linux/drivers/net/ipvlan/ipvlan.h

122 lines
3.2 KiB
C
Raw Normal View History

ipvlan: Initial check-in of the IPVLAN driver. This driver is very similar to the macvlan driver except that it uses L3 on the frame to determine the logical interface while functioning as packet dispatcher. It inherits L2 of the master device hence the packets on wire will have the same L2 for all the packets originating from all virtual devices off of the same master device. This driver was developed keeping the namespace use-case in mind. Hence most of the examples given here take that as the base setup where main-device belongs to the default-ns and virtual devices are assigned to the additional namespaces. The device operates in two different modes and the difference in these two modes in primarily in the TX side. (a) L2 mode : In this mode, the device behaves as a L2 device. TX processing upto L2 happens on the stack of the virtual device associated with (namespace). Packets are switched after that into the main device (default-ns) and queued for xmit. RX processing is simple and all multicast, broadcast (if applicable), and unicast belonging to the address(es) are delivered to the virtual devices. (b) L3 mode : In this mode, the device behaves like a L3 device. TX processing upto L3 happens on the stack of the virtual device associated with (namespace). Packets are switched to the main-device (default-ns) for the L2 processing. Hence the routing table of the default-ns will be used in this mode. RX processins is somewhat similar to the L2 mode except that in this mode only Unicast packets are delivered to the virtual device while main-dev will handle all other packets. The devices can be added using the "ip" command from the iproute2 package - ip link add link <master> <virtual> type ipvlan mode [ l2 | l3 ] Signed-off-by: Mahesh Bandewar <maheshb@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Maciej Żenczykowski <maze@google.com> Cc: Laurent Chavey <chavey@google.com> Cc: Tim Hockin <thockin@google.com> Cc: Brandon Philips <brandon.philips@coreos.com> Cc: Pavel Emelianov <xemul@parallels.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-24 15:07:46 +08:00
/*
* Copyright (c) 2014 Mahesh Bandewar <maheshb@google.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
*/
#ifndef __IPVLAN_H
#define __IPVLAN_H
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/rculist.h>
#include <linux/notifier.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_arp.h>
#include <linux/if_link.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/inetdevice.h>
#include <net/ip.h>
#include <net/ip6_route.h>
ipvlan: Initial check-in of the IPVLAN driver. This driver is very similar to the macvlan driver except that it uses L3 on the frame to determine the logical interface while functioning as packet dispatcher. It inherits L2 of the master device hence the packets on wire will have the same L2 for all the packets originating from all virtual devices off of the same master device. This driver was developed keeping the namespace use-case in mind. Hence most of the examples given here take that as the base setup where main-device belongs to the default-ns and virtual devices are assigned to the additional namespaces. The device operates in two different modes and the difference in these two modes in primarily in the TX side. (a) L2 mode : In this mode, the device behaves as a L2 device. TX processing upto L2 happens on the stack of the virtual device associated with (namespace). Packets are switched after that into the main device (default-ns) and queued for xmit. RX processing is simple and all multicast, broadcast (if applicable), and unicast belonging to the address(es) are delivered to the virtual devices. (b) L3 mode : In this mode, the device behaves like a L3 device. TX processing upto L3 happens on the stack of the virtual device associated with (namespace). Packets are switched to the main-device (default-ns) for the L2 processing. Hence the routing table of the default-ns will be used in this mode. RX processins is somewhat similar to the L2 mode except that in this mode only Unicast packets are delivered to the virtual device while main-dev will handle all other packets. The devices can be added using the "ip" command from the iproute2 package - ip link add link <master> <virtual> type ipvlan mode [ l2 | l3 ] Signed-off-by: Mahesh Bandewar <maheshb@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Maciej Żenczykowski <maze@google.com> Cc: Laurent Chavey <chavey@google.com> Cc: Tim Hockin <thockin@google.com> Cc: Brandon Philips <brandon.philips@coreos.com> Cc: Pavel Emelianov <xemul@parallels.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-24 15:07:46 +08:00
#include <net/rtnetlink.h>
#include <net/route.h>
#include <net/addrconf.h>
#define IPVLAN_DRV "ipvlan"
#define IPV_DRV_VER "0.1"
#define IPVLAN_HASH_SIZE (1 << BITS_PER_BYTE)
#define IPVLAN_HASH_MASK (IPVLAN_HASH_SIZE - 1)
#define IPVLAN_MAC_FILTER_BITS 8
#define IPVLAN_MAC_FILTER_SIZE (1 << IPVLAN_MAC_FILTER_BITS)
#define IPVLAN_MAC_FILTER_MASK (IPVLAN_MAC_FILTER_SIZE - 1)
typedef enum {
IPVL_IPV6 = 0,
IPVL_ICMPV6,
IPVL_IPV4,
IPVL_ARP,
} ipvl_hdr_type;
struct ipvl_pcpu_stats {
u64 rx_pkts;
u64 rx_bytes;
u64 rx_mcast;
u64 tx_pkts;
u64 tx_bytes;
struct u64_stats_sync syncp;
u32 rx_errs;
u32 tx_drps;
};
struct ipvl_port;
struct ipvl_dev {
struct net_device *dev;
struct list_head pnode;
struct ipvl_port *port;
struct net_device *phy_dev;
struct list_head addrs;
int ipv4cnt;
int ipv6cnt;
struct ipvl_pcpu_stats *pcpu_stats;
DECLARE_BITMAP(mac_filters, IPVLAN_MAC_FILTER_SIZE);
netdev_features_t sfeatures;
u32 msg_enable;
u16 mtu_adj;
};
struct ipvl_addr {
struct ipvl_dev *master; /* Back pointer to master */
union {
struct in6_addr ip6; /* IPv6 address on logical interface */
struct in_addr ip4; /* IPv4 address on logical interface */
} ipu;
#define ip6addr ipu.ip6
#define ip4addr ipu.ip4
struct hlist_node hlnode; /* Hash-table linkage */
struct list_head anode; /* logical-interface linkage */
struct rcu_head rcu;
ipvl_hdr_type atype;
};
struct ipvl_port {
struct net_device *dev;
struct hlist_head hlhead[IPVLAN_HASH_SIZE];
struct list_head ipvlans;
struct rcu_head rcu;
int count;
u16 mode;
};
static inline struct ipvl_port *ipvlan_port_get_rcu(const struct net_device *d)
{
return rcu_dereference(d->rx_handler_data);
}
static inline struct ipvl_port *ipvlan_port_get_rtnl(const struct net_device *d)
{
return rtnl_dereference(d->rx_handler_data);
}
void ipvlan_adjust_mtu(struct ipvl_dev *ipvlan, struct net_device *dev);
void ipvlan_set_port_mode(struct ipvl_port *port, u32 nval);
void ipvlan_init_secret(void);
unsigned int ipvlan_mac_hash(const unsigned char *addr);
rx_handler_result_t ipvlan_handle_frame(struct sk_buff **pskb);
int ipvlan_queue_xmit(struct sk_buff *skb, struct net_device *dev);
void ipvlan_ht_addr_add(struct ipvl_dev *ipvlan, struct ipvl_addr *addr);
bool ipvlan_addr_busy(struct ipvl_dev *ipvlan, void *iaddr, bool is_v6);
struct ipvl_addr *ipvlan_ht_addr_lookup(const struct ipvl_port *port,
const void *iaddr, bool is_v6);
void ipvlan_ht_addr_del(struct ipvl_addr *addr, bool sync);
#endif /* __IPVLAN_H */