something
* line once within 60 seconds. Investigate why.
*/
Add ath6kl cleaned up driver Last May we started working on cleaning up ath6kl driver which is currently in staging. The work has happened in a separate ath6kl-cleanup tree: http://git.kernel.org/?p=linux/kernel/git/kvalo/ath6kl-cleanup.git;a=summary After over 1100 (!) patches we have now reached a state where I would like to start discussing about pushing the driver to the wireless trees and replacing the staging driver. The driver is now a lot smaller and looks like a proper Linux driver. The size of the driver (measured with simple wc -l) dropped from 49 kLOC to 18 kLOC and the number of the .c and .h files dropped from 107 to 22. Most importantly the number of subdirectories reduced from 26 to zero :) There are two remaining checkpatch warnings in the driver which we decided to omit for now: drivers/net/wireless/ath/ath6kl/debug.c:31: WARNING: printk() should include KERN_ facility level drivers/net/wireless/ath/ath6kl/sdio.c:527: WARNING: msleep < 20ms can sleep for up to 20ms; see Documentation/timers/timers-howto.txt The driver has endian annotations for all the hardware specific structures and there are no sparse errors. Unfortunately I don't have any big endian hardware to test that right now. We have been testing the driver both on x86 and arm platforms. The code is also compiled with sparc and parisc cross compilers. Notable missing features compared to the current staging driver are: o HCI over SDIO support o nl80211 testmode o firmware logging o suspend support Testmode, firmware logging and suspend support will be added soon. HCI over SDIO support will be more difficult as the HCI driver needs to share code with the wifi driver. This is something we need to research more. Also I want to point out the changes I did for signed endian support. As I wasn't able to find any support for signed endian annotations I decided to follow what NTFS has done and added my own. Grep for sle16 and sle32, especially from wmi.h. Various people have been working on the cleanup, the hall of fame based on number of patches is: 543 Vasanthakumar Thiagarajan 403 Raja Mani 252 Kalle Valo 16 Vivek Natarajan 12 Suraj Sumangala 3 Joe Perches 2 Jouni Malinen Signed-off-by: Vasanthakumar Thiagarajan <vthiagar@qca.qualcomm.com> Signed-off-by: Raja Mani <rmani@qca.qualcomm.com> Signed-off-by: Vivek Natarajan <nataraja@qca.qualcomm.com> Signed-off-by: Suraj Sumangala <surajs@qca.qualcomm.com> Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Jouni Malinen <jouni@qca.qualcomm.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2011-07-18 05:22:30 +08:00
stats->num_timeouts++;
ath6kl_dbg(ATH6KL_DBG_AGGR,
"aggr timeout (st %d end %d)\n",
Add ath6kl cleaned up driver Last May we started working on cleaning up ath6kl driver which is currently in staging. The work has happened in a separate ath6kl-cleanup tree: http://git.kernel.org/?p=linux/kernel/git/kvalo/ath6kl-cleanup.git;a=summary After over 1100 (!) patches we have now reached a state where I would like to start discussing about pushing the driver to the wireless trees and replacing the staging driver. The driver is now a lot smaller and looks like a proper Linux driver. The size of the driver (measured with simple wc -l) dropped from 49 kLOC to 18 kLOC and the number of the .c and .h files dropped from 107 to 22. Most importantly the number of subdirectories reduced from 26 to zero :) There are two remaining checkpatch warnings in the driver which we decided to omit for now: drivers/net/wireless/ath/ath6kl/debug.c:31: WARNING: printk() should include KERN_ facility level drivers/net/wireless/ath/ath6kl/sdio.c:527: WARNING: msleep < 20ms can sleep for up to 20ms; see Documentation/timers/timers-howto.txt The driver has endian annotations for all the hardware specific structures and there are no sparse errors. Unfortunately I don't have any big endian hardware to test that right now. We have been testing the driver both on x86 and arm platforms. The code is also compiled with sparc and parisc cross compilers. Notable missing features compared to the current staging driver are: o HCI over SDIO support o nl80211 testmode o firmware logging o suspend support Testmode, firmware logging and suspend support will be added soon. HCI over SDIO support will be more difficult as the HCI driver needs to share code with the wifi driver. This is something we need to research more. Also I want to point out the changes I did for signed endian support. As I wasn't able to find any support for signed endian annotations I decided to follow what NTFS has done and added my own. Grep for sle16 and sle32, especially from wmi.h. Various people have been working on the cleanup, the hall of fame based on number of patches is: 543 Vasanthakumar Thiagarajan 403 Raja Mani 252 Kalle Valo 16 Vivek Natarajan 12 Suraj Sumangala 3 Joe Perches 2 Jouni Malinen Signed-off-by: Vasanthakumar Thiagarajan <vthiagar@qca.qualcomm.com> Signed-off-by: Raja Mani <rmani@qca.qualcomm.com> Signed-off-by: Vivek Natarajan <nataraja@qca.qualcomm.com> Signed-off-by: Suraj Sumangala <surajs@qca.qualcomm.com> Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Jouni Malinen <jouni@qca.qualcomm.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2011-07-18 05:22:30 +08:00
rxtid->seq_next,
((rxtid->seq_next + rxtid->hold_q_sz-1) &
ATH6KL_MAX_SEQ_NO));
aggr_deque_frms(p_aggr, i, 0, 0);
}
p_aggr->timer_scheduled = false;
for (i = 0; i < NUM_OF_TIDS; i++) {
rxtid = &p_aggr->rx_tid[i];
if (rxtid->aggr && rxtid->hold_q) {
for (j = 0; j < rxtid->hold_q_sz; j++) {
if (rxtid->hold_q[j].skb) {
p_aggr->timer_scheduled = true;
rxtid->timer_mon = true;
rxtid->progress = false;
break;
}
}
if (j >= rxtid->hold_q_sz)
rxtid->timer_mon = false;
}
}
if (p_aggr->timer_scheduled)
mod_timer(&p_aggr->timer,
jiffies + msecs_to_jiffies(AGGR_RX_TIMEOUT));
}
static void aggr_delete_tid_state(struct aggr_info *p_aggr, u8 tid)
{
struct rxtid *rxtid;
struct rxtid_stats *stats;
if (!p_aggr || tid >= NUM_OF_TIDS)
return;
rxtid = &p_aggr->rx_tid[tid];
stats = &p_aggr->stat[tid];
if (rxtid->aggr)
aggr_deque_frms(p_aggr, tid, 0, 0);
rxtid->aggr = false;
rxtid->progress = false;
rxtid->timer_mon = false;
rxtid->win_sz = 0;
rxtid->seq_next = 0;
rxtid->hold_q_sz = 0;
kfree(rxtid->hold_q);
rxtid->hold_q = NULL;
memset(stats, 0, sizeof(struct rxtid_stats));
}
void aggr_recv_addba_req_evt(struct ath6kl *ar, u8 tid, u16 seq_no, u8 win_sz)
{
struct aggr_info *p_aggr = ar->aggr_cntxt;
struct rxtid *rxtid;
struct rxtid_stats *stats;
u16 hold_q_size;
if (!p_aggr)
return;
rxtid = &p_aggr->rx_tid[tid];
stats = &p_aggr->stat[tid];
if (win_sz < AGGR_WIN_SZ_MIN || win_sz > AGGR_WIN_SZ_MAX)
ath6kl_dbg(ATH6KL_DBG_WLAN_RX, "%s: win_sz %d, tid %d\n",
__func__, win_sz, tid);
if (rxtid->aggr)
aggr_delete_tid_state(p_aggr, tid);
rxtid->seq_next = seq_no;
hold_q_size = TID_WINDOW_SZ(win_sz) * sizeof(struct skb_hold_q);
rxtid->hold_q = kzalloc(hold_q_size, GFP_KERNEL);
if (!rxtid->hold_q)
return;
rxtid->win_sz = win_sz;
rxtid->hold_q_sz = TID_WINDOW_SZ(win_sz);
if (!skb_queue_empty(&rxtid->q))
return;
rxtid->aggr = true;
}
struct aggr_info *aggr_init(struct net_device *dev)
{
struct aggr_info *p_aggr = NULL;
struct rxtid *rxtid;
u8 i;
p_aggr = kzalloc(sizeof(struct aggr_info), GFP_KERNEL);
if (!p_aggr) {
ath6kl_err("failed to alloc memory for aggr_node\n");
return NULL;
}
p_aggr->aggr_sz = AGGR_SZ_DEFAULT;
p_aggr->dev = dev;
init_timer(&p_aggr->timer);
p_aggr->timer.function = aggr_timeout;
p_aggr->timer.data = (unsigned long) p_aggr;
p_aggr->timer_scheduled = false;
skb_queue_head_init(&p_aggr->free_q);
ath6kl_alloc_netbufs(&p_aggr->free_q, AGGR_NUM_OF_FREE_NETBUFS);
for (i = 0; i < NUM_OF_TIDS; i++) {
rxtid = &p_aggr->rx_tid[i];
rxtid->aggr = false;
rxtid->progress = false;
rxtid->timer_mon = false;
skb_queue_head_init(&rxtid->q);
spin_lock_init(&rxtid->lock);
}
return p_aggr;
}
void aggr_recv_delba_req_evt(struct ath6kl *ar, u8 tid)
{
struct aggr_info *p_aggr = ar->aggr_cntxt;
struct rxtid *rxtid;
if (!p_aggr)
return;
rxtid = &p_aggr->rx_tid[tid];
if (rxtid->aggr)
aggr_delete_tid_state(p_aggr, tid);
}
void aggr_reset_state(struct aggr_info *aggr_info)
{
u8 tid;
for (tid = 0; tid < NUM_OF_TIDS; tid++)
aggr_delete_tid_state(aggr_info, tid);
}
/* clean up our amsdu buffer list */
void ath6kl_cleanup_amsdu_rxbufs(struct ath6kl *ar)
{
struct htc_packet *packet, *tmp_pkt;
spin_lock_bh(&ar->lock);
if (list_empty(&ar->amsdu_rx_buffer_queue)) {
spin_unlock_bh(&ar->lock);
return;
}
list_for_each_entry_safe(packet, tmp_pkt, &ar->amsdu_rx_buffer_queue,
list) {
list_del(&packet->list);
spin_unlock_bh(&ar->lock);
dev_kfree_skb(packet->pkt_cntxt);
spin_lock_bh(&ar->lock);
}
spin_unlock_bh(&ar->lock);
}
void aggr_module_destroy(struct aggr_info *aggr_info)
{
struct rxtid *rxtid;
u8 i, k;
if (!aggr_info)
return;
if (aggr_info->timer_scheduled) {
del_timer(&aggr_info->timer);
aggr_info->timer_scheduled = false;
}
for (i = 0; i < NUM_OF_TIDS; i++) {
rxtid = &aggr_info->rx_tid[i];
if (rxtid->hold_q) {
for (k = 0; k < rxtid->hold_q_sz; k++)
dev_kfree_skb(rxtid->hold_q[k].skb);
kfree(rxtid->hold_q);
}
skb_queue_purge(&rxtid->q);
}
skb_queue_purge(&aggr_info->free_q);
kfree(aggr_info);
}