drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
/*
|
|
|
|
* Copyright (C) 2011 Samsung Electronics Co.Ltd
|
|
|
|
* Authors:
|
|
|
|
* Seung-Woo Kim <sw0312.kim@samsung.com>
|
|
|
|
* Inki Dae <inki.dae@samsung.com>
|
|
|
|
* Joonyoung Shim <jy0922.shim@samsung.com>
|
|
|
|
*
|
|
|
|
* Based on drivers/media/video/s5p-tv/hdmi_drv.c
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License as published by the
|
|
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
|
|
* option) any later version.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
2012-10-03 01:01:07 +08:00
|
|
|
#include <drm/drmP.h>
|
|
|
|
#include <drm/drm_edid.h>
|
|
|
|
#include <drm/drm_crtc_helper.h>
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
#include "regs-hdmi.h"
|
|
|
|
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/spinlock.h>
|
|
|
|
#include <linux/wait.h>
|
|
|
|
#include <linux/i2c.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/platform_device.h>
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/irq.h>
|
|
|
|
#include <linux/delay.h>
|
|
|
|
#include <linux/pm_runtime.h>
|
|
|
|
#include <linux/clk.h>
|
|
|
|
#include <linux/regulator/consumer.h>
|
2012-10-04 23:18:55 +08:00
|
|
|
#include <linux/io.h>
|
|
|
|
#include <linux/of_gpio.h>
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
#include <drm/exynos_drm.h>
|
|
|
|
|
|
|
|
#include "exynos_drm_drv.h"
|
|
|
|
#include "exynos_drm_hdmi.h"
|
|
|
|
|
|
|
|
#include "exynos_hdmi.h"
|
|
|
|
|
2012-10-04 23:18:46 +08:00
|
|
|
#include <linux/gpio.h>
|
|
|
|
#include <media/s5p_hdmi.h>
|
|
|
|
|
2012-03-16 17:47:04 +08:00
|
|
|
#define MAX_WIDTH 1920
|
|
|
|
#define MAX_HEIGHT 1080
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
#define get_hdmi_context(dev) platform_get_drvdata(to_platform_device(dev))
|
|
|
|
|
2012-11-26 13:22:57 +08:00
|
|
|
/* AVI header and aspect ratio */
|
|
|
|
#define HDMI_AVI_VERSION 0x02
|
|
|
|
#define HDMI_AVI_LENGTH 0x0D
|
|
|
|
#define AVI_PIC_ASPECT_RATIO_16_9 (2 << 4)
|
|
|
|
#define AVI_SAME_AS_PIC_ASPECT_RATIO 8
|
|
|
|
|
|
|
|
/* AUI header info */
|
|
|
|
#define HDMI_AUI_VERSION 0x01
|
|
|
|
#define HDMI_AUI_LENGTH 0x0A
|
|
|
|
|
|
|
|
/* HDMI infoframe to configure HDMI out packet header, AUI and AVI */
|
|
|
|
enum HDMI_PACKET_TYPE {
|
|
|
|
/* refer to Table 5-8 Packet Type in HDMI specification v1.4a */
|
|
|
|
/* InfoFrame packet type */
|
|
|
|
HDMI_PACKET_TYPE_INFOFRAME = 0x80,
|
|
|
|
/* Vendor-Specific InfoFrame */
|
|
|
|
HDMI_PACKET_TYPE_VSI = HDMI_PACKET_TYPE_INFOFRAME + 1,
|
|
|
|
/* Auxiliary Video information InfoFrame */
|
|
|
|
HDMI_PACKET_TYPE_AVI = HDMI_PACKET_TYPE_INFOFRAME + 2,
|
|
|
|
/* Audio information InfoFrame */
|
|
|
|
HDMI_PACKET_TYPE_AUI = HDMI_PACKET_TYPE_INFOFRAME + 4
|
|
|
|
};
|
|
|
|
|
2012-10-04 23:18:54 +08:00
|
|
|
enum hdmi_type {
|
|
|
|
HDMI_TYPE13,
|
|
|
|
HDMI_TYPE14,
|
|
|
|
};
|
|
|
|
|
2012-03-16 17:47:14 +08:00
|
|
|
struct hdmi_resources {
|
|
|
|
struct clk *hdmi;
|
|
|
|
struct clk *sclk_hdmi;
|
|
|
|
struct clk *sclk_pixel;
|
|
|
|
struct clk *sclk_hdmiphy;
|
|
|
|
struct clk *hdmiphy;
|
2013-06-11 14:54:03 +08:00
|
|
|
struct clk *mout_hdmi;
|
2012-03-16 17:47:14 +08:00
|
|
|
struct regulator_bulk_data *regul_bulk;
|
|
|
|
int regul_count;
|
|
|
|
};
|
|
|
|
|
2013-01-15 21:11:08 +08:00
|
|
|
struct hdmi_tg_regs {
|
|
|
|
u8 cmd[1];
|
|
|
|
u8 h_fsz[2];
|
|
|
|
u8 hact_st[2];
|
|
|
|
u8 hact_sz[2];
|
|
|
|
u8 v_fsz[2];
|
|
|
|
u8 vsync[2];
|
|
|
|
u8 vsync2[2];
|
|
|
|
u8 vact_st[2];
|
|
|
|
u8 vact_sz[2];
|
|
|
|
u8 field_chg[2];
|
|
|
|
u8 vact_st2[2];
|
|
|
|
u8 vact_st3[2];
|
|
|
|
u8 vact_st4[2];
|
|
|
|
u8 vsync_top_hdmi[2];
|
|
|
|
u8 vsync_bot_hdmi[2];
|
|
|
|
u8 field_top_hdmi[2];
|
|
|
|
u8 field_bot_hdmi[2];
|
|
|
|
u8 tg_3d[1];
|
|
|
|
};
|
|
|
|
|
2013-03-06 16:33:29 +08:00
|
|
|
struct hdmi_v13_core_regs {
|
|
|
|
u8 h_blank[2];
|
|
|
|
u8 v_blank[3];
|
|
|
|
u8 h_v_line[3];
|
|
|
|
u8 vsync_pol[1];
|
|
|
|
u8 int_pro_mode[1];
|
|
|
|
u8 v_blank_f[3];
|
|
|
|
u8 h_sync_gen[3];
|
|
|
|
u8 v_sync_gen1[3];
|
|
|
|
u8 v_sync_gen2[3];
|
|
|
|
u8 v_sync_gen3[3];
|
|
|
|
};
|
|
|
|
|
|
|
|
struct hdmi_v14_core_regs {
|
2013-01-15 21:11:08 +08:00
|
|
|
u8 h_blank[2];
|
|
|
|
u8 v2_blank[2];
|
|
|
|
u8 v1_blank[2];
|
|
|
|
u8 v_line[2];
|
|
|
|
u8 h_line[2];
|
|
|
|
u8 hsync_pol[1];
|
|
|
|
u8 vsync_pol[1];
|
|
|
|
u8 int_pro_mode[1];
|
|
|
|
u8 v_blank_f0[2];
|
|
|
|
u8 v_blank_f1[2];
|
|
|
|
u8 h_sync_start[2];
|
|
|
|
u8 h_sync_end[2];
|
|
|
|
u8 v_sync_line_bef_2[2];
|
|
|
|
u8 v_sync_line_bef_1[2];
|
|
|
|
u8 v_sync_line_aft_2[2];
|
|
|
|
u8 v_sync_line_aft_1[2];
|
|
|
|
u8 v_sync_line_aft_pxl_2[2];
|
|
|
|
u8 v_sync_line_aft_pxl_1[2];
|
|
|
|
u8 v_blank_f2[2]; /* for 3D mode */
|
|
|
|
u8 v_blank_f3[2]; /* for 3D mode */
|
|
|
|
u8 v_blank_f4[2]; /* for 3D mode */
|
|
|
|
u8 v_blank_f5[2]; /* for 3D mode */
|
|
|
|
u8 v_sync_line_aft_3[2];
|
|
|
|
u8 v_sync_line_aft_4[2];
|
|
|
|
u8 v_sync_line_aft_5[2];
|
|
|
|
u8 v_sync_line_aft_6[2];
|
|
|
|
u8 v_sync_line_aft_pxl_3[2];
|
|
|
|
u8 v_sync_line_aft_pxl_4[2];
|
|
|
|
u8 v_sync_line_aft_pxl_5[2];
|
|
|
|
u8 v_sync_line_aft_pxl_6[2];
|
|
|
|
u8 vact_space_1[2];
|
|
|
|
u8 vact_space_2[2];
|
|
|
|
u8 vact_space_3[2];
|
|
|
|
u8 vact_space_4[2];
|
|
|
|
u8 vact_space_5[2];
|
|
|
|
u8 vact_space_6[2];
|
|
|
|
};
|
|
|
|
|
2013-03-06 16:33:29 +08:00
|
|
|
struct hdmi_v13_conf {
|
|
|
|
struct hdmi_v13_core_regs core;
|
|
|
|
struct hdmi_tg_regs tg;
|
|
|
|
};
|
|
|
|
|
2013-01-15 21:11:08 +08:00
|
|
|
struct hdmi_v14_conf {
|
2013-03-06 16:33:29 +08:00
|
|
|
struct hdmi_v14_core_regs core;
|
2013-01-15 21:11:08 +08:00
|
|
|
struct hdmi_tg_regs tg;
|
2013-03-06 16:33:29 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
struct hdmi_conf_regs {
|
|
|
|
int pixel_clock;
|
2013-01-15 21:11:08 +08:00
|
|
|
int cea_video_id;
|
2013-03-06 16:33:29 +08:00
|
|
|
union {
|
|
|
|
struct hdmi_v13_conf v13_conf;
|
|
|
|
struct hdmi_v14_conf v14_conf;
|
|
|
|
} conf;
|
2013-01-15 21:11:08 +08:00
|
|
|
};
|
|
|
|
|
2012-03-16 17:47:14 +08:00
|
|
|
struct hdmi_context {
|
|
|
|
struct device *dev;
|
|
|
|
struct drm_device *drm_dev;
|
2012-04-23 18:35:50 +08:00
|
|
|
bool hpd;
|
|
|
|
bool powered;
|
2012-04-24 16:39:15 +08:00
|
|
|
bool dvi_mode;
|
2012-04-23 18:35:50 +08:00
|
|
|
struct mutex hdmi_mutex;
|
2012-03-16 17:47:14 +08:00
|
|
|
|
|
|
|
void __iomem *regs;
|
2012-10-19 16:37:35 +08:00
|
|
|
void *parent_ctx;
|
2013-01-16 23:17:20 +08:00
|
|
|
int irq;
|
2012-03-16 17:47:14 +08:00
|
|
|
|
|
|
|
struct i2c_client *ddc_port;
|
|
|
|
struct i2c_client *hdmiphy_port;
|
|
|
|
|
2013-03-06 16:33:29 +08:00
|
|
|
/* current hdmiphy conf regs */
|
|
|
|
struct hdmi_conf_regs mode_conf;
|
2012-03-16 17:47:14 +08:00
|
|
|
|
|
|
|
struct hdmi_resources res;
|
2012-04-23 18:35:47 +08:00
|
|
|
|
2012-10-04 23:18:46 +08:00
|
|
|
int hpd_gpio;
|
2012-10-04 23:18:54 +08:00
|
|
|
|
|
|
|
enum hdmi_type type;
|
2012-03-16 17:47:14 +08:00
|
|
|
};
|
|
|
|
|
2013-03-06 16:33:29 +08:00
|
|
|
struct hdmiphy_config {
|
|
|
|
int pixel_clock;
|
|
|
|
u8 conf[32];
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
};
|
|
|
|
|
2013-03-06 16:33:29 +08:00
|
|
|
/* list of phy config settings */
|
|
|
|
static const struct hdmiphy_config hdmiphy_v13_configs[] = {
|
|
|
|
{
|
|
|
|
.pixel_clock = 27000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x05, 0x00, 0xD8, 0x10, 0x1C, 0x30, 0x40,
|
|
|
|
0x6B, 0x10, 0x02, 0x51, 0xDF, 0xF2, 0x54, 0x87,
|
|
|
|
0x84, 0x00, 0x30, 0x38, 0x00, 0x08, 0x10, 0xE0,
|
|
|
|
0x22, 0x40, 0xE3, 0x26, 0x00, 0x00, 0x00, 0x00,
|
|
|
|
},
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
},
|
2013-03-06 16:33:29 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 27027000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x05, 0x00, 0xD4, 0x10, 0x9C, 0x09, 0x64,
|
|
|
|
0x6B, 0x10, 0x02, 0x51, 0xDF, 0xF2, 0x54, 0x87,
|
|
|
|
0x84, 0x00, 0x30, 0x38, 0x00, 0x08, 0x10, 0xE0,
|
|
|
|
0x22, 0x40, 0xE3, 0x26, 0x00, 0x00, 0x00, 0x00,
|
|
|
|
},
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
},
|
2013-03-06 16:33:29 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 74176000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x05, 0x00, 0xD8, 0x10, 0x9C, 0xef, 0x5B,
|
|
|
|
0x6D, 0x10, 0x01, 0x51, 0xef, 0xF3, 0x54, 0xb9,
|
|
|
|
0x84, 0x00, 0x30, 0x38, 0x00, 0x08, 0x10, 0xE0,
|
|
|
|
0x22, 0x40, 0xa5, 0x26, 0x01, 0x00, 0x00, 0x00,
|
|
|
|
},
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
},
|
2013-03-06 16:33:29 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 74250000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x05, 0x00, 0xd8, 0x10, 0x9c, 0xf8, 0x40,
|
|
|
|
0x6a, 0x10, 0x01, 0x51, 0xff, 0xf1, 0x54, 0xba,
|
|
|
|
0x84, 0x00, 0x10, 0x38, 0x00, 0x08, 0x10, 0xe0,
|
|
|
|
0x22, 0x40, 0xa4, 0x26, 0x01, 0x00, 0x00, 0x00,
|
|
|
|
},
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
},
|
2013-03-06 16:33:29 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 148500000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x05, 0x00, 0xD8, 0x10, 0x9C, 0xf8, 0x40,
|
|
|
|
0x6A, 0x18, 0x00, 0x51, 0xff, 0xF1, 0x54, 0xba,
|
|
|
|
0x84, 0x00, 0x10, 0x38, 0x00, 0x08, 0x10, 0xE0,
|
|
|
|
0x22, 0x40, 0xa4, 0x26, 0x02, 0x00, 0x00, 0x00,
|
|
|
|
},
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
},
|
|
|
|
};
|
|
|
|
|
2013-01-15 21:11:08 +08:00
|
|
|
static const struct hdmiphy_config hdmiphy_v14_configs[] = {
|
|
|
|
{
|
|
|
|
.pixel_clock = 25200000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x51, 0x2A, 0x75, 0x40, 0x01, 0x00, 0x08,
|
|
|
|
0x82, 0x80, 0xfc, 0xd8, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0xf4, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 27000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xd1, 0x22, 0x51, 0x40, 0x08, 0xfc, 0x20,
|
|
|
|
0x98, 0xa0, 0xcb, 0xd8, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x06, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0xe4, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 27027000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xd1, 0x2d, 0x72, 0x40, 0x64, 0x12, 0x08,
|
|
|
|
0x43, 0xa0, 0x0e, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0xe3, 0x24, 0x00, 0x00, 0x00, 0x01, 0x00,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 36000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x51, 0x2d, 0x55, 0x40, 0x01, 0x00, 0x08,
|
|
|
|
0x82, 0x80, 0x0e, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0xab, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 40000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x51, 0x32, 0x55, 0x40, 0x01, 0x00, 0x08,
|
|
|
|
0x82, 0x80, 0x2c, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0x9a, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 65000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xd1, 0x36, 0x34, 0x40, 0x1e, 0x0a, 0x08,
|
|
|
|
0x82, 0xa0, 0x45, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0xbd, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 74176000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xd1, 0x3e, 0x35, 0x40, 0x5b, 0xde, 0x08,
|
|
|
|
0x82, 0xa0, 0x73, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x56, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0xa6, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 74250000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xd1, 0x1f, 0x10, 0x40, 0x40, 0xf8, 0x08,
|
|
|
|
0x81, 0xa0, 0xba, 0xd8, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x3c, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0xa5, 0x24, 0x01, 0x00, 0x00, 0x01, 0x00,
|
|
|
|
},
|
2012-04-24 16:55:06 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 83500000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xd1, 0x23, 0x11, 0x40, 0x0c, 0xfb, 0x08,
|
|
|
|
0x85, 0xa0, 0xd1, 0xd8, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0x93, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-04-24 16:55:06 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 106500000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xd1, 0x2c, 0x12, 0x40, 0x0c, 0x09, 0x08,
|
|
|
|
0x84, 0xa0, 0x0a, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0x73, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 108000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x51, 0x2d, 0x15, 0x40, 0x01, 0x00, 0x08,
|
|
|
|
0x82, 0x80, 0x0e, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0xc7, 0x25, 0x03, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 146250000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xd1, 0x3d, 0x15, 0x40, 0x18, 0xfd, 0x08,
|
|
|
|
0x83, 0xa0, 0x6e, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0x50, 0x25, 0x03, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 148500000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xd1, 0x1f, 0x00, 0x40, 0x40, 0xf8, 0x08,
|
|
|
|
0x81, 0xa0, 0xba, 0xd8, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x3c, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0x4b, 0x25, 0x03, 0x00, 0x00, 0x01, 0x00,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
|
|
|
};
|
|
|
|
|
2012-11-26 13:22:57 +08:00
|
|
|
struct hdmi_infoframe {
|
|
|
|
enum HDMI_PACKET_TYPE type;
|
|
|
|
u8 ver;
|
|
|
|
u8 len;
|
|
|
|
};
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
static inline u32 hdmi_reg_read(struct hdmi_context *hdata, u32 reg_id)
|
|
|
|
{
|
|
|
|
return readl(hdata->regs + reg_id);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void hdmi_reg_writeb(struct hdmi_context *hdata,
|
|
|
|
u32 reg_id, u8 value)
|
|
|
|
{
|
|
|
|
writeb(value, hdata->regs + reg_id);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void hdmi_reg_writemask(struct hdmi_context *hdata,
|
|
|
|
u32 reg_id, u32 value, u32 mask)
|
|
|
|
{
|
|
|
|
u32 old = readl(hdata->regs + reg_id);
|
|
|
|
value = (value & mask) | (old & ~mask);
|
|
|
|
writel(value, hdata->regs + reg_id);
|
|
|
|
}
|
|
|
|
|
2012-03-16 17:47:03 +08:00
|
|
|
static void hdmi_v13_regs_dump(struct hdmi_context *hdata, char *prefix)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
|
|
|
#define DUMPREG(reg_id) \
|
|
|
|
DRM_DEBUG_KMS("%s:" #reg_id " = %08x\n", prefix, \
|
|
|
|
readl(hdata->regs + reg_id))
|
|
|
|
DRM_DEBUG_KMS("%s: ---- CONTROL REGISTERS ----\n", prefix);
|
|
|
|
DUMPREG(HDMI_INTC_FLAG);
|
|
|
|
DUMPREG(HDMI_INTC_CON);
|
|
|
|
DUMPREG(HDMI_HPD_STATUS);
|
2012-03-16 17:47:03 +08:00
|
|
|
DUMPREG(HDMI_V13_PHY_RSTOUT);
|
|
|
|
DUMPREG(HDMI_V13_PHY_VPLL);
|
|
|
|
DUMPREG(HDMI_V13_PHY_CMU);
|
|
|
|
DUMPREG(HDMI_V13_CORE_RSTOUT);
|
|
|
|
|
|
|
|
DRM_DEBUG_KMS("%s: ---- CORE REGISTERS ----\n", prefix);
|
|
|
|
DUMPREG(HDMI_CON_0);
|
|
|
|
DUMPREG(HDMI_CON_1);
|
|
|
|
DUMPREG(HDMI_CON_2);
|
|
|
|
DUMPREG(HDMI_SYS_STATUS);
|
|
|
|
DUMPREG(HDMI_V13_PHY_STATUS);
|
|
|
|
DUMPREG(HDMI_STATUS_EN);
|
|
|
|
DUMPREG(HDMI_HPD);
|
|
|
|
DUMPREG(HDMI_MODE_SEL);
|
|
|
|
DUMPREG(HDMI_V13_HPD_GEN);
|
|
|
|
DUMPREG(HDMI_V13_DC_CONTROL);
|
|
|
|
DUMPREG(HDMI_V13_VIDEO_PATTERN_GEN);
|
|
|
|
|
|
|
|
DRM_DEBUG_KMS("%s: ---- CORE SYNC REGISTERS ----\n", prefix);
|
|
|
|
DUMPREG(HDMI_H_BLANK_0);
|
|
|
|
DUMPREG(HDMI_H_BLANK_1);
|
|
|
|
DUMPREG(HDMI_V13_V_BLANK_0);
|
|
|
|
DUMPREG(HDMI_V13_V_BLANK_1);
|
|
|
|
DUMPREG(HDMI_V13_V_BLANK_2);
|
|
|
|
DUMPREG(HDMI_V13_H_V_LINE_0);
|
|
|
|
DUMPREG(HDMI_V13_H_V_LINE_1);
|
|
|
|
DUMPREG(HDMI_V13_H_V_LINE_2);
|
|
|
|
DUMPREG(HDMI_VSYNC_POL);
|
|
|
|
DUMPREG(HDMI_INT_PRO_MODE);
|
|
|
|
DUMPREG(HDMI_V13_V_BLANK_F_0);
|
|
|
|
DUMPREG(HDMI_V13_V_BLANK_F_1);
|
|
|
|
DUMPREG(HDMI_V13_V_BLANK_F_2);
|
|
|
|
DUMPREG(HDMI_V13_H_SYNC_GEN_0);
|
|
|
|
DUMPREG(HDMI_V13_H_SYNC_GEN_1);
|
|
|
|
DUMPREG(HDMI_V13_H_SYNC_GEN_2);
|
|
|
|
DUMPREG(HDMI_V13_V_SYNC_GEN_1_0);
|
|
|
|
DUMPREG(HDMI_V13_V_SYNC_GEN_1_1);
|
|
|
|
DUMPREG(HDMI_V13_V_SYNC_GEN_1_2);
|
|
|
|
DUMPREG(HDMI_V13_V_SYNC_GEN_2_0);
|
|
|
|
DUMPREG(HDMI_V13_V_SYNC_GEN_2_1);
|
|
|
|
DUMPREG(HDMI_V13_V_SYNC_GEN_2_2);
|
|
|
|
DUMPREG(HDMI_V13_V_SYNC_GEN_3_0);
|
|
|
|
DUMPREG(HDMI_V13_V_SYNC_GEN_3_1);
|
|
|
|
DUMPREG(HDMI_V13_V_SYNC_GEN_3_2);
|
|
|
|
|
|
|
|
DRM_DEBUG_KMS("%s: ---- TG REGISTERS ----\n", prefix);
|
|
|
|
DUMPREG(HDMI_TG_CMD);
|
|
|
|
DUMPREG(HDMI_TG_H_FSZ_L);
|
|
|
|
DUMPREG(HDMI_TG_H_FSZ_H);
|
|
|
|
DUMPREG(HDMI_TG_HACT_ST_L);
|
|
|
|
DUMPREG(HDMI_TG_HACT_ST_H);
|
|
|
|
DUMPREG(HDMI_TG_HACT_SZ_L);
|
|
|
|
DUMPREG(HDMI_TG_HACT_SZ_H);
|
|
|
|
DUMPREG(HDMI_TG_V_FSZ_L);
|
|
|
|
DUMPREG(HDMI_TG_V_FSZ_H);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC_L);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC_H);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC2_L);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC2_H);
|
|
|
|
DUMPREG(HDMI_TG_VACT_ST_L);
|
|
|
|
DUMPREG(HDMI_TG_VACT_ST_H);
|
|
|
|
DUMPREG(HDMI_TG_VACT_SZ_L);
|
|
|
|
DUMPREG(HDMI_TG_VACT_SZ_H);
|
|
|
|
DUMPREG(HDMI_TG_FIELD_CHG_L);
|
|
|
|
DUMPREG(HDMI_TG_FIELD_CHG_H);
|
|
|
|
DUMPREG(HDMI_TG_VACT_ST2_L);
|
|
|
|
DUMPREG(HDMI_TG_VACT_ST2_H);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC_TOP_HDMI_L);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC_TOP_HDMI_H);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC_BOT_HDMI_L);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC_BOT_HDMI_H);
|
|
|
|
DUMPREG(HDMI_TG_FIELD_TOP_HDMI_L);
|
|
|
|
DUMPREG(HDMI_TG_FIELD_TOP_HDMI_H);
|
|
|
|
DUMPREG(HDMI_TG_FIELD_BOT_HDMI_L);
|
|
|
|
DUMPREG(HDMI_TG_FIELD_BOT_HDMI_H);
|
|
|
|
#undef DUMPREG
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hdmi_v14_regs_dump(struct hdmi_context *hdata, char *prefix)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
#define DUMPREG(reg_id) \
|
|
|
|
DRM_DEBUG_KMS("%s:" #reg_id " = %08x\n", prefix, \
|
|
|
|
readl(hdata->regs + reg_id))
|
|
|
|
|
|
|
|
DRM_DEBUG_KMS("%s: ---- CONTROL REGISTERS ----\n", prefix);
|
|
|
|
DUMPREG(HDMI_INTC_CON);
|
|
|
|
DUMPREG(HDMI_INTC_FLAG);
|
|
|
|
DUMPREG(HDMI_HPD_STATUS);
|
|
|
|
DUMPREG(HDMI_INTC_CON_1);
|
|
|
|
DUMPREG(HDMI_INTC_FLAG_1);
|
|
|
|
DUMPREG(HDMI_PHY_STATUS_0);
|
|
|
|
DUMPREG(HDMI_PHY_STATUS_PLL);
|
|
|
|
DUMPREG(HDMI_PHY_CON_0);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
DUMPREG(HDMI_PHY_RSTOUT);
|
|
|
|
DUMPREG(HDMI_PHY_VPLL);
|
|
|
|
DUMPREG(HDMI_PHY_CMU);
|
|
|
|
DUMPREG(HDMI_CORE_RSTOUT);
|
|
|
|
|
|
|
|
DRM_DEBUG_KMS("%s: ---- CORE REGISTERS ----\n", prefix);
|
|
|
|
DUMPREG(HDMI_CON_0);
|
|
|
|
DUMPREG(HDMI_CON_1);
|
|
|
|
DUMPREG(HDMI_CON_2);
|
|
|
|
DUMPREG(HDMI_SYS_STATUS);
|
2012-03-16 17:47:03 +08:00
|
|
|
DUMPREG(HDMI_PHY_STATUS_0);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
DUMPREG(HDMI_STATUS_EN);
|
|
|
|
DUMPREG(HDMI_HPD);
|
|
|
|
DUMPREG(HDMI_MODE_SEL);
|
2012-03-16 17:47:03 +08:00
|
|
|
DUMPREG(HDMI_ENC_EN);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
DUMPREG(HDMI_DC_CONTROL);
|
|
|
|
DUMPREG(HDMI_VIDEO_PATTERN_GEN);
|
|
|
|
|
|
|
|
DRM_DEBUG_KMS("%s: ---- CORE SYNC REGISTERS ----\n", prefix);
|
|
|
|
DUMPREG(HDMI_H_BLANK_0);
|
|
|
|
DUMPREG(HDMI_H_BLANK_1);
|
2012-03-16 17:47:03 +08:00
|
|
|
DUMPREG(HDMI_V2_BLANK_0);
|
|
|
|
DUMPREG(HDMI_V2_BLANK_1);
|
|
|
|
DUMPREG(HDMI_V1_BLANK_0);
|
|
|
|
DUMPREG(HDMI_V1_BLANK_1);
|
|
|
|
DUMPREG(HDMI_V_LINE_0);
|
|
|
|
DUMPREG(HDMI_V_LINE_1);
|
|
|
|
DUMPREG(HDMI_H_LINE_0);
|
|
|
|
DUMPREG(HDMI_H_LINE_1);
|
|
|
|
DUMPREG(HDMI_HSYNC_POL);
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
DUMPREG(HDMI_VSYNC_POL);
|
|
|
|
DUMPREG(HDMI_INT_PRO_MODE);
|
2012-03-16 17:47:03 +08:00
|
|
|
DUMPREG(HDMI_V_BLANK_F0_0);
|
|
|
|
DUMPREG(HDMI_V_BLANK_F0_1);
|
|
|
|
DUMPREG(HDMI_V_BLANK_F1_0);
|
|
|
|
DUMPREG(HDMI_V_BLANK_F1_1);
|
|
|
|
|
|
|
|
DUMPREG(HDMI_H_SYNC_START_0);
|
|
|
|
DUMPREG(HDMI_H_SYNC_START_1);
|
|
|
|
DUMPREG(HDMI_H_SYNC_END_0);
|
|
|
|
DUMPREG(HDMI_H_SYNC_END_1);
|
|
|
|
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_BEF_2_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_BEF_2_1);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_BEF_1_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_BEF_1_1);
|
|
|
|
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_2_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_2_1);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_1_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_1_1);
|
|
|
|
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_2_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_2_1);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_1_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_1_1);
|
|
|
|
|
|
|
|
DUMPREG(HDMI_V_BLANK_F2_0);
|
|
|
|
DUMPREG(HDMI_V_BLANK_F2_1);
|
|
|
|
DUMPREG(HDMI_V_BLANK_F3_0);
|
|
|
|
DUMPREG(HDMI_V_BLANK_F3_1);
|
|
|
|
DUMPREG(HDMI_V_BLANK_F4_0);
|
|
|
|
DUMPREG(HDMI_V_BLANK_F4_1);
|
|
|
|
DUMPREG(HDMI_V_BLANK_F5_0);
|
|
|
|
DUMPREG(HDMI_V_BLANK_F5_1);
|
|
|
|
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_3_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_3_1);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_4_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_4_1);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_5_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_5_1);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_6_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_6_1);
|
|
|
|
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_3_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_3_1);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_4_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_4_1);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_5_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_5_1);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_6_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_6_1);
|
|
|
|
|
|
|
|
DUMPREG(HDMI_VACT_SPACE_1_0);
|
|
|
|
DUMPREG(HDMI_VACT_SPACE_1_1);
|
|
|
|
DUMPREG(HDMI_VACT_SPACE_2_0);
|
|
|
|
DUMPREG(HDMI_VACT_SPACE_2_1);
|
|
|
|
DUMPREG(HDMI_VACT_SPACE_3_0);
|
|
|
|
DUMPREG(HDMI_VACT_SPACE_3_1);
|
|
|
|
DUMPREG(HDMI_VACT_SPACE_4_0);
|
|
|
|
DUMPREG(HDMI_VACT_SPACE_4_1);
|
|
|
|
DUMPREG(HDMI_VACT_SPACE_5_0);
|
|
|
|
DUMPREG(HDMI_VACT_SPACE_5_1);
|
|
|
|
DUMPREG(HDMI_VACT_SPACE_6_0);
|
|
|
|
DUMPREG(HDMI_VACT_SPACE_6_1);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
DRM_DEBUG_KMS("%s: ---- TG REGISTERS ----\n", prefix);
|
|
|
|
DUMPREG(HDMI_TG_CMD);
|
|
|
|
DUMPREG(HDMI_TG_H_FSZ_L);
|
|
|
|
DUMPREG(HDMI_TG_H_FSZ_H);
|
|
|
|
DUMPREG(HDMI_TG_HACT_ST_L);
|
|
|
|
DUMPREG(HDMI_TG_HACT_ST_H);
|
|
|
|
DUMPREG(HDMI_TG_HACT_SZ_L);
|
|
|
|
DUMPREG(HDMI_TG_HACT_SZ_H);
|
|
|
|
DUMPREG(HDMI_TG_V_FSZ_L);
|
|
|
|
DUMPREG(HDMI_TG_V_FSZ_H);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC_L);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC_H);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC2_L);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC2_H);
|
|
|
|
DUMPREG(HDMI_TG_VACT_ST_L);
|
|
|
|
DUMPREG(HDMI_TG_VACT_ST_H);
|
|
|
|
DUMPREG(HDMI_TG_VACT_SZ_L);
|
|
|
|
DUMPREG(HDMI_TG_VACT_SZ_H);
|
|
|
|
DUMPREG(HDMI_TG_FIELD_CHG_L);
|
|
|
|
DUMPREG(HDMI_TG_FIELD_CHG_H);
|
|
|
|
DUMPREG(HDMI_TG_VACT_ST2_L);
|
|
|
|
DUMPREG(HDMI_TG_VACT_ST2_H);
|
2012-03-16 17:47:03 +08:00
|
|
|
DUMPREG(HDMI_TG_VACT_ST3_L);
|
|
|
|
DUMPREG(HDMI_TG_VACT_ST3_H);
|
|
|
|
DUMPREG(HDMI_TG_VACT_ST4_L);
|
|
|
|
DUMPREG(HDMI_TG_VACT_ST4_H);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
DUMPREG(HDMI_TG_VSYNC_TOP_HDMI_L);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC_TOP_HDMI_H);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC_BOT_HDMI_L);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC_BOT_HDMI_H);
|
|
|
|
DUMPREG(HDMI_TG_FIELD_TOP_HDMI_L);
|
|
|
|
DUMPREG(HDMI_TG_FIELD_TOP_HDMI_H);
|
|
|
|
DUMPREG(HDMI_TG_FIELD_BOT_HDMI_L);
|
|
|
|
DUMPREG(HDMI_TG_FIELD_BOT_HDMI_H);
|
2012-03-16 17:47:03 +08:00
|
|
|
DUMPREG(HDMI_TG_3D);
|
|
|
|
|
|
|
|
DRM_DEBUG_KMS("%s: ---- PACKET REGISTERS ----\n", prefix);
|
|
|
|
DUMPREG(HDMI_AVI_CON);
|
|
|
|
DUMPREG(HDMI_AVI_HEADER0);
|
|
|
|
DUMPREG(HDMI_AVI_HEADER1);
|
|
|
|
DUMPREG(HDMI_AVI_HEADER2);
|
|
|
|
DUMPREG(HDMI_AVI_CHECK_SUM);
|
|
|
|
DUMPREG(HDMI_VSI_CON);
|
|
|
|
DUMPREG(HDMI_VSI_HEADER0);
|
|
|
|
DUMPREG(HDMI_VSI_HEADER1);
|
|
|
|
DUMPREG(HDMI_VSI_HEADER2);
|
|
|
|
for (i = 0; i < 7; ++i)
|
|
|
|
DUMPREG(HDMI_VSI_DATA(i));
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
#undef DUMPREG
|
|
|
|
}
|
|
|
|
|
2012-03-16 17:47:03 +08:00
|
|
|
static void hdmi_regs_dump(struct hdmi_context *hdata, char *prefix)
|
|
|
|
{
|
2012-10-04 23:18:54 +08:00
|
|
|
if (hdata->type == HDMI_TYPE13)
|
2012-03-16 17:47:03 +08:00
|
|
|
hdmi_v13_regs_dump(hdata, prefix);
|
|
|
|
else
|
|
|
|
hdmi_v14_regs_dump(hdata, prefix);
|
|
|
|
}
|
|
|
|
|
2012-11-26 13:22:57 +08:00
|
|
|
static u8 hdmi_chksum(struct hdmi_context *hdata,
|
|
|
|
u32 start, u8 len, u32 hdr_sum)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* hdr_sum : header0 + header1 + header2
|
|
|
|
* start : start address of packet byte1
|
|
|
|
* len : packet bytes - 1 */
|
|
|
|
for (i = 0; i < len; ++i)
|
|
|
|
hdr_sum += 0xff & hdmi_reg_read(hdata, start + i * 4);
|
|
|
|
|
|
|
|
/* return 2's complement of 8 bit hdr_sum */
|
|
|
|
return (u8)(~(hdr_sum & 0xff) + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hdmi_reg_infoframe(struct hdmi_context *hdata,
|
|
|
|
struct hdmi_infoframe *infoframe)
|
|
|
|
{
|
|
|
|
u32 hdr_sum;
|
|
|
|
u8 chksum;
|
|
|
|
u32 aspect_ratio;
|
|
|
|
u32 mod;
|
|
|
|
u32 vic;
|
|
|
|
|
|
|
|
mod = hdmi_reg_read(hdata, HDMI_MODE_SEL);
|
|
|
|
if (hdata->dvi_mode) {
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_VSI_CON,
|
|
|
|
HDMI_VSI_CON_DO_NOT_TRANSMIT);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AVI_CON,
|
|
|
|
HDMI_AVI_CON_DO_NOT_TRANSMIT);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AUI_CON, HDMI_AUI_CON_NO_TRAN);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (infoframe->type) {
|
|
|
|
case HDMI_PACKET_TYPE_AVI:
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AVI_CON, HDMI_AVI_CON_EVERY_VSYNC);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AVI_HEADER0, infoframe->type);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AVI_HEADER1, infoframe->ver);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AVI_HEADER2, infoframe->len);
|
|
|
|
hdr_sum = infoframe->type + infoframe->ver + infoframe->len;
|
|
|
|
|
|
|
|
/* Output format zero hardcoded ,RGB YBCR selection */
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AVI_BYTE(1), 0 << 5 |
|
|
|
|
AVI_ACTIVE_FORMAT_VALID |
|
|
|
|
AVI_UNDERSCANNED_DISPLAY_VALID);
|
|
|
|
|
|
|
|
aspect_ratio = AVI_PIC_ASPECT_RATIO_16_9;
|
|
|
|
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AVI_BYTE(2), aspect_ratio |
|
|
|
|
AVI_SAME_AS_PIC_ASPECT_RATIO);
|
|
|
|
|
2013-03-06 16:33:29 +08:00
|
|
|
vic = hdata->mode_conf.cea_video_id;
|
2012-11-26 13:22:57 +08:00
|
|
|
hdmi_reg_writeb(hdata, HDMI_AVI_BYTE(4), vic);
|
|
|
|
|
|
|
|
chksum = hdmi_chksum(hdata, HDMI_AVI_BYTE(1),
|
|
|
|
infoframe->len, hdr_sum);
|
|
|
|
DRM_DEBUG_KMS("AVI checksum = 0x%x\n", chksum);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AVI_CHECK_SUM, chksum);
|
|
|
|
break;
|
|
|
|
case HDMI_PACKET_TYPE_AUI:
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AUI_CON, 0x02);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AUI_HEADER0, infoframe->type);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AUI_HEADER1, infoframe->ver);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AUI_HEADER2, infoframe->len);
|
|
|
|
hdr_sum = infoframe->type + infoframe->ver + infoframe->len;
|
|
|
|
chksum = hdmi_chksum(hdata, HDMI_AUI_BYTE(1),
|
|
|
|
infoframe->len, hdr_sum);
|
|
|
|
DRM_DEBUG_KMS("AUI checksum = 0x%x\n", chksum);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AUI_CHECK_SUM, chksum);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
static bool hdmi_is_connected(void *ctx)
|
|
|
|
{
|
2012-04-05 19:49:22 +08:00
|
|
|
struct hdmi_context *hdata = ctx;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2012-04-23 18:35:50 +08:00
|
|
|
return hdata->hpd;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2013-01-04 20:59:11 +08:00
|
|
|
static struct edid *hdmi_get_edid(void *ctx, struct drm_connector *connector)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
|
|
|
struct edid *raw_edid;
|
2012-04-05 19:49:22 +08:00
|
|
|
struct hdmi_context *hdata = ctx;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
if (!hdata->ddc_port)
|
2013-01-04 20:59:11 +08:00
|
|
|
return ERR_PTR(-ENODEV);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
raw_edid = drm_get_edid(connector, hdata->ddc_port->adapter);
|
2013-01-04 20:59:11 +08:00
|
|
|
if (!raw_edid)
|
|
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
|
|
|
|
hdata->dvi_mode = !drm_detect_hdmi_monitor(raw_edid);
|
|
|
|
DRM_DEBUG_KMS("%s : width[%d] x height[%d]\n",
|
|
|
|
(hdata->dvi_mode ? "dvi monitor" : "hdmi monitor"),
|
|
|
|
raw_edid->width_cm, raw_edid->height_cm);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2013-01-04 20:59:11 +08:00
|
|
|
return raw_edid;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2013-03-06 16:33:29 +08:00
|
|
|
static int hdmi_find_phy_conf(struct hdmi_context *hdata, u32 pixel_clock)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
2013-03-06 16:33:29 +08:00
|
|
|
const struct hdmiphy_config *confs;
|
|
|
|
int count, i;
|
2012-03-16 17:47:04 +08:00
|
|
|
|
2013-03-06 16:33:29 +08:00
|
|
|
if (hdata->type == HDMI_TYPE13) {
|
|
|
|
confs = hdmiphy_v13_configs;
|
|
|
|
count = ARRAY_SIZE(hdmiphy_v13_configs);
|
|
|
|
} else if (hdata->type == HDMI_TYPE14) {
|
|
|
|
confs = hdmiphy_v14_configs;
|
|
|
|
count = ARRAY_SIZE(hdmiphy_v14_configs);
|
|
|
|
} else
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
for (i = 0; i < count; i++)
|
|
|
|
if (confs[i].pixel_clock == pixel_clock)
|
2013-01-15 21:11:08 +08:00
|
|
|
return i;
|
|
|
|
|
|
|
|
DRM_DEBUG_KMS("Could not find phy config for %d\n", pixel_clock);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2013-06-10 17:20:00 +08:00
|
|
|
static int hdmi_check_mode(void *ctx, struct drm_display_mode *mode)
|
2012-03-16 17:47:03 +08:00
|
|
|
{
|
2012-04-05 19:49:22 +08:00
|
|
|
struct hdmi_context *hdata = ctx;
|
2013-03-06 16:33:29 +08:00
|
|
|
int ret;
|
2012-03-16 17:47:03 +08:00
|
|
|
|
2013-06-10 17:20:00 +08:00
|
|
|
DRM_DEBUG_KMS("xres=%d, yres=%d, refresh=%d, intl=%d clock=%d\n",
|
|
|
|
mode->hdisplay, mode->vdisplay, mode->vrefresh,
|
|
|
|
(mode->flags & DRM_MODE_FLAG_INTERLACE) ? true :
|
|
|
|
false, mode->clock * 1000);
|
2012-03-16 17:47:03 +08:00
|
|
|
|
2013-06-10 17:20:00 +08:00
|
|
|
ret = hdmi_find_phy_conf(hdata, mode->clock * 1000);
|
2013-03-06 16:33:29 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
return 0;
|
2012-03-16 17:47:03 +08:00
|
|
|
}
|
|
|
|
|
2012-03-16 17:47:16 +08:00
|
|
|
static void hdmi_set_acr(u32 freq, u8 *acr)
|
|
|
|
{
|
|
|
|
u32 n, cts;
|
|
|
|
|
|
|
|
switch (freq) {
|
|
|
|
case 32000:
|
|
|
|
n = 4096;
|
|
|
|
cts = 27000;
|
|
|
|
break;
|
|
|
|
case 44100:
|
|
|
|
n = 6272;
|
|
|
|
cts = 30000;
|
|
|
|
break;
|
|
|
|
case 88200:
|
|
|
|
n = 12544;
|
|
|
|
cts = 30000;
|
|
|
|
break;
|
|
|
|
case 176400:
|
|
|
|
n = 25088;
|
|
|
|
cts = 30000;
|
|
|
|
break;
|
|
|
|
case 48000:
|
|
|
|
n = 6144;
|
|
|
|
cts = 27000;
|
|
|
|
break;
|
|
|
|
case 96000:
|
|
|
|
n = 12288;
|
|
|
|
cts = 27000;
|
|
|
|
break;
|
|
|
|
case 192000:
|
|
|
|
n = 24576;
|
|
|
|
cts = 27000;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
n = 0;
|
|
|
|
cts = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
acr[1] = cts >> 16;
|
|
|
|
acr[2] = cts >> 8 & 0xff;
|
|
|
|
acr[3] = cts & 0xff;
|
|
|
|
|
|
|
|
acr[4] = n >> 16;
|
|
|
|
acr[5] = n >> 8 & 0xff;
|
|
|
|
acr[6] = n & 0xff;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hdmi_reg_acr(struct hdmi_context *hdata, u8 *acr)
|
|
|
|
{
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_ACR_N0, acr[6]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_ACR_N1, acr[5]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_ACR_N2, acr[4]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_ACR_MCTS0, acr[3]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_ACR_MCTS1, acr[2]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_ACR_MCTS2, acr[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_ACR_CTS0, acr[3]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_ACR_CTS1, acr[2]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_ACR_CTS2, acr[1]);
|
|
|
|
|
2012-10-04 23:18:54 +08:00
|
|
|
if (hdata->type == HDMI_TYPE13)
|
2012-03-16 17:47:16 +08:00
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_ACR_CON, 4);
|
|
|
|
else
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_ACR_CON, 4);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hdmi_audio_init(struct hdmi_context *hdata)
|
|
|
|
{
|
|
|
|
u32 sample_rate, bits_per_sample, frame_size_code;
|
|
|
|
u32 data_num, bit_ch, sample_frq;
|
|
|
|
u32 val;
|
|
|
|
u8 acr[7];
|
|
|
|
|
|
|
|
sample_rate = 44100;
|
|
|
|
bits_per_sample = 16;
|
|
|
|
frame_size_code = 0;
|
|
|
|
|
|
|
|
switch (bits_per_sample) {
|
|
|
|
case 20:
|
|
|
|
data_num = 2;
|
|
|
|
bit_ch = 1;
|
|
|
|
break;
|
|
|
|
case 24:
|
|
|
|
data_num = 3;
|
|
|
|
bit_ch = 1;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
data_num = 1;
|
|
|
|
bit_ch = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
hdmi_set_acr(sample_rate, acr);
|
|
|
|
hdmi_reg_acr(hdata, acr);
|
|
|
|
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_MUX_CON, HDMI_I2S_IN_DISABLE
|
|
|
|
| HDMI_I2S_AUD_I2S | HDMI_I2S_CUV_I2S_ENABLE
|
|
|
|
| HDMI_I2S_MUX_ENABLE);
|
|
|
|
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_MUX_CH, HDMI_I2S_CH0_EN
|
|
|
|
| HDMI_I2S_CH1_EN | HDMI_I2S_CH2_EN);
|
|
|
|
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_MUX_CUV, HDMI_I2S_CUV_RL_EN);
|
|
|
|
|
|
|
|
sample_frq = (sample_rate == 44100) ? 0 :
|
|
|
|
(sample_rate == 48000) ? 2 :
|
|
|
|
(sample_rate == 32000) ? 3 :
|
|
|
|
(sample_rate == 96000) ? 0xa : 0x0;
|
|
|
|
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CLK_CON, HDMI_I2S_CLK_DIS);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CLK_CON, HDMI_I2S_CLK_EN);
|
|
|
|
|
|
|
|
val = hdmi_reg_read(hdata, HDMI_I2S_DSD_CON) | 0x01;
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_DSD_CON, val);
|
|
|
|
|
|
|
|
/* Configuration I2S input ports. Configure I2S_PIN_SEL_0~4 */
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_PIN_SEL_0, HDMI_I2S_SEL_SCLK(5)
|
|
|
|
| HDMI_I2S_SEL_LRCK(6));
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_PIN_SEL_1, HDMI_I2S_SEL_SDATA1(1)
|
|
|
|
| HDMI_I2S_SEL_SDATA2(4));
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_PIN_SEL_2, HDMI_I2S_SEL_SDATA3(1)
|
|
|
|
| HDMI_I2S_SEL_SDATA2(2));
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_PIN_SEL_3, HDMI_I2S_SEL_DSD(0));
|
|
|
|
|
|
|
|
/* I2S_CON_1 & 2 */
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CON_1, HDMI_I2S_SCLK_FALLING_EDGE
|
|
|
|
| HDMI_I2S_L_CH_LOW_POL);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CON_2, HDMI_I2S_MSB_FIRST_MODE
|
|
|
|
| HDMI_I2S_SET_BIT_CH(bit_ch)
|
|
|
|
| HDMI_I2S_SET_SDATA_BIT(data_num)
|
|
|
|
| HDMI_I2S_BASIC_FORMAT);
|
|
|
|
|
|
|
|
/* Configure register related to CUV information */
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CH_ST_0, HDMI_I2S_CH_STATUS_MODE_0
|
|
|
|
| HDMI_I2S_2AUD_CH_WITHOUT_PREEMPH
|
|
|
|
| HDMI_I2S_COPYRIGHT
|
|
|
|
| HDMI_I2S_LINEAR_PCM
|
|
|
|
| HDMI_I2S_CONSUMER_FORMAT);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CH_ST_1, HDMI_I2S_CD_PLAYER);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CH_ST_2, HDMI_I2S_SET_SOURCE_NUM(0));
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CH_ST_3, HDMI_I2S_CLK_ACCUR_LEVEL_2
|
|
|
|
| HDMI_I2S_SET_SMP_FREQ(sample_frq));
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CH_ST_4,
|
|
|
|
HDMI_I2S_ORG_SMP_FREQ_44_1
|
|
|
|
| HDMI_I2S_WORD_LEN_MAX24_24BITS
|
|
|
|
| HDMI_I2S_WORD_LEN_MAX_24BITS);
|
|
|
|
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CH_ST_CON, HDMI_I2S_CH_STATUS_RELOAD);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hdmi_audio_control(struct hdmi_context *hdata, bool onoff)
|
|
|
|
{
|
2012-04-24 16:39:15 +08:00
|
|
|
if (hdata->dvi_mode)
|
2012-03-16 17:47:16 +08:00
|
|
|
return;
|
|
|
|
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AUI_CON, onoff ? 2 : 0);
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_CON_0, onoff ?
|
|
|
|
HDMI_ASP_EN : HDMI_ASP_DIS, HDMI_ASP_MASK);
|
|
|
|
}
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
static void hdmi_conf_reset(struct hdmi_context *hdata)
|
|
|
|
{
|
2012-03-16 17:47:03 +08:00
|
|
|
u32 reg;
|
|
|
|
|
2012-10-04 23:18:54 +08:00
|
|
|
if (hdata->type == HDMI_TYPE13)
|
2012-03-16 17:47:03 +08:00
|
|
|
reg = HDMI_V13_CORE_RSTOUT;
|
|
|
|
else
|
|
|
|
reg = HDMI_CORE_RSTOUT;
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
/* resetting HDMI core */
|
2012-03-16 17:47:03 +08:00
|
|
|
hdmi_reg_writemask(hdata, reg, 0, HDMI_CORE_SW_RSTOUT);
|
2013-01-15 06:03:20 +08:00
|
|
|
usleep_range(10000, 12000);
|
2012-03-16 17:47:03 +08:00
|
|
|
hdmi_reg_writemask(hdata, reg, ~0, HDMI_CORE_SW_RSTOUT);
|
2013-01-15 06:03:20 +08:00
|
|
|
usleep_range(10000, 12000);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void hdmi_conf_init(struct hdmi_context *hdata)
|
|
|
|
{
|
2012-11-26 13:22:57 +08:00
|
|
|
struct hdmi_infoframe infoframe;
|
|
|
|
|
2013-01-16 23:17:20 +08:00
|
|
|
/* disable HPD interrupts from HDMI IP block, use GPIO instead */
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
hdmi_reg_writemask(hdata, HDMI_INTC_CON, 0, HDMI_INTC_EN_GLOBAL |
|
|
|
|
HDMI_INTC_EN_HPD_PLUG | HDMI_INTC_EN_HPD_UNPLUG);
|
|
|
|
|
|
|
|
/* choose HDMI mode */
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_MODE_SEL,
|
|
|
|
HDMI_MODE_HDMI_EN, HDMI_MODE_MASK);
|
|
|
|
/* disable bluescreen */
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_CON_0, 0, HDMI_BLUE_SCR_EN);
|
2012-03-16 17:47:03 +08:00
|
|
|
|
2012-04-24 16:39:15 +08:00
|
|
|
if (hdata->dvi_mode) {
|
|
|
|
/* choose DVI mode */
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_MODE_SEL,
|
|
|
|
HDMI_MODE_DVI_EN, HDMI_MODE_MASK);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_CON_2,
|
|
|
|
HDMI_VID_PREAMBLE_DIS | HDMI_GUARD_BAND_DIS);
|
|
|
|
}
|
|
|
|
|
2012-10-04 23:18:54 +08:00
|
|
|
if (hdata->type == HDMI_TYPE13) {
|
2012-03-16 17:47:03 +08:00
|
|
|
/* choose bluescreen (fecal) color */
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_BLUE_SCREEN_0, 0x12);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_BLUE_SCREEN_1, 0x34);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_BLUE_SCREEN_2, 0x56);
|
|
|
|
|
|
|
|
/* enable AVI packet every vsync, fixes purple line problem */
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_AVI_CON, 0x02);
|
|
|
|
/* force RGB, look to CEA-861-D, table 7 for more detail */
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_AVI_BYTE(0), 0 << 5);
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_CON_1, 0x10 << 5, 0x11 << 5);
|
|
|
|
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_SPD_CON, 0x02);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_AUI_CON, 0x02);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_ACR_CON, 0x04);
|
|
|
|
} else {
|
2012-11-26 13:22:57 +08:00
|
|
|
infoframe.type = HDMI_PACKET_TYPE_AVI;
|
|
|
|
infoframe.ver = HDMI_AVI_VERSION;
|
|
|
|
infoframe.len = HDMI_AVI_LENGTH;
|
|
|
|
hdmi_reg_infoframe(hdata, &infoframe);
|
|
|
|
|
|
|
|
infoframe.type = HDMI_PACKET_TYPE_AUI;
|
|
|
|
infoframe.ver = HDMI_AUI_VERSION;
|
|
|
|
infoframe.len = HDMI_AUI_LENGTH;
|
|
|
|
hdmi_reg_infoframe(hdata, &infoframe);
|
|
|
|
|
2012-03-16 17:47:03 +08:00
|
|
|
/* enable AVI packet every vsync, fixes purple line problem */
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_CON_1, 2, 3 << 5);
|
|
|
|
}
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2013-06-10 17:20:00 +08:00
|
|
|
static void hdmi_v13_mode_apply(struct hdmi_context *hdata)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
2013-03-06 16:33:29 +08:00
|
|
|
const struct hdmi_tg_regs *tg = &hdata->mode_conf.conf.v13_conf.tg;
|
|
|
|
const struct hdmi_v13_core_regs *core =
|
|
|
|
&hdata->mode_conf.conf.v13_conf.core;
|
2012-03-16 17:47:03 +08:00
|
|
|
int tries;
|
|
|
|
|
|
|
|
/* setting core registers */
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_H_BLANK_0, core->h_blank[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_H_BLANK_1, core->h_blank[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_V_BLANK_0, core->v_blank[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_V_BLANK_1, core->v_blank[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_V_BLANK_2, core->v_blank[2]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_H_V_LINE_0, core->h_v_line[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_H_V_LINE_1, core->h_v_line[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_H_V_LINE_2, core->h_v_line[2]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_VSYNC_POL, core->vsync_pol[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_INT_PRO_MODE, core->int_pro_mode[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_V_BLANK_F_0, core->v_blank_f[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_V_BLANK_F_1, core->v_blank_f[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_V_BLANK_F_2, core->v_blank_f[2]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_H_SYNC_GEN_0, core->h_sync_gen[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_H_SYNC_GEN_1, core->h_sync_gen[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_H_SYNC_GEN_2, core->h_sync_gen[2]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_V_SYNC_GEN_1_0, core->v_sync_gen1[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_V_SYNC_GEN_1_1, core->v_sync_gen1[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_V_SYNC_GEN_1_2, core->v_sync_gen1[2]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_V_SYNC_GEN_2_0, core->v_sync_gen2[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_V_SYNC_GEN_2_1, core->v_sync_gen2[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_V_SYNC_GEN_2_2, core->v_sync_gen2[2]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_V_SYNC_GEN_3_0, core->v_sync_gen3[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_V_SYNC_GEN_3_1, core->v_sync_gen3[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_V_SYNC_GEN_3_2, core->v_sync_gen3[2]);
|
|
|
|
/* Timing generator registers */
|
2013-03-06 16:33:29 +08:00
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_H_FSZ_L, tg->h_fsz[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_H_FSZ_H, tg->h_fsz[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_HACT_ST_L, tg->hact_st[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_HACT_ST_H, tg->hact_st[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_HACT_SZ_L, tg->hact_sz[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_HACT_SZ_H, tg->hact_sz[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_V_FSZ_L, tg->v_fsz[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_V_FSZ_H, tg->v_fsz[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC_L, tg->vsync[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC_H, tg->vsync[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC2_L, tg->vsync2[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC2_H, tg->vsync2[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VACT_ST_L, tg->vact_st[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VACT_ST_H, tg->vact_st[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VACT_SZ_L, tg->vact_sz[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VACT_SZ_H, tg->vact_sz[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_FIELD_CHG_L, tg->field_chg[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_FIELD_CHG_H, tg->field_chg[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VACT_ST2_L, tg->vact_st2[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VACT_ST2_H, tg->vact_st2[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC_TOP_HDMI_L, tg->vsync_top_hdmi[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC_TOP_HDMI_H, tg->vsync_top_hdmi[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC_BOT_HDMI_L, tg->vsync_bot_hdmi[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC_BOT_HDMI_H, tg->vsync_bot_hdmi[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_FIELD_TOP_HDMI_L, tg->field_top_hdmi[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_FIELD_TOP_HDMI_H, tg->field_top_hdmi[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_FIELD_BOT_HDMI_L, tg->field_bot_hdmi[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_FIELD_BOT_HDMI_H, tg->field_bot_hdmi[1]);
|
2012-03-16 17:47:03 +08:00
|
|
|
|
|
|
|
/* waiting for HDMIPHY's PLL to get to steady state */
|
|
|
|
for (tries = 100; tries; --tries) {
|
|
|
|
u32 val = hdmi_reg_read(hdata, HDMI_V13_PHY_STATUS);
|
|
|
|
if (val & HDMI_PHY_STATUS_READY)
|
|
|
|
break;
|
2013-01-15 06:03:20 +08:00
|
|
|
usleep_range(1000, 2000);
|
2012-03-16 17:47:03 +08:00
|
|
|
}
|
|
|
|
/* steady state not achieved */
|
|
|
|
if (tries == 0) {
|
|
|
|
DRM_ERROR("hdmiphy's pll could not reach steady state.\n");
|
|
|
|
hdmi_regs_dump(hdata, "timing apply");
|
|
|
|
}
|
|
|
|
|
2013-06-11 14:54:02 +08:00
|
|
|
clk_disable_unprepare(hdata->res.sclk_hdmi);
|
2013-06-11 14:54:03 +08:00
|
|
|
clk_set_parent(hdata->res.mout_hdmi, hdata->res.sclk_hdmiphy);
|
2013-06-11 14:54:02 +08:00
|
|
|
clk_prepare_enable(hdata->res.sclk_hdmi);
|
2012-03-16 17:47:03 +08:00
|
|
|
|
|
|
|
/* enable HDMI and timing generator */
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_CON_0, ~0, HDMI_EN);
|
|
|
|
if (core->int_pro_mode[0])
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_TG_CMD, ~0, HDMI_TG_EN |
|
|
|
|
HDMI_FIELD_EN);
|
|
|
|
else
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_TG_CMD, ~0, HDMI_TG_EN);
|
|
|
|
}
|
|
|
|
|
2013-06-10 17:20:00 +08:00
|
|
|
static void hdmi_v14_mode_apply(struct hdmi_context *hdata)
|
2012-03-16 17:47:03 +08:00
|
|
|
{
|
2013-03-06 16:33:29 +08:00
|
|
|
const struct hdmi_tg_regs *tg = &hdata->mode_conf.conf.v14_conf.tg;
|
|
|
|
const struct hdmi_v14_core_regs *core =
|
|
|
|
&hdata->mode_conf.conf.v14_conf.core;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
int tries;
|
|
|
|
|
|
|
|
/* setting core registers */
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_H_BLANK_0, core->h_blank[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_H_BLANK_1, core->h_blank[1]);
|
2012-03-16 17:47:03 +08:00
|
|
|
hdmi_reg_writeb(hdata, HDMI_V2_BLANK_0, core->v2_blank[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V2_BLANK_1, core->v2_blank[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V1_BLANK_0, core->v1_blank[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V1_BLANK_1, core->v1_blank[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_LINE_0, core->v_line[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_LINE_1, core->v_line[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_H_LINE_0, core->h_line[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_H_LINE_1, core->h_line[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_HSYNC_POL, core->hsync_pol[0]);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
hdmi_reg_writeb(hdata, HDMI_VSYNC_POL, core->vsync_pol[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_INT_PRO_MODE, core->int_pro_mode[0]);
|
2012-03-16 17:47:03 +08:00
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_BLANK_F0_0, core->v_blank_f0[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_BLANK_F0_1, core->v_blank_f0[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_BLANK_F1_0, core->v_blank_f1[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_BLANK_F1_1, core->v_blank_f1[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_H_SYNC_START_0, core->h_sync_start[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_H_SYNC_START_1, core->h_sync_start[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_H_SYNC_END_0, core->h_sync_end[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_H_SYNC_END_1, core->h_sync_end[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_BEF_2_0,
|
|
|
|
core->v_sync_line_bef_2[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_BEF_2_1,
|
|
|
|
core->v_sync_line_bef_2[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_BEF_1_0,
|
|
|
|
core->v_sync_line_bef_1[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_BEF_1_1,
|
|
|
|
core->v_sync_line_bef_1[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_2_0,
|
|
|
|
core->v_sync_line_aft_2[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_2_1,
|
|
|
|
core->v_sync_line_aft_2[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_1_0,
|
|
|
|
core->v_sync_line_aft_1[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_1_1,
|
|
|
|
core->v_sync_line_aft_1[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_PXL_2_0,
|
|
|
|
core->v_sync_line_aft_pxl_2[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_PXL_2_1,
|
|
|
|
core->v_sync_line_aft_pxl_2[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_PXL_1_0,
|
|
|
|
core->v_sync_line_aft_pxl_1[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_PXL_1_1,
|
|
|
|
core->v_sync_line_aft_pxl_1[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_BLANK_F2_0, core->v_blank_f2[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_BLANK_F2_1, core->v_blank_f2[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_BLANK_F3_0, core->v_blank_f3[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_BLANK_F3_1, core->v_blank_f3[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_BLANK_F4_0, core->v_blank_f4[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_BLANK_F4_1, core->v_blank_f4[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_BLANK_F5_0, core->v_blank_f5[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_BLANK_F5_1, core->v_blank_f5[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_3_0,
|
|
|
|
core->v_sync_line_aft_3[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_3_1,
|
|
|
|
core->v_sync_line_aft_3[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_4_0,
|
|
|
|
core->v_sync_line_aft_4[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_4_1,
|
|
|
|
core->v_sync_line_aft_4[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_5_0,
|
|
|
|
core->v_sync_line_aft_5[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_5_1,
|
|
|
|
core->v_sync_line_aft_5[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_6_0,
|
|
|
|
core->v_sync_line_aft_6[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_6_1,
|
|
|
|
core->v_sync_line_aft_6[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_PXL_3_0,
|
|
|
|
core->v_sync_line_aft_pxl_3[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_PXL_3_1,
|
|
|
|
core->v_sync_line_aft_pxl_3[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_PXL_4_0,
|
|
|
|
core->v_sync_line_aft_pxl_4[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_PXL_4_1,
|
|
|
|
core->v_sync_line_aft_pxl_4[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_PXL_5_0,
|
|
|
|
core->v_sync_line_aft_pxl_5[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_PXL_5_1,
|
|
|
|
core->v_sync_line_aft_pxl_5[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_PXL_6_0,
|
|
|
|
core->v_sync_line_aft_pxl_6[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_PXL_6_1,
|
|
|
|
core->v_sync_line_aft_pxl_6[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_VACT_SPACE_1_0, core->vact_space_1[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_VACT_SPACE_1_1, core->vact_space_1[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_VACT_SPACE_2_0, core->vact_space_2[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_VACT_SPACE_2_1, core->vact_space_2[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_VACT_SPACE_3_0, core->vact_space_3[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_VACT_SPACE_3_1, core->vact_space_3[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_VACT_SPACE_4_0, core->vact_space_4[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_VACT_SPACE_4_1, core->vact_space_4[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_VACT_SPACE_5_0, core->vact_space_5[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_VACT_SPACE_5_1, core->vact_space_5[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_VACT_SPACE_6_0, core->vact_space_6[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_VACT_SPACE_6_1, core->vact_space_6[1]);
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
/* Timing generator registers */
|
2013-01-15 21:11:08 +08:00
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_H_FSZ_L, tg->h_fsz[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_H_FSZ_H, tg->h_fsz[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_HACT_ST_L, tg->hact_st[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_HACT_ST_H, tg->hact_st[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_HACT_SZ_L, tg->hact_sz[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_HACT_SZ_H, tg->hact_sz[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_V_FSZ_L, tg->v_fsz[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_V_FSZ_H, tg->v_fsz[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC_L, tg->vsync[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC_H, tg->vsync[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC2_L, tg->vsync2[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC2_H, tg->vsync2[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VACT_ST_L, tg->vact_st[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VACT_ST_H, tg->vact_st[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VACT_SZ_L, tg->vact_sz[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VACT_SZ_H, tg->vact_sz[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_FIELD_CHG_L, tg->field_chg[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_FIELD_CHG_H, tg->field_chg[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VACT_ST2_L, tg->vact_st2[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VACT_ST2_H, tg->vact_st2[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VACT_ST3_L, tg->vact_st3[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VACT_ST3_H, tg->vact_st3[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VACT_ST4_L, tg->vact_st4[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VACT_ST4_H, tg->vact_st4[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC_TOP_HDMI_L, tg->vsync_top_hdmi[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC_TOP_HDMI_H, tg->vsync_top_hdmi[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC_BOT_HDMI_L, tg->vsync_bot_hdmi[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC_BOT_HDMI_H, tg->vsync_bot_hdmi[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_FIELD_TOP_HDMI_L, tg->field_top_hdmi[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_FIELD_TOP_HDMI_H, tg->field_top_hdmi[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_FIELD_BOT_HDMI_L, tg->field_bot_hdmi[0]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_FIELD_BOT_HDMI_H, tg->field_bot_hdmi[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_3D, tg->tg_3d[0]);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
/* waiting for HDMIPHY's PLL to get to steady state */
|
|
|
|
for (tries = 100; tries; --tries) {
|
2012-03-16 17:47:03 +08:00
|
|
|
u32 val = hdmi_reg_read(hdata, HDMI_PHY_STATUS_0);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
if (val & HDMI_PHY_STATUS_READY)
|
|
|
|
break;
|
2013-01-15 06:03:20 +08:00
|
|
|
usleep_range(1000, 2000);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
/* steady state not achieved */
|
|
|
|
if (tries == 0) {
|
|
|
|
DRM_ERROR("hdmiphy's pll could not reach steady state.\n");
|
|
|
|
hdmi_regs_dump(hdata, "timing apply");
|
|
|
|
}
|
|
|
|
|
2013-06-11 14:54:02 +08:00
|
|
|
clk_disable_unprepare(hdata->res.sclk_hdmi);
|
2013-06-11 14:54:03 +08:00
|
|
|
clk_set_parent(hdata->res.mout_hdmi, hdata->res.sclk_hdmiphy);
|
2013-06-11 14:54:02 +08:00
|
|
|
clk_prepare_enable(hdata->res.sclk_hdmi);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
/* enable HDMI and timing generator */
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_CON_0, ~0, HDMI_EN);
|
|
|
|
if (core->int_pro_mode[0])
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_TG_CMD, ~0, HDMI_TG_EN |
|
|
|
|
HDMI_FIELD_EN);
|
|
|
|
else
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_TG_CMD, ~0, HDMI_TG_EN);
|
|
|
|
}
|
|
|
|
|
2013-06-10 17:20:00 +08:00
|
|
|
static void hdmi_mode_apply(struct hdmi_context *hdata)
|
2012-03-16 17:47:03 +08:00
|
|
|
{
|
2012-10-04 23:18:54 +08:00
|
|
|
if (hdata->type == HDMI_TYPE13)
|
2013-06-10 17:20:00 +08:00
|
|
|
hdmi_v13_mode_apply(hdata);
|
2012-03-16 17:47:03 +08:00
|
|
|
else
|
2013-06-10 17:20:00 +08:00
|
|
|
hdmi_v14_mode_apply(hdata);
|
2012-03-16 17:47:03 +08:00
|
|
|
}
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
static void hdmiphy_conf_reset(struct hdmi_context *hdata)
|
|
|
|
{
|
|
|
|
u8 buffer[2];
|
2012-03-16 17:47:03 +08:00
|
|
|
u32 reg;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2013-06-11 14:54:02 +08:00
|
|
|
clk_disable_unprepare(hdata->res.sclk_hdmi);
|
2013-06-11 14:54:03 +08:00
|
|
|
clk_set_parent(hdata->res.mout_hdmi, hdata->res.sclk_pixel);
|
2013-06-11 14:54:02 +08:00
|
|
|
clk_prepare_enable(hdata->res.sclk_hdmi);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
/* operation mode */
|
|
|
|
buffer[0] = 0x1f;
|
|
|
|
buffer[1] = 0x00;
|
|
|
|
|
|
|
|
if (hdata->hdmiphy_port)
|
|
|
|
i2c_master_send(hdata->hdmiphy_port, buffer, 2);
|
|
|
|
|
2012-10-04 23:18:54 +08:00
|
|
|
if (hdata->type == HDMI_TYPE13)
|
2012-03-16 17:47:03 +08:00
|
|
|
reg = HDMI_V13_PHY_RSTOUT;
|
|
|
|
else
|
|
|
|
reg = HDMI_PHY_RSTOUT;
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
/* reset hdmiphy */
|
2012-03-16 17:47:03 +08:00
|
|
|
hdmi_reg_writemask(hdata, reg, ~0, HDMI_PHY_SW_RSTOUT);
|
2013-01-15 06:03:20 +08:00
|
|
|
usleep_range(10000, 12000);
|
2012-03-16 17:47:03 +08:00
|
|
|
hdmi_reg_writemask(hdata, reg, 0, HDMI_PHY_SW_RSTOUT);
|
2013-01-15 06:03:20 +08:00
|
|
|
usleep_range(10000, 12000);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2012-11-28 14:00:25 +08:00
|
|
|
static void hdmiphy_poweron(struct hdmi_context *hdata)
|
|
|
|
{
|
|
|
|
if (hdata->type == HDMI_TYPE14)
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_PHY_CON_0, 0,
|
|
|
|
HDMI_PHY_POWER_OFF_EN);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hdmiphy_poweroff(struct hdmi_context *hdata)
|
|
|
|
{
|
|
|
|
if (hdata->type == HDMI_TYPE14)
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_PHY_CON_0, ~0,
|
|
|
|
HDMI_PHY_POWER_OFF_EN);
|
|
|
|
}
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
static void hdmiphy_conf_apply(struct hdmi_context *hdata)
|
|
|
|
{
|
2012-03-16 17:47:03 +08:00
|
|
|
const u8 *hdmiphy_data;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
u8 buffer[32];
|
|
|
|
u8 operation[2];
|
|
|
|
u8 read_buffer[32] = {0, };
|
|
|
|
int ret;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (!hdata->hdmiphy_port) {
|
|
|
|
DRM_ERROR("hdmiphy is not attached\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* pixel clock */
|
2013-03-06 16:33:29 +08:00
|
|
|
i = hdmi_find_phy_conf(hdata, hdata->mode_conf.pixel_clock);
|
|
|
|
if (i < 0) {
|
|
|
|
DRM_ERROR("failed to find hdmiphy conf\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2013-04-26 13:59:00 +08:00
|
|
|
if (hdata->type == HDMI_TYPE13)
|
2013-03-06 16:33:29 +08:00
|
|
|
hdmiphy_data = hdmiphy_v13_configs[i].conf;
|
2013-04-26 13:59:00 +08:00
|
|
|
else
|
2013-01-15 21:11:08 +08:00
|
|
|
hdmiphy_data = hdmiphy_v14_configs[i].conf;
|
2012-03-16 17:47:03 +08:00
|
|
|
|
|
|
|
memcpy(buffer, hdmiphy_data, 32);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
ret = i2c_master_send(hdata->hdmiphy_port, buffer, 32);
|
|
|
|
if (ret != 32) {
|
|
|
|
DRM_ERROR("failed to configure HDMIPHY via I2C\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2013-01-15 06:03:20 +08:00
|
|
|
usleep_range(10000, 12000);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
/* operation mode */
|
|
|
|
operation[0] = 0x1f;
|
|
|
|
operation[1] = 0x80;
|
|
|
|
|
|
|
|
ret = i2c_master_send(hdata->hdmiphy_port, operation, 2);
|
|
|
|
if (ret != 2) {
|
|
|
|
DRM_ERROR("failed to enable hdmiphy\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = i2c_master_recv(hdata->hdmiphy_port, read_buffer, 32);
|
|
|
|
if (ret < 0) {
|
|
|
|
DRM_ERROR("failed to read hdmiphy config\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < ret; i++)
|
|
|
|
DRM_DEBUG_KMS("hdmiphy[0x%02x] write[0x%02x] - "
|
|
|
|
"recv [0x%02x]\n", i, buffer[i], read_buffer[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hdmi_conf_apply(struct hdmi_context *hdata)
|
|
|
|
{
|
|
|
|
hdmiphy_conf_reset(hdata);
|
|
|
|
hdmiphy_conf_apply(hdata);
|
|
|
|
|
2012-04-23 18:35:50 +08:00
|
|
|
mutex_lock(&hdata->hdmi_mutex);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
hdmi_conf_reset(hdata);
|
|
|
|
hdmi_conf_init(hdata);
|
2012-04-23 18:35:50 +08:00
|
|
|
mutex_unlock(&hdata->hdmi_mutex);
|
|
|
|
|
2012-03-16 17:47:16 +08:00
|
|
|
hdmi_audio_init(hdata);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
/* setting core registers */
|
2013-06-10 17:20:00 +08:00
|
|
|
hdmi_mode_apply(hdata);
|
2012-03-16 17:47:16 +08:00
|
|
|
hdmi_audio_control(hdata, true);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
hdmi_regs_dump(hdata, "start");
|
|
|
|
}
|
|
|
|
|
2013-01-15 21:11:08 +08:00
|
|
|
static void hdmi_set_reg(u8 *reg_pair, int num_bytes, u32 value)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
BUG_ON(num_bytes > 4);
|
|
|
|
for (i = 0; i < num_bytes; i++)
|
|
|
|
reg_pair[i] = (value >> (8 * i)) & 0xff;
|
|
|
|
}
|
|
|
|
|
2013-03-06 16:33:29 +08:00
|
|
|
static void hdmi_v13_mode_set(struct hdmi_context *hdata,
|
2013-01-15 21:11:08 +08:00
|
|
|
struct drm_display_mode *m)
|
|
|
|
{
|
2013-03-06 16:33:29 +08:00
|
|
|
struct hdmi_v13_core_regs *core = &hdata->mode_conf.conf.v13_conf.core;
|
|
|
|
struct hdmi_tg_regs *tg = &hdata->mode_conf.conf.v13_conf.tg;
|
|
|
|
unsigned int val;
|
2013-01-15 21:11:08 +08:00
|
|
|
|
2013-03-06 16:33:29 +08:00
|
|
|
hdata->mode_conf.cea_video_id =
|
|
|
|
drm_match_cea_mode((struct drm_display_mode *)m);
|
|
|
|
hdata->mode_conf.pixel_clock = m->clock * 1000;
|
|
|
|
|
|
|
|
hdmi_set_reg(core->h_blank, 2, m->htotal - m->hdisplay);
|
|
|
|
hdmi_set_reg(core->h_v_line, 3, (m->htotal << 12) | m->vtotal);
|
|
|
|
|
|
|
|
val = (m->flags & DRM_MODE_FLAG_NVSYNC) ? 1 : 0;
|
|
|
|
hdmi_set_reg(core->vsync_pol, 1, val);
|
|
|
|
|
|
|
|
val = (m->flags & DRM_MODE_FLAG_INTERLACE) ? 1 : 0;
|
|
|
|
hdmi_set_reg(core->int_pro_mode, 1, val);
|
|
|
|
|
|
|
|
val = (m->hsync_start - m->hdisplay - 2);
|
|
|
|
val |= ((m->hsync_end - m->hdisplay - 2) << 10);
|
|
|
|
val |= ((m->flags & DRM_MODE_FLAG_NHSYNC) ? 1 : 0)<<20;
|
|
|
|
hdmi_set_reg(core->h_sync_gen, 3, val);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Quirk requirement for exynos HDMI IP design,
|
|
|
|
* 2 pixels less than the actual calculation for hsync_start
|
|
|
|
* and end.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Following values & calculations differ for different type of modes */
|
|
|
|
if (m->flags & DRM_MODE_FLAG_INTERLACE) {
|
|
|
|
/* Interlaced Mode */
|
|
|
|
val = ((m->vsync_end - m->vdisplay) / 2);
|
|
|
|
val |= ((m->vsync_start - m->vdisplay) / 2) << 12;
|
|
|
|
hdmi_set_reg(core->v_sync_gen1, 3, val);
|
|
|
|
|
|
|
|
val = m->vtotal / 2;
|
|
|
|
val |= ((m->vtotal - m->vdisplay) / 2) << 11;
|
|
|
|
hdmi_set_reg(core->v_blank, 3, val);
|
|
|
|
|
|
|
|
val = (m->vtotal +
|
|
|
|
((m->vsync_end - m->vsync_start) * 4) + 5) / 2;
|
|
|
|
val |= m->vtotal << 11;
|
|
|
|
hdmi_set_reg(core->v_blank_f, 3, val);
|
|
|
|
|
|
|
|
val = ((m->vtotal / 2) + 7);
|
|
|
|
val |= ((m->vtotal / 2) + 2) << 12;
|
|
|
|
hdmi_set_reg(core->v_sync_gen2, 3, val);
|
|
|
|
|
|
|
|
val = ((m->htotal / 2) + (m->hsync_start - m->hdisplay));
|
|
|
|
val |= ((m->htotal / 2) +
|
|
|
|
(m->hsync_start - m->hdisplay)) << 12;
|
|
|
|
hdmi_set_reg(core->v_sync_gen3, 3, val);
|
|
|
|
|
|
|
|
hdmi_set_reg(tg->vact_st, 2, (m->vtotal - m->vdisplay) / 2);
|
|
|
|
hdmi_set_reg(tg->vact_sz, 2, m->vdisplay / 2);
|
|
|
|
|
|
|
|
hdmi_set_reg(tg->vact_st2, 2, 0x249);/* Reset value + 1*/
|
|
|
|
} else {
|
|
|
|
/* Progressive Mode */
|
|
|
|
|
|
|
|
val = m->vtotal;
|
|
|
|
val |= (m->vtotal - m->vdisplay) << 11;
|
|
|
|
hdmi_set_reg(core->v_blank, 3, val);
|
|
|
|
|
|
|
|
hdmi_set_reg(core->v_blank_f, 3, 0);
|
2013-01-15 21:11:08 +08:00
|
|
|
|
2013-03-06 16:33:29 +08:00
|
|
|
val = (m->vsync_end - m->vdisplay);
|
|
|
|
val |= ((m->vsync_start - m->vdisplay) << 12);
|
|
|
|
hdmi_set_reg(core->v_sync_gen1, 3, val);
|
|
|
|
|
|
|
|
hdmi_set_reg(core->v_sync_gen2, 3, 0x1001);/* Reset value */
|
|
|
|
hdmi_set_reg(core->v_sync_gen3, 3, 0x1001);/* Reset value */
|
|
|
|
hdmi_set_reg(tg->vact_st, 2, m->vtotal - m->vdisplay);
|
|
|
|
hdmi_set_reg(tg->vact_sz, 2, m->vdisplay);
|
|
|
|
hdmi_set_reg(tg->vact_st2, 2, 0x248); /* Reset value */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Timing generator registers */
|
|
|
|
hdmi_set_reg(tg->cmd, 1, 0x0);
|
|
|
|
hdmi_set_reg(tg->h_fsz, 2, m->htotal);
|
|
|
|
hdmi_set_reg(tg->hact_st, 2, m->htotal - m->hdisplay);
|
|
|
|
hdmi_set_reg(tg->hact_sz, 2, m->hdisplay);
|
|
|
|
hdmi_set_reg(tg->v_fsz, 2, m->vtotal);
|
|
|
|
hdmi_set_reg(tg->vsync, 2, 0x1);
|
|
|
|
hdmi_set_reg(tg->vsync2, 2, 0x233); /* Reset value */
|
|
|
|
hdmi_set_reg(tg->field_chg, 2, 0x233); /* Reset value */
|
|
|
|
hdmi_set_reg(tg->vsync_top_hdmi, 2, 0x1); /* Reset value */
|
|
|
|
hdmi_set_reg(tg->vsync_bot_hdmi, 2, 0x233); /* Reset value */
|
|
|
|
hdmi_set_reg(tg->field_top_hdmi, 2, 0x1); /* Reset value */
|
|
|
|
hdmi_set_reg(tg->field_bot_hdmi, 2, 0x233); /* Reset value */
|
|
|
|
hdmi_set_reg(tg->tg_3d, 1, 0x0); /* Not used */
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hdmi_v14_mode_set(struct hdmi_context *hdata,
|
|
|
|
struct drm_display_mode *m)
|
|
|
|
{
|
|
|
|
struct hdmi_tg_regs *tg = &hdata->mode_conf.conf.v14_conf.tg;
|
|
|
|
struct hdmi_v14_core_regs *core =
|
|
|
|
&hdata->mode_conf.conf.v14_conf.core;
|
|
|
|
|
|
|
|
hdata->mode_conf.cea_video_id =
|
|
|
|
drm_match_cea_mode((struct drm_display_mode *)m);
|
2013-01-15 21:11:08 +08:00
|
|
|
hdata->mode_conf.pixel_clock = m->clock * 1000;
|
2013-03-06 16:33:29 +08:00
|
|
|
|
2013-01-15 21:11:08 +08:00
|
|
|
hdmi_set_reg(core->h_blank, 2, m->htotal - m->hdisplay);
|
|
|
|
hdmi_set_reg(core->v_line, 2, m->vtotal);
|
|
|
|
hdmi_set_reg(core->h_line, 2, m->htotal);
|
|
|
|
hdmi_set_reg(core->hsync_pol, 1,
|
|
|
|
(m->flags & DRM_MODE_FLAG_NHSYNC) ? 1 : 0);
|
|
|
|
hdmi_set_reg(core->vsync_pol, 1,
|
|
|
|
(m->flags & DRM_MODE_FLAG_NVSYNC) ? 1 : 0);
|
|
|
|
hdmi_set_reg(core->int_pro_mode, 1,
|
|
|
|
(m->flags & DRM_MODE_FLAG_INTERLACE) ? 1 : 0);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Quirk requirement for exynos 5 HDMI IP design,
|
|
|
|
* 2 pixels less than the actual calculation for hsync_start
|
|
|
|
* and end.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Following values & calculations differ for different type of modes */
|
|
|
|
if (m->flags & DRM_MODE_FLAG_INTERLACE) {
|
|
|
|
/* Interlaced Mode */
|
|
|
|
hdmi_set_reg(core->v_sync_line_bef_2, 2,
|
|
|
|
(m->vsync_end - m->vdisplay) / 2);
|
|
|
|
hdmi_set_reg(core->v_sync_line_bef_1, 2,
|
|
|
|
(m->vsync_start - m->vdisplay) / 2);
|
|
|
|
hdmi_set_reg(core->v2_blank, 2, m->vtotal / 2);
|
|
|
|
hdmi_set_reg(core->v1_blank, 2, (m->vtotal - m->vdisplay) / 2);
|
2013-06-18 20:49:37 +08:00
|
|
|
hdmi_set_reg(core->v_blank_f0, 2, m->vtotal - m->vdisplay / 2);
|
2013-01-15 21:11:08 +08:00
|
|
|
hdmi_set_reg(core->v_blank_f1, 2, m->vtotal);
|
|
|
|
hdmi_set_reg(core->v_sync_line_aft_2, 2, (m->vtotal / 2) + 7);
|
|
|
|
hdmi_set_reg(core->v_sync_line_aft_1, 2, (m->vtotal / 2) + 2);
|
|
|
|
hdmi_set_reg(core->v_sync_line_aft_pxl_2, 2,
|
|
|
|
(m->htotal / 2) + (m->hsync_start - m->hdisplay));
|
|
|
|
hdmi_set_reg(core->v_sync_line_aft_pxl_1, 2,
|
|
|
|
(m->htotal / 2) + (m->hsync_start - m->hdisplay));
|
|
|
|
hdmi_set_reg(tg->vact_st, 2, (m->vtotal - m->vdisplay) / 2);
|
|
|
|
hdmi_set_reg(tg->vact_sz, 2, m->vdisplay / 2);
|
2013-06-18 20:49:37 +08:00
|
|
|
hdmi_set_reg(tg->vact_st2, 2, m->vtotal - m->vdisplay / 2);
|
|
|
|
hdmi_set_reg(tg->vsync2, 2, (m->vtotal / 2) + 1);
|
|
|
|
hdmi_set_reg(tg->vsync_bot_hdmi, 2, (m->vtotal / 2) + 1);
|
|
|
|
hdmi_set_reg(tg->field_bot_hdmi, 2, (m->vtotal / 2) + 1);
|
2013-01-15 21:11:08 +08:00
|
|
|
hdmi_set_reg(tg->vact_st3, 2, 0x0);
|
|
|
|
hdmi_set_reg(tg->vact_st4, 2, 0x0);
|
|
|
|
} else {
|
|
|
|
/* Progressive Mode */
|
|
|
|
hdmi_set_reg(core->v_sync_line_bef_2, 2,
|
|
|
|
m->vsync_end - m->vdisplay);
|
|
|
|
hdmi_set_reg(core->v_sync_line_bef_1, 2,
|
|
|
|
m->vsync_start - m->vdisplay);
|
|
|
|
hdmi_set_reg(core->v2_blank, 2, m->vtotal);
|
|
|
|
hdmi_set_reg(core->v1_blank, 2, m->vtotal - m->vdisplay);
|
|
|
|
hdmi_set_reg(core->v_blank_f0, 2, 0xffff);
|
|
|
|
hdmi_set_reg(core->v_blank_f1, 2, 0xffff);
|
|
|
|
hdmi_set_reg(core->v_sync_line_aft_2, 2, 0xffff);
|
|
|
|
hdmi_set_reg(core->v_sync_line_aft_1, 2, 0xffff);
|
|
|
|
hdmi_set_reg(core->v_sync_line_aft_pxl_2, 2, 0xffff);
|
|
|
|
hdmi_set_reg(core->v_sync_line_aft_pxl_1, 2, 0xffff);
|
|
|
|
hdmi_set_reg(tg->vact_st, 2, m->vtotal - m->vdisplay);
|
|
|
|
hdmi_set_reg(tg->vact_sz, 2, m->vdisplay);
|
|
|
|
hdmi_set_reg(tg->vact_st2, 2, 0x248); /* Reset value */
|
|
|
|
hdmi_set_reg(tg->vact_st3, 2, 0x47b); /* Reset value */
|
|
|
|
hdmi_set_reg(tg->vact_st4, 2, 0x6ae); /* Reset value */
|
2013-06-18 20:49:37 +08:00
|
|
|
hdmi_set_reg(tg->vsync2, 2, 0x233); /* Reset value */
|
|
|
|
hdmi_set_reg(tg->vsync_bot_hdmi, 2, 0x233); /* Reset value */
|
|
|
|
hdmi_set_reg(tg->field_bot_hdmi, 2, 0x233); /* Reset value */
|
2013-01-15 21:11:08 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Following values & calculations are same irrespective of mode type */
|
|
|
|
hdmi_set_reg(core->h_sync_start, 2, m->hsync_start - m->hdisplay - 2);
|
|
|
|
hdmi_set_reg(core->h_sync_end, 2, m->hsync_end - m->hdisplay - 2);
|
|
|
|
hdmi_set_reg(core->vact_space_1, 2, 0xffff);
|
|
|
|
hdmi_set_reg(core->vact_space_2, 2, 0xffff);
|
|
|
|
hdmi_set_reg(core->vact_space_3, 2, 0xffff);
|
|
|
|
hdmi_set_reg(core->vact_space_4, 2, 0xffff);
|
|
|
|
hdmi_set_reg(core->vact_space_5, 2, 0xffff);
|
|
|
|
hdmi_set_reg(core->vact_space_6, 2, 0xffff);
|
|
|
|
hdmi_set_reg(core->v_blank_f2, 2, 0xffff);
|
|
|
|
hdmi_set_reg(core->v_blank_f3, 2, 0xffff);
|
|
|
|
hdmi_set_reg(core->v_blank_f4, 2, 0xffff);
|
|
|
|
hdmi_set_reg(core->v_blank_f5, 2, 0xffff);
|
|
|
|
hdmi_set_reg(core->v_sync_line_aft_3, 2, 0xffff);
|
|
|
|
hdmi_set_reg(core->v_sync_line_aft_4, 2, 0xffff);
|
|
|
|
hdmi_set_reg(core->v_sync_line_aft_5, 2, 0xffff);
|
|
|
|
hdmi_set_reg(core->v_sync_line_aft_6, 2, 0xffff);
|
|
|
|
hdmi_set_reg(core->v_sync_line_aft_pxl_3, 2, 0xffff);
|
|
|
|
hdmi_set_reg(core->v_sync_line_aft_pxl_4, 2, 0xffff);
|
|
|
|
hdmi_set_reg(core->v_sync_line_aft_pxl_5, 2, 0xffff);
|
|
|
|
hdmi_set_reg(core->v_sync_line_aft_pxl_6, 2, 0xffff);
|
|
|
|
|
|
|
|
/* Timing generator registers */
|
|
|
|
hdmi_set_reg(tg->cmd, 1, 0x0);
|
|
|
|
hdmi_set_reg(tg->h_fsz, 2, m->htotal);
|
|
|
|
hdmi_set_reg(tg->hact_st, 2, m->htotal - m->hdisplay);
|
|
|
|
hdmi_set_reg(tg->hact_sz, 2, m->hdisplay);
|
|
|
|
hdmi_set_reg(tg->v_fsz, 2, m->vtotal);
|
|
|
|
hdmi_set_reg(tg->vsync, 2, 0x1);
|
|
|
|
hdmi_set_reg(tg->field_chg, 2, 0x233); /* Reset value */
|
|
|
|
hdmi_set_reg(tg->vsync_top_hdmi, 2, 0x1); /* Reset value */
|
|
|
|
hdmi_set_reg(tg->field_top_hdmi, 2, 0x1); /* Reset value */
|
|
|
|
hdmi_set_reg(tg->tg_3d, 1, 0x0);
|
|
|
|
}
|
|
|
|
|
2013-06-10 17:20:00 +08:00
|
|
|
static void hdmi_mode_set(void *ctx, struct drm_display_mode *mode)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
2012-04-05 19:49:22 +08:00
|
|
|
struct hdmi_context *hdata = ctx;
|
2013-03-06 16:33:29 +08:00
|
|
|
struct drm_display_mode *m = mode;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2013-06-12 09:44:40 +08:00
|
|
|
DRM_DEBUG_KMS("xres=%d, yres=%d, refresh=%d, intl=%s\n",
|
|
|
|
m->hdisplay, m->vdisplay,
|
2013-03-06 16:33:29 +08:00
|
|
|
m->vrefresh, (m->flags & DRM_MODE_FLAG_INTERLACE) ?
|
|
|
|
"INTERLACED" : "PROGERESSIVE");
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2013-04-26 13:59:00 +08:00
|
|
|
if (hdata->type == HDMI_TYPE13)
|
2013-03-06 16:33:29 +08:00
|
|
|
hdmi_v13_mode_set(hdata, mode);
|
2013-04-26 13:59:00 +08:00
|
|
|
else
|
2013-01-15 21:11:08 +08:00
|
|
|
hdmi_v14_mode_set(hdata, mode);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2012-03-16 17:47:04 +08:00
|
|
|
static void hdmi_get_max_resol(void *ctx, unsigned int *width,
|
|
|
|
unsigned int *height)
|
|
|
|
{
|
|
|
|
*width = MAX_WIDTH;
|
|
|
|
*height = MAX_HEIGHT;
|
|
|
|
}
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
static void hdmi_commit(void *ctx)
|
|
|
|
{
|
2012-04-05 19:49:22 +08:00
|
|
|
struct hdmi_context *hdata = ctx;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2013-01-24 11:03:18 +08:00
|
|
|
mutex_lock(&hdata->hdmi_mutex);
|
|
|
|
if (!hdata->powered) {
|
|
|
|
mutex_unlock(&hdata->hdmi_mutex);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
mutex_unlock(&hdata->hdmi_mutex);
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
hdmi_conf_apply(hdata);
|
2012-04-23 18:35:50 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void hdmi_poweron(struct hdmi_context *hdata)
|
|
|
|
{
|
|
|
|
struct hdmi_resources *res = &hdata->res;
|
|
|
|
|
|
|
|
mutex_lock(&hdata->hdmi_mutex);
|
|
|
|
if (hdata->powered) {
|
|
|
|
mutex_unlock(&hdata->hdmi_mutex);
|
|
|
|
return;
|
|
|
|
}
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2012-04-23 18:35:50 +08:00
|
|
|
hdata->powered = true;
|
|
|
|
|
|
|
|
mutex_unlock(&hdata->hdmi_mutex);
|
|
|
|
|
2013-06-05 13:34:38 +08:00
|
|
|
if (regulator_bulk_enable(res->regul_count, res->regul_bulk))
|
|
|
|
DRM_DEBUG_KMS("failed to enable regulator bulk\n");
|
|
|
|
|
2013-06-11 14:54:02 +08:00
|
|
|
clk_prepare_enable(res->hdmiphy);
|
|
|
|
clk_prepare_enable(res->hdmi);
|
|
|
|
clk_prepare_enable(res->sclk_hdmi);
|
2012-11-28 14:00:25 +08:00
|
|
|
|
|
|
|
hdmiphy_poweron(hdata);
|
2012-04-23 18:35:50 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void hdmi_poweroff(struct hdmi_context *hdata)
|
|
|
|
{
|
|
|
|
struct hdmi_resources *res = &hdata->res;
|
|
|
|
|
|
|
|
mutex_lock(&hdata->hdmi_mutex);
|
|
|
|
if (!hdata->powered)
|
|
|
|
goto out;
|
|
|
|
mutex_unlock(&hdata->hdmi_mutex);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The TV power domain needs any condition of hdmiphy to turn off and
|
|
|
|
* its reset state seems to meet the condition.
|
|
|
|
*/
|
|
|
|
hdmiphy_conf_reset(hdata);
|
2012-11-28 14:00:25 +08:00
|
|
|
hdmiphy_poweroff(hdata);
|
2012-04-23 18:35:50 +08:00
|
|
|
|
2013-06-11 14:54:02 +08:00
|
|
|
clk_disable_unprepare(res->sclk_hdmi);
|
|
|
|
clk_disable_unprepare(res->hdmi);
|
|
|
|
clk_disable_unprepare(res->hdmiphy);
|
2012-04-23 18:35:50 +08:00
|
|
|
regulator_bulk_disable(res->regul_count, res->regul_bulk);
|
|
|
|
|
|
|
|
mutex_lock(&hdata->hdmi_mutex);
|
|
|
|
|
|
|
|
hdata->powered = false;
|
|
|
|
|
|
|
|
out:
|
|
|
|
mutex_unlock(&hdata->hdmi_mutex);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2012-04-23 18:35:50 +08:00
|
|
|
static void hdmi_dpms(void *ctx, int mode)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
2012-04-05 19:49:22 +08:00
|
|
|
struct hdmi_context *hdata = ctx;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2013-06-12 09:44:40 +08:00
|
|
|
DRM_DEBUG_KMS("mode %d\n", mode);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2012-04-23 18:35:50 +08:00
|
|
|
switch (mode) {
|
|
|
|
case DRM_MODE_DPMS_ON:
|
2012-11-28 14:00:23 +08:00
|
|
|
if (pm_runtime_suspended(hdata->dev))
|
|
|
|
pm_runtime_get_sync(hdata->dev);
|
2012-04-23 18:35:50 +08:00
|
|
|
break;
|
|
|
|
case DRM_MODE_DPMS_STANDBY:
|
|
|
|
case DRM_MODE_DPMS_SUSPEND:
|
|
|
|
case DRM_MODE_DPMS_OFF:
|
2012-11-28 14:00:23 +08:00
|
|
|
if (!pm_runtime_suspended(hdata->dev))
|
|
|
|
pm_runtime_put_sync(hdata->dev);
|
2012-04-23 18:35:50 +08:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
DRM_DEBUG_KMS("unknown dpms mode: %d\n", mode);
|
|
|
|
break;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-04-05 19:49:26 +08:00
|
|
|
static struct exynos_hdmi_ops hdmi_ops = {
|
|
|
|
/* display */
|
|
|
|
.is_connected = hdmi_is_connected,
|
|
|
|
.get_edid = hdmi_get_edid,
|
2013-06-10 17:20:00 +08:00
|
|
|
.check_mode = hdmi_check_mode,
|
2012-04-05 19:49:26 +08:00
|
|
|
|
|
|
|
/* manager */
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
.mode_set = hdmi_mode_set,
|
2012-03-16 17:47:04 +08:00
|
|
|
.get_max_resol = hdmi_get_max_resol,
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
.commit = hdmi_commit,
|
2012-04-23 18:35:50 +08:00
|
|
|
.dpms = hdmi_dpms,
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
};
|
|
|
|
|
2013-01-16 23:17:20 +08:00
|
|
|
static irqreturn_t hdmi_irq_thread(int irq, void *arg)
|
2012-04-23 18:35:50 +08:00
|
|
|
{
|
|
|
|
struct exynos_drm_hdmi_context *ctx = arg;
|
|
|
|
struct hdmi_context *hdata = ctx->ctx;
|
|
|
|
|
|
|
|
mutex_lock(&hdata->hdmi_mutex);
|
2012-10-04 23:18:46 +08:00
|
|
|
hdata->hpd = gpio_get_value(hdata->hpd_gpio);
|
2012-04-23 18:35:50 +08:00
|
|
|
mutex_unlock(&hdata->hdmi_mutex);
|
|
|
|
|
|
|
|
if (ctx->drm_dev)
|
|
|
|
drm_helper_hpd_irq_event(ctx->drm_dev);
|
|
|
|
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
2012-12-22 07:09:25 +08:00
|
|
|
static int hdmi_resources_init(struct hdmi_context *hdata)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
|
|
|
struct device *dev = hdata->dev;
|
|
|
|
struct hdmi_resources *res = &hdata->res;
|
|
|
|
static char *supply[] = {
|
|
|
|
"hdmi-en",
|
|
|
|
"vdd",
|
|
|
|
"vdd_osc",
|
|
|
|
"vdd_pll",
|
|
|
|
};
|
|
|
|
int i, ret;
|
|
|
|
|
|
|
|
DRM_DEBUG_KMS("HDMI resource init\n");
|
|
|
|
|
2012-08-31 18:20:47 +08:00
|
|
|
memset(res, 0, sizeof(*res));
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
/* get clocks, power */
|
2012-11-23 16:43:27 +08:00
|
|
|
res->hdmi = devm_clk_get(dev, "hdmi");
|
2013-03-21 18:03:57 +08:00
|
|
|
if (IS_ERR(res->hdmi)) {
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
DRM_ERROR("failed to get clock 'hdmi'\n");
|
|
|
|
goto fail;
|
|
|
|
}
|
2012-11-23 16:43:27 +08:00
|
|
|
res->sclk_hdmi = devm_clk_get(dev, "sclk_hdmi");
|
2013-03-21 18:03:57 +08:00
|
|
|
if (IS_ERR(res->sclk_hdmi)) {
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
DRM_ERROR("failed to get clock 'sclk_hdmi'\n");
|
|
|
|
goto fail;
|
|
|
|
}
|
2012-11-23 16:43:27 +08:00
|
|
|
res->sclk_pixel = devm_clk_get(dev, "sclk_pixel");
|
2013-03-21 18:03:57 +08:00
|
|
|
if (IS_ERR(res->sclk_pixel)) {
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
DRM_ERROR("failed to get clock 'sclk_pixel'\n");
|
|
|
|
goto fail;
|
|
|
|
}
|
2012-11-23 16:43:27 +08:00
|
|
|
res->sclk_hdmiphy = devm_clk_get(dev, "sclk_hdmiphy");
|
2013-03-21 18:03:57 +08:00
|
|
|
if (IS_ERR(res->sclk_hdmiphy)) {
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
DRM_ERROR("failed to get clock 'sclk_hdmiphy'\n");
|
|
|
|
goto fail;
|
|
|
|
}
|
2012-11-23 16:43:27 +08:00
|
|
|
res->hdmiphy = devm_clk_get(dev, "hdmiphy");
|
2013-03-21 18:03:57 +08:00
|
|
|
if (IS_ERR(res->hdmiphy)) {
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
DRM_ERROR("failed to get clock 'hdmiphy'\n");
|
|
|
|
goto fail;
|
|
|
|
}
|
2013-06-11 14:54:03 +08:00
|
|
|
res->mout_hdmi = devm_clk_get(dev, "mout_hdmi");
|
|
|
|
if (IS_ERR(res->mout_hdmi)) {
|
|
|
|
DRM_ERROR("failed to get clock 'mout_hdmi'\n");
|
|
|
|
goto fail;
|
|
|
|
}
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2013-06-11 14:54:03 +08:00
|
|
|
clk_set_parent(res->mout_hdmi, res->sclk_pixel);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2012-11-23 16:43:27 +08:00
|
|
|
res->regul_bulk = devm_kzalloc(dev, ARRAY_SIZE(supply) *
|
2012-08-31 18:20:47 +08:00
|
|
|
sizeof(res->regul_bulk[0]), GFP_KERNEL);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
if (!res->regul_bulk) {
|
|
|
|
DRM_ERROR("failed to get memory for regulators\n");
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(supply); ++i) {
|
|
|
|
res->regul_bulk[i].supply = supply[i];
|
|
|
|
res->regul_bulk[i].consumer = NULL;
|
|
|
|
}
|
2012-11-23 16:43:27 +08:00
|
|
|
ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(supply), res->regul_bulk);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
if (ret) {
|
|
|
|
DRM_ERROR("failed to get regulators\n");
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
res->regul_count = ARRAY_SIZE(supply);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
|
|
DRM_ERROR("HDMI resource init - failed\n");
|
|
|
|
return -ENODEV;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct i2c_client *hdmi_ddc, *hdmi_hdmiphy;
|
|
|
|
|
|
|
|
void hdmi_attach_ddc_client(struct i2c_client *ddc)
|
|
|
|
{
|
|
|
|
if (ddc)
|
|
|
|
hdmi_ddc = ddc;
|
|
|
|
}
|
|
|
|
|
|
|
|
void hdmi_attach_hdmiphy_client(struct i2c_client *hdmiphy)
|
|
|
|
{
|
|
|
|
if (hdmiphy)
|
|
|
|
hdmi_hdmiphy = hdmiphy;
|
|
|
|
}
|
|
|
|
|
2012-10-04 23:18:55 +08:00
|
|
|
#ifdef CONFIG_OF
|
|
|
|
static struct s5p_hdmi_platform_data *drm_hdmi_dt_parse_pdata
|
|
|
|
(struct device *dev)
|
|
|
|
{
|
|
|
|
struct device_node *np = dev->of_node;
|
|
|
|
struct s5p_hdmi_platform_data *pd;
|
|
|
|
u32 value;
|
|
|
|
|
|
|
|
pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
|
|
|
|
if (!pd) {
|
|
|
|
DRM_ERROR("memory allocation for pdata failed\n");
|
|
|
|
goto err_data;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!of_find_property(np, "hpd-gpio", &value)) {
|
|
|
|
DRM_ERROR("no hpd gpio property found\n");
|
|
|
|
goto err_data;
|
|
|
|
}
|
|
|
|
|
2013-06-11 22:11:29 +08:00
|
|
|
pd->hpd_gpio = of_get_named_gpio(np, "hpd-gpio", 0);
|
2012-10-04 23:18:55 +08:00
|
|
|
|
|
|
|
return pd;
|
|
|
|
|
|
|
|
err_data:
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static struct s5p_hdmi_platform_data *drm_hdmi_dt_parse_pdata
|
|
|
|
(struct device *dev)
|
|
|
|
{
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2012-10-04 23:18:44 +08:00
|
|
|
static struct platform_device_id hdmi_driver_types[] = {
|
|
|
|
{
|
|
|
|
.name = "s5pv210-hdmi",
|
|
|
|
.driver_data = HDMI_TYPE13,
|
|
|
|
}, {
|
|
|
|
.name = "exynos4-hdmi",
|
|
|
|
.driver_data = HDMI_TYPE13,
|
|
|
|
}, {
|
|
|
|
.name = "exynos4-hdmi14",
|
2012-10-04 23:18:55 +08:00
|
|
|
.driver_data = HDMI_TYPE14,
|
|
|
|
}, {
|
|
|
|
.name = "exynos5-hdmi",
|
|
|
|
.driver_data = HDMI_TYPE14,
|
|
|
|
}, {
|
|
|
|
/* end node */
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2012-12-12 16:54:07 +08:00
|
|
|
#ifdef CONFIG_OF
|
2012-10-04 23:18:55 +08:00
|
|
|
static struct of_device_id hdmi_match_types[] = {
|
|
|
|
{
|
|
|
|
.compatible = "samsung,exynos5-hdmi",
|
|
|
|
.data = (void *)HDMI_TYPE14,
|
2013-06-19 20:51:07 +08:00
|
|
|
}, {
|
|
|
|
.compatible = "samsung,exynos4212-hdmi",
|
|
|
|
.data = (void *)HDMI_TYPE14,
|
2012-10-04 23:18:44 +08:00
|
|
|
}, {
|
|
|
|
/* end node */
|
|
|
|
}
|
|
|
|
};
|
2012-12-12 16:54:07 +08:00
|
|
|
#endif
|
2012-10-04 23:18:44 +08:00
|
|
|
|
2012-12-22 07:09:25 +08:00
|
|
|
static int hdmi_probe(struct platform_device *pdev)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
|
|
|
struct device *dev = &pdev->dev;
|
|
|
|
struct exynos_drm_hdmi_context *drm_hdmi_ctx;
|
|
|
|
struct hdmi_context *hdata;
|
2012-10-04 23:18:46 +08:00
|
|
|
struct s5p_hdmi_platform_data *pdata;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
struct resource *res;
|
|
|
|
int ret;
|
|
|
|
|
2013-05-22 20:14:14 +08:00
|
|
|
if (dev->of_node) {
|
2012-10-04 23:18:55 +08:00
|
|
|
pdata = drm_hdmi_dt_parse_pdata(dev);
|
|
|
|
if (IS_ERR(pdata)) {
|
|
|
|
DRM_ERROR("failed to parse dt\n");
|
|
|
|
return PTR_ERR(pdata);
|
|
|
|
}
|
|
|
|
} else {
|
2013-05-22 20:14:14 +08:00
|
|
|
pdata = dev->platform_data;
|
2012-10-04 23:18:55 +08:00
|
|
|
}
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
if (!pdata) {
|
|
|
|
DRM_ERROR("no platform data specified\n");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2013-05-22 20:14:14 +08:00
|
|
|
drm_hdmi_ctx = devm_kzalloc(dev, sizeof(*drm_hdmi_ctx),
|
2012-06-19 14:17:40 +08:00
|
|
|
GFP_KERNEL);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
if (!drm_hdmi_ctx) {
|
|
|
|
DRM_ERROR("failed to allocate common hdmi context.\n");
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
2013-05-22 20:14:14 +08:00
|
|
|
hdata = devm_kzalloc(dev, sizeof(struct hdmi_context),
|
2012-06-19 14:17:40 +08:00
|
|
|
GFP_KERNEL);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
if (!hdata) {
|
|
|
|
DRM_ERROR("out of memory\n");
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
2012-04-23 18:35:50 +08:00
|
|
|
mutex_init(&hdata->hdmi_mutex);
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
drm_hdmi_ctx->ctx = (void *)hdata;
|
|
|
|
hdata->parent_ctx = (void *)drm_hdmi_ctx;
|
|
|
|
|
|
|
|
platform_set_drvdata(pdev, drm_hdmi_ctx);
|
|
|
|
|
2012-10-04 23:18:55 +08:00
|
|
|
if (dev->of_node) {
|
|
|
|
const struct of_device_id *match;
|
|
|
|
match = of_match_node(of_match_ptr(hdmi_match_types),
|
2013-05-22 20:14:14 +08:00
|
|
|
dev->of_node);
|
2012-12-12 16:54:08 +08:00
|
|
|
if (match == NULL)
|
|
|
|
return -ENODEV;
|
2012-10-04 23:18:55 +08:00
|
|
|
hdata->type = (enum hdmi_type)match->data;
|
|
|
|
} else {
|
|
|
|
hdata->type = (enum hdmi_type)platform_get_device_id
|
2012-10-04 23:18:54 +08:00
|
|
|
(pdev)->driver_data;
|
2012-10-04 23:18:55 +08:00
|
|
|
}
|
|
|
|
|
2012-10-04 23:18:46 +08:00
|
|
|
hdata->hpd_gpio = pdata->hpd_gpio;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
hdata->dev = dev;
|
|
|
|
|
|
|
|
ret = hdmi_resources_init(hdata);
|
2012-10-04 23:18:55 +08:00
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
if (ret) {
|
2012-10-04 23:18:55 +08:00
|
|
|
DRM_ERROR("hdmi_resources_init failed\n");
|
2012-11-23 16:43:27 +08:00
|
|
|
return -EINVAL;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
2013-05-22 20:14:14 +08:00
|
|
|
hdata->regs = devm_ioremap_resource(dev, res);
|
2013-01-21 18:09:02 +08:00
|
|
|
if (IS_ERR(hdata->regs))
|
|
|
|
return PTR_ERR(hdata->regs);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2013-05-22 20:14:14 +08:00
|
|
|
ret = devm_gpio_request(dev, hdata->hpd_gpio, "HPD");
|
2012-10-04 23:18:46 +08:00
|
|
|
if (ret) {
|
|
|
|
DRM_ERROR("failed to request HPD gpio\n");
|
2012-11-23 16:43:27 +08:00
|
|
|
return ret;
|
2012-10-04 23:18:46 +08:00
|
|
|
}
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
/* DDC i2c driver */
|
|
|
|
if (i2c_add_driver(&ddc_driver)) {
|
|
|
|
DRM_ERROR("failed to register ddc i2c driver\n");
|
2012-11-23 16:43:27 +08:00
|
|
|
return -ENOENT;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
hdata->ddc_port = hdmi_ddc;
|
|
|
|
|
|
|
|
/* hdmiphy i2c driver */
|
|
|
|
if (i2c_add_driver(&hdmiphy_driver)) {
|
|
|
|
DRM_ERROR("failed to register hdmiphy i2c driver\n");
|
|
|
|
ret = -ENOENT;
|
|
|
|
goto err_ddc;
|
|
|
|
}
|
|
|
|
|
|
|
|
hdata->hdmiphy_port = hdmi_hdmiphy;
|
|
|
|
|
2013-01-16 23:17:20 +08:00
|
|
|
hdata->irq = gpio_to_irq(hdata->hpd_gpio);
|
|
|
|
if (hdata->irq < 0) {
|
|
|
|
DRM_ERROR("failed to get GPIO irq\n");
|
|
|
|
ret = hdata->irq;
|
2012-04-23 18:35:50 +08:00
|
|
|
goto err_hdmiphy;
|
|
|
|
}
|
|
|
|
|
2012-10-04 23:18:46 +08:00
|
|
|
hdata->hpd = gpio_get_value(hdata->hpd_gpio);
|
|
|
|
|
2013-05-22 20:14:17 +08:00
|
|
|
ret = devm_request_threaded_irq(dev, hdata->irq, NULL,
|
2013-01-16 23:17:20 +08:00
|
|
|
hdmi_irq_thread, IRQF_TRIGGER_RISING |
|
2012-04-23 18:35:50 +08:00
|
|
|
IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
|
2013-01-16 23:17:20 +08:00
|
|
|
"hdmi", drm_hdmi_ctx);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
if (ret) {
|
2013-01-16 23:17:20 +08:00
|
|
|
DRM_ERROR("failed to register hdmi interrupt\n");
|
2012-04-23 18:35:49 +08:00
|
|
|
goto err_hdmiphy;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2012-10-04 23:18:56 +08:00
|
|
|
/* Attach HDMI Driver to common hdmi. */
|
|
|
|
exynos_hdmi_drv_attach(drm_hdmi_ctx);
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
/* register specific callbacks to common hdmi. */
|
2012-04-05 19:49:26 +08:00
|
|
|
exynos_hdmi_ops_register(&hdmi_ops);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2012-04-23 18:35:50 +08:00
|
|
|
pm_runtime_enable(dev);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
err_hdmiphy:
|
|
|
|
i2c_del_driver(&hdmiphy_driver);
|
|
|
|
err_ddc:
|
|
|
|
i2c_del_driver(&ddc_driver);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2012-12-22 07:09:25 +08:00
|
|
|
static int hdmi_remove(struct platform_device *pdev)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
2012-04-23 18:35:50 +08:00
|
|
|
struct device *dev = &pdev->dev;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2012-04-23 18:35:50 +08:00
|
|
|
pm_runtime_disable(dev);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
/* hdmiphy i2c driver */
|
|
|
|
i2c_del_driver(&hdmiphy_driver);
|
|
|
|
/* DDC i2c driver */
|
|
|
|
i2c_del_driver(&ddc_driver);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2012-04-23 18:35:51 +08:00
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
|
|
static int hdmi_suspend(struct device *dev)
|
|
|
|
{
|
|
|
|
struct exynos_drm_hdmi_context *ctx = get_hdmi_context(dev);
|
|
|
|
struct hdmi_context *hdata = ctx->ctx;
|
|
|
|
|
2013-01-16 23:17:20 +08:00
|
|
|
disable_irq(hdata->irq);
|
2012-04-23 18:35:51 +08:00
|
|
|
|
|
|
|
hdata->hpd = false;
|
|
|
|
if (ctx->drm_dev)
|
|
|
|
drm_helper_hpd_irq_event(ctx->drm_dev);
|
|
|
|
|
2012-11-28 14:00:23 +08:00
|
|
|
if (pm_runtime_suspended(dev)) {
|
2013-06-12 09:44:40 +08:00
|
|
|
DRM_DEBUG_KMS("Already suspended\n");
|
2012-11-28 14:00:23 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2012-04-23 18:35:51 +08:00
|
|
|
hdmi_poweroff(hdata);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int hdmi_resume(struct device *dev)
|
|
|
|
{
|
|
|
|
struct exynos_drm_hdmi_context *ctx = get_hdmi_context(dev);
|
|
|
|
struct hdmi_context *hdata = ctx->ctx;
|
|
|
|
|
2012-11-28 14:00:23 +08:00
|
|
|
hdata->hpd = gpio_get_value(hdata->hpd_gpio);
|
|
|
|
|
2013-01-16 23:17:20 +08:00
|
|
|
enable_irq(hdata->irq);
|
2012-11-28 14:00:23 +08:00
|
|
|
|
|
|
|
if (!pm_runtime_suspended(dev)) {
|
2013-06-12 09:44:40 +08:00
|
|
|
DRM_DEBUG_KMS("Already resumed\n");
|
2012-11-28 14:00:23 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
hdmi_poweron(hdata);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef CONFIG_PM_RUNTIME
|
|
|
|
static int hdmi_runtime_suspend(struct device *dev)
|
|
|
|
{
|
|
|
|
struct exynos_drm_hdmi_context *ctx = get_hdmi_context(dev);
|
|
|
|
struct hdmi_context *hdata = ctx->ctx;
|
|
|
|
|
|
|
|
hdmi_poweroff(hdata);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int hdmi_runtime_resume(struct device *dev)
|
|
|
|
{
|
|
|
|
struct exynos_drm_hdmi_context *ctx = get_hdmi_context(dev);
|
|
|
|
struct hdmi_context *hdata = ctx->ctx;
|
|
|
|
|
|
|
|
hdmi_poweron(hdata);
|
|
|
|
|
2012-04-23 18:35:51 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2012-11-28 14:00:23 +08:00
|
|
|
static const struct dev_pm_ops hdmi_pm_ops = {
|
|
|
|
SET_SYSTEM_SLEEP_PM_OPS(hdmi_suspend, hdmi_resume)
|
|
|
|
SET_RUNTIME_PM_OPS(hdmi_runtime_suspend, hdmi_runtime_resume, NULL)
|
|
|
|
};
|
2012-04-23 18:35:51 +08:00
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
struct platform_driver hdmi_driver = {
|
|
|
|
.probe = hdmi_probe,
|
2012-12-22 07:09:25 +08:00
|
|
|
.remove = hdmi_remove,
|
2012-10-04 23:18:44 +08:00
|
|
|
.id_table = hdmi_driver_types,
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
.driver = {
|
2012-10-04 23:18:55 +08:00
|
|
|
.name = "exynos-hdmi",
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
.owner = THIS_MODULE,
|
2012-04-23 18:35:51 +08:00
|
|
|
.pm = &hdmi_pm_ops,
|
2012-12-12 16:54:07 +08:00
|
|
|
.of_match_table = of_match_ptr(hdmi_match_types),
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
},
|
|
|
|
};
|