mirror of https://gitee.com/openkylin/linux.git
424 lines
14 KiB
C
424 lines
14 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/* Copyright (c) 2019, Vladimir Oltean <olteanv@gmail.com>
|
||
|
*/
|
||
|
#include "sja1105.h"
|
||
|
|
||
|
#define SJA1105_TAS_CLKSRC_DISABLED 0
|
||
|
#define SJA1105_TAS_CLKSRC_STANDALONE 1
|
||
|
#define SJA1105_TAS_CLKSRC_AS6802 2
|
||
|
#define SJA1105_TAS_CLKSRC_PTP 3
|
||
|
#define SJA1105_TAS_MAX_DELTA BIT(19)
|
||
|
#define SJA1105_GATE_MASK GENMASK_ULL(SJA1105_NUM_TC - 1, 0)
|
||
|
|
||
|
/* This is not a preprocessor macro because the "ns" argument may or may not be
|
||
|
* s64 at caller side. This ensures it is properly type-cast before div_s64.
|
||
|
*/
|
||
|
static s64 ns_to_sja1105_delta(s64 ns)
|
||
|
{
|
||
|
return div_s64(ns, 200);
|
||
|
}
|
||
|
|
||
|
/* Lo and behold: the egress scheduler from hell.
|
||
|
*
|
||
|
* At the hardware level, the Time-Aware Shaper holds a global linear arrray of
|
||
|
* all schedule entries for all ports. These are the Gate Control List (GCL)
|
||
|
* entries, let's call them "timeslots" for short. This linear array of
|
||
|
* timeslots is held in BLK_IDX_SCHEDULE.
|
||
|
*
|
||
|
* Then there are a maximum of 8 "execution threads" inside the switch, which
|
||
|
* iterate cyclically through the "schedule". Each "cycle" has an entry point
|
||
|
* and an exit point, both being timeslot indices in the schedule table. The
|
||
|
* hardware calls each cycle a "subschedule".
|
||
|
*
|
||
|
* Subschedule (cycle) i starts when
|
||
|
* ptpclkval >= ptpschtm + BLK_IDX_SCHEDULE_ENTRY_POINTS[i].delta.
|
||
|
*
|
||
|
* The hardware scheduler iterates BLK_IDX_SCHEDULE with a k ranging from
|
||
|
* k = BLK_IDX_SCHEDULE_ENTRY_POINTS[i].address to
|
||
|
* k = BLK_IDX_SCHEDULE_PARAMS.subscheind[i]
|
||
|
*
|
||
|
* For each schedule entry (timeslot) k, the engine executes the gate control
|
||
|
* list entry for the duration of BLK_IDX_SCHEDULE[k].delta.
|
||
|
*
|
||
|
* +---------+
|
||
|
* | | BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS
|
||
|
* +---------+
|
||
|
* |
|
||
|
* +-----------------+
|
||
|
* | .actsubsch
|
||
|
* BLK_IDX_SCHEDULE_ENTRY_POINTS v
|
||
|
* +-------+-------+
|
||
|
* |cycle 0|cycle 1|
|
||
|
* +-------+-------+
|
||
|
* | | | |
|
||
|
* +----------------+ | | +-------------------------------------+
|
||
|
* | .subschindx | | .subschindx |
|
||
|
* | | +---------------+ |
|
||
|
* | .address | .address | |
|
||
|
* | | | |
|
||
|
* | | | |
|
||
|
* | BLK_IDX_SCHEDULE v v |
|
||
|
* | +-------+-------+-------+-------+-------+------+ |
|
||
|
* | |entry 0|entry 1|entry 2|entry 3|entry 4|entry5| |
|
||
|
* | +-------+-------+-------+-------+-------+------+ |
|
||
|
* | ^ ^ ^ ^ |
|
||
|
* | | | | | |
|
||
|
* | +-------------------------+ | | | |
|
||
|
* | | +-------------------------------+ | | |
|
||
|
* | | | +-------------------+ | |
|
||
|
* | | | | | |
|
||
|
* | +---------------------------------------------------------------+ |
|
||
|
* | |subscheind[0]<=subscheind[1]<=subscheind[2]<=...<=subscheind[7]| |
|
||
|
* | +---------------------------------------------------------------+ |
|
||
|
* | ^ ^ BLK_IDX_SCHEDULE_PARAMS |
|
||
|
* | | | |
|
||
|
* +--------+ +-------------------------------------------+
|
||
|
*
|
||
|
* In the above picture there are two subschedules (cycles):
|
||
|
*
|
||
|
* - cycle 0: iterates the schedule table from 0 to 2 (and back)
|
||
|
* - cycle 1: iterates the schedule table from 3 to 5 (and back)
|
||
|
*
|
||
|
* All other possible execution threads must be marked as unused by making
|
||
|
* their "subschedule end index" (subscheind) equal to the last valid
|
||
|
* subschedule's end index (in this case 5).
|
||
|
*/
|
||
|
static int sja1105_init_scheduling(struct sja1105_private *priv)
|
||
|
{
|
||
|
struct sja1105_schedule_entry_points_entry *schedule_entry_points;
|
||
|
struct sja1105_schedule_entry_points_params_entry
|
||
|
*schedule_entry_points_params;
|
||
|
struct sja1105_schedule_params_entry *schedule_params;
|
||
|
struct sja1105_tas_data *tas_data = &priv->tas_data;
|
||
|
struct sja1105_schedule_entry *schedule;
|
||
|
struct sja1105_table *table;
|
||
|
int schedule_start_idx;
|
||
|
s64 entry_point_delta;
|
||
|
int schedule_end_idx;
|
||
|
int num_entries = 0;
|
||
|
int num_cycles = 0;
|
||
|
int cycle = 0;
|
||
|
int i, k = 0;
|
||
|
int port;
|
||
|
|
||
|
/* Discard previous Schedule Table */
|
||
|
table = &priv->static_config.tables[BLK_IDX_SCHEDULE];
|
||
|
if (table->entry_count) {
|
||
|
kfree(table->entries);
|
||
|
table->entry_count = 0;
|
||
|
}
|
||
|
|
||
|
/* Discard previous Schedule Entry Points Parameters Table */
|
||
|
table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS];
|
||
|
if (table->entry_count) {
|
||
|
kfree(table->entries);
|
||
|
table->entry_count = 0;
|
||
|
}
|
||
|
|
||
|
/* Discard previous Schedule Parameters Table */
|
||
|
table = &priv->static_config.tables[BLK_IDX_SCHEDULE_PARAMS];
|
||
|
if (table->entry_count) {
|
||
|
kfree(table->entries);
|
||
|
table->entry_count = 0;
|
||
|
}
|
||
|
|
||
|
/* Discard previous Schedule Entry Points Table */
|
||
|
table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS];
|
||
|
if (table->entry_count) {
|
||
|
kfree(table->entries);
|
||
|
table->entry_count = 0;
|
||
|
}
|
||
|
|
||
|
/* Figure out the dimensioning of the problem */
|
||
|
for (port = 0; port < SJA1105_NUM_PORTS; port++) {
|
||
|
if (tas_data->offload[port]) {
|
||
|
num_entries += tas_data->offload[port]->num_entries;
|
||
|
num_cycles++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Nothing to do */
|
||
|
if (!num_cycles)
|
||
|
return 0;
|
||
|
|
||
|
/* Pre-allocate space in the static config tables */
|
||
|
|
||
|
/* Schedule Table */
|
||
|
table = &priv->static_config.tables[BLK_IDX_SCHEDULE];
|
||
|
table->entries = kcalloc(num_entries, table->ops->unpacked_entry_size,
|
||
|
GFP_KERNEL);
|
||
|
if (!table->entries)
|
||
|
return -ENOMEM;
|
||
|
table->entry_count = num_entries;
|
||
|
schedule = table->entries;
|
||
|
|
||
|
/* Schedule Points Parameters Table */
|
||
|
table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS];
|
||
|
table->entries = kcalloc(SJA1105_MAX_SCHEDULE_ENTRY_POINTS_PARAMS_COUNT,
|
||
|
table->ops->unpacked_entry_size, GFP_KERNEL);
|
||
|
if (!table->entries)
|
||
|
/* Previously allocated memory will be freed automatically in
|
||
|
* sja1105_static_config_free. This is true for all early
|
||
|
* returns below.
|
||
|
*/
|
||
|
return -ENOMEM;
|
||
|
table->entry_count = SJA1105_MAX_SCHEDULE_ENTRY_POINTS_PARAMS_COUNT;
|
||
|
schedule_entry_points_params = table->entries;
|
||
|
|
||
|
/* Schedule Parameters Table */
|
||
|
table = &priv->static_config.tables[BLK_IDX_SCHEDULE_PARAMS];
|
||
|
table->entries = kcalloc(SJA1105_MAX_SCHEDULE_PARAMS_COUNT,
|
||
|
table->ops->unpacked_entry_size, GFP_KERNEL);
|
||
|
if (!table->entries)
|
||
|
return -ENOMEM;
|
||
|
table->entry_count = SJA1105_MAX_SCHEDULE_PARAMS_COUNT;
|
||
|
schedule_params = table->entries;
|
||
|
|
||
|
/* Schedule Entry Points Table */
|
||
|
table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS];
|
||
|
table->entries = kcalloc(num_cycles, table->ops->unpacked_entry_size,
|
||
|
GFP_KERNEL);
|
||
|
if (!table->entries)
|
||
|
return -ENOMEM;
|
||
|
table->entry_count = num_cycles;
|
||
|
schedule_entry_points = table->entries;
|
||
|
|
||
|
/* Finally start populating the static config tables */
|
||
|
schedule_entry_points_params->clksrc = SJA1105_TAS_CLKSRC_STANDALONE;
|
||
|
schedule_entry_points_params->actsubsch = num_cycles - 1;
|
||
|
|
||
|
for (port = 0; port < SJA1105_NUM_PORTS; port++) {
|
||
|
const struct tc_taprio_qopt_offload *offload;
|
||
|
|
||
|
offload = tas_data->offload[port];
|
||
|
if (!offload)
|
||
|
continue;
|
||
|
|
||
|
schedule_start_idx = k;
|
||
|
schedule_end_idx = k + offload->num_entries - 1;
|
||
|
/* TODO this is the base time for the port's subschedule,
|
||
|
* relative to PTPSCHTM. But as we're using the standalone
|
||
|
* clock source and not PTP clock as time reference, there's
|
||
|
* little point in even trying to put more logic into this,
|
||
|
* like preserving the phases between the subschedules of
|
||
|
* different ports. We'll get all of that when switching to the
|
||
|
* PTP clock source.
|
||
|
*/
|
||
|
entry_point_delta = 1;
|
||
|
|
||
|
schedule_entry_points[cycle].subschindx = cycle;
|
||
|
schedule_entry_points[cycle].delta = entry_point_delta;
|
||
|
schedule_entry_points[cycle].address = schedule_start_idx;
|
||
|
|
||
|
/* The subschedule end indices need to be
|
||
|
* monotonically increasing.
|
||
|
*/
|
||
|
for (i = cycle; i < 8; i++)
|
||
|
schedule_params->subscheind[i] = schedule_end_idx;
|
||
|
|
||
|
for (i = 0; i < offload->num_entries; i++, k++) {
|
||
|
s64 delta_ns = offload->entries[i].interval;
|
||
|
|
||
|
schedule[k].delta = ns_to_sja1105_delta(delta_ns);
|
||
|
schedule[k].destports = BIT(port);
|
||
|
schedule[k].resmedia_en = true;
|
||
|
schedule[k].resmedia = SJA1105_GATE_MASK &
|
||
|
~offload->entries[i].gate_mask;
|
||
|
}
|
||
|
cycle++;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Be there 2 port subschedules, each executing an arbitrary number of gate
|
||
|
* open/close events cyclically.
|
||
|
* None of those gate events must ever occur at the exact same time, otherwise
|
||
|
* the switch is known to act in exotically strange ways.
|
||
|
* However the hardware doesn't bother performing these integrity checks.
|
||
|
* So here we are with the task of validating whether the new @admin offload
|
||
|
* has any conflict with the already established TAS configuration in
|
||
|
* tas_data->offload. We already know the other ports are in harmony with one
|
||
|
* another, otherwise we wouldn't have saved them.
|
||
|
* Each gate event executes periodically, with a period of @cycle_time and a
|
||
|
* phase given by its cycle's @base_time plus its offset within the cycle
|
||
|
* (which in turn is given by the length of the events prior to it).
|
||
|
* There are two aspects to possible collisions:
|
||
|
* - Collisions within one cycle's (actually the longest cycle's) time frame.
|
||
|
* For that, we need to compare the cartesian product of each possible
|
||
|
* occurrence of each event within one cycle time.
|
||
|
* - Collisions in the future. Events may not collide within one cycle time,
|
||
|
* but if two port schedules don't have the same periodicity (aka the cycle
|
||
|
* times aren't multiples of one another), they surely will some time in the
|
||
|
* future (actually they will collide an infinite amount of times).
|
||
|
*/
|
||
|
static bool
|
||
|
sja1105_tas_check_conflicts(struct sja1105_private *priv, int port,
|
||
|
const struct tc_taprio_qopt_offload *admin)
|
||
|
{
|
||
|
struct sja1105_tas_data *tas_data = &priv->tas_data;
|
||
|
const struct tc_taprio_qopt_offload *offload;
|
||
|
s64 max_cycle_time, min_cycle_time;
|
||
|
s64 delta1, delta2;
|
||
|
s64 rbt1, rbt2;
|
||
|
s64 stop_time;
|
||
|
s64 t1, t2;
|
||
|
int i, j;
|
||
|
s32 rem;
|
||
|
|
||
|
offload = tas_data->offload[port];
|
||
|
if (!offload)
|
||
|
return false;
|
||
|
|
||
|
/* Check if the two cycle times are multiples of one another.
|
||
|
* If they aren't, then they will surely collide.
|
||
|
*/
|
||
|
max_cycle_time = max(offload->cycle_time, admin->cycle_time);
|
||
|
min_cycle_time = min(offload->cycle_time, admin->cycle_time);
|
||
|
div_s64_rem(max_cycle_time, min_cycle_time, &rem);
|
||
|
if (rem)
|
||
|
return true;
|
||
|
|
||
|
/* Calculate the "reduced" base time of each of the two cycles
|
||
|
* (transposed back as close to 0 as possible) by dividing to
|
||
|
* the cycle time.
|
||
|
*/
|
||
|
div_s64_rem(offload->base_time, offload->cycle_time, &rem);
|
||
|
rbt1 = rem;
|
||
|
|
||
|
div_s64_rem(admin->base_time, admin->cycle_time, &rem);
|
||
|
rbt2 = rem;
|
||
|
|
||
|
stop_time = max_cycle_time + max(rbt1, rbt2);
|
||
|
|
||
|
/* delta1 is the relative base time of each GCL entry within
|
||
|
* the established ports' TAS config.
|
||
|
*/
|
||
|
for (i = 0, delta1 = 0;
|
||
|
i < offload->num_entries;
|
||
|
delta1 += offload->entries[i].interval, i++) {
|
||
|
/* delta2 is the relative base time of each GCL entry
|
||
|
* within the newly added TAS config.
|
||
|
*/
|
||
|
for (j = 0, delta2 = 0;
|
||
|
j < admin->num_entries;
|
||
|
delta2 += admin->entries[j].interval, j++) {
|
||
|
/* t1 follows all possible occurrences of the
|
||
|
* established ports' GCL entry i within the
|
||
|
* first cycle time.
|
||
|
*/
|
||
|
for (t1 = rbt1 + delta1;
|
||
|
t1 <= stop_time;
|
||
|
t1 += offload->cycle_time) {
|
||
|
/* t2 follows all possible occurrences
|
||
|
* of the newly added GCL entry j
|
||
|
* within the first cycle time.
|
||
|
*/
|
||
|
for (t2 = rbt2 + delta2;
|
||
|
t2 <= stop_time;
|
||
|
t2 += admin->cycle_time) {
|
||
|
if (t1 == t2) {
|
||
|
dev_warn(priv->ds->dev,
|
||
|
"GCL entry %d collides with entry %d of port %d\n",
|
||
|
j, i, port);
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
int sja1105_setup_tc_taprio(struct dsa_switch *ds, int port,
|
||
|
struct tc_taprio_qopt_offload *admin)
|
||
|
{
|
||
|
struct sja1105_private *priv = ds->priv;
|
||
|
struct sja1105_tas_data *tas_data = &priv->tas_data;
|
||
|
int other_port, rc, i;
|
||
|
|
||
|
/* Can't change an already configured port (must delete qdisc first).
|
||
|
* Can't delete the qdisc from an unconfigured port.
|
||
|
*/
|
||
|
if (!!tas_data->offload[port] == admin->enable)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (!admin->enable) {
|
||
|
taprio_offload_free(tas_data->offload[port]);
|
||
|
tas_data->offload[port] = NULL;
|
||
|
|
||
|
rc = sja1105_init_scheduling(priv);
|
||
|
if (rc < 0)
|
||
|
return rc;
|
||
|
|
||
|
return sja1105_static_config_reload(priv);
|
||
|
}
|
||
|
|
||
|
/* The cycle time extension is the amount of time the last cycle from
|
||
|
* the old OPER needs to be extended in order to phase-align with the
|
||
|
* base time of the ADMIN when that becomes the new OPER.
|
||
|
* But of course our switch needs to be reset to switch-over between
|
||
|
* the ADMIN and the OPER configs - so much for a seamless transition.
|
||
|
* So don't add insult over injury and just say we don't support cycle
|
||
|
* time extension.
|
||
|
*/
|
||
|
if (admin->cycle_time_extension)
|
||
|
return -ENOTSUPP;
|
||
|
|
||
|
if (!ns_to_sja1105_delta(admin->base_time)) {
|
||
|
dev_err(ds->dev, "A base time of zero is not hardware-allowed\n");
|
||
|
return -ERANGE;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < admin->num_entries; i++) {
|
||
|
s64 delta_ns = admin->entries[i].interval;
|
||
|
s64 delta_cycles = ns_to_sja1105_delta(delta_ns);
|
||
|
bool too_long, too_short;
|
||
|
|
||
|
too_long = (delta_cycles >= SJA1105_TAS_MAX_DELTA);
|
||
|
too_short = (delta_cycles == 0);
|
||
|
if (too_long || too_short) {
|
||
|
dev_err(priv->ds->dev,
|
||
|
"Interval %llu too %s for GCL entry %d\n",
|
||
|
delta_ns, too_long ? "long" : "short", i);
|
||
|
return -ERANGE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (other_port = 0; other_port < SJA1105_NUM_PORTS; other_port++) {
|
||
|
if (other_port == port)
|
||
|
continue;
|
||
|
|
||
|
if (sja1105_tas_check_conflicts(priv, other_port, admin))
|
||
|
return -ERANGE;
|
||
|
}
|
||
|
|
||
|
tas_data->offload[port] = taprio_offload_get(admin);
|
||
|
|
||
|
rc = sja1105_init_scheduling(priv);
|
||
|
if (rc < 0)
|
||
|
return rc;
|
||
|
|
||
|
return sja1105_static_config_reload(priv);
|
||
|
}
|
||
|
|
||
|
void sja1105_tas_setup(struct dsa_switch *ds)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
void sja1105_tas_teardown(struct dsa_switch *ds)
|
||
|
{
|
||
|
struct sja1105_private *priv = ds->priv;
|
||
|
struct tc_taprio_qopt_offload *offload;
|
||
|
int port;
|
||
|
|
||
|
for (port = 0; port < SJA1105_NUM_PORTS; port++) {
|
||
|
offload = priv->tas_data.offload[port];
|
||
|
if (!offload)
|
||
|
continue;
|
||
|
|
||
|
taprio_offload_free(offload);
|
||
|
}
|
||
|
}
|