linux/drivers/clk/sunxi-ng/ccu_common.c

160 lines
3.9 KiB
C
Raw Normal View History

/*
* Copyright 2016 Maxime Ripard
*
* Maxime Ripard <maxime.ripard@free-electrons.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
clk: sunxi-ng: Add clk notifier to gate then ungate PLL clocks In common PLL designs, changes to the dividers take effect almost immediately, while changes to the multipliers (implemented as dividers in the feedback loop) take a few cycles to work into the feedback loop for the PLL to stablize. Sometimes when the PLL clock rate is changed, the decrease in the divider is too much for the decrease in the multiplier to catch up. The PLL clock rate will spike, and in some cases, might lock up completely. This is especially the case if the divider changed is the pre-divider, which affects the reference frequency. This patch introduces a clk notifier callback that will gate and then ungate a clk after a rate change, effectively resetting it, so it continues to work, despite any possible lockups. Care must be taken to reparent any consumers to other temporary clocks during the rate change, and that this notifier callback must be the first to be registered. This is intended to fix occasional lockups with cpufreq on newer Allwinner SoCs, such as the A33 and the H3. Previously it was thought that reparenting the cpu clock away from the PLL while it stabilized was enough, as this worked quite well on the A31. On the A33, hangs have been observed after cpufreq was recently introduced. With the H3, a more thorough test [1] showed that reparenting alone isn't enough. The system still locks up unless the dividers are limited to 1. A hunch was if the PLL was stuck in some unknown state, perhaps gating then ungating it would bring it back to normal. Tests done by Icenowy Zheng using Ondrej's test firmware shows this to be a valid solution. [1] http://www.spinics.net/lists/arm-kernel/msg552501.html Reported-by: Ondrej Jirman <megous@megous.com> Signed-off-by: Chen-Yu Tsai <wens@csie.org> Tested-by: Icenowy Zheng <icenowy@aosc.io> Tested-by: Quentin Schulz <quentin.schulz@free-electrons.com> Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com>
2017-04-13 10:13:52 +08:00
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/iopoll.h>
#include <linux/slab.h>
#include "ccu_common.h"
clk: sunxi-ng: Add clk notifier to gate then ungate PLL clocks In common PLL designs, changes to the dividers take effect almost immediately, while changes to the multipliers (implemented as dividers in the feedback loop) take a few cycles to work into the feedback loop for the PLL to stablize. Sometimes when the PLL clock rate is changed, the decrease in the divider is too much for the decrease in the multiplier to catch up. The PLL clock rate will spike, and in some cases, might lock up completely. This is especially the case if the divider changed is the pre-divider, which affects the reference frequency. This patch introduces a clk notifier callback that will gate and then ungate a clk after a rate change, effectively resetting it, so it continues to work, despite any possible lockups. Care must be taken to reparent any consumers to other temporary clocks during the rate change, and that this notifier callback must be the first to be registered. This is intended to fix occasional lockups with cpufreq on newer Allwinner SoCs, such as the A33 and the H3. Previously it was thought that reparenting the cpu clock away from the PLL while it stabilized was enough, as this worked quite well on the A31. On the A33, hangs have been observed after cpufreq was recently introduced. With the H3, a more thorough test [1] showed that reparenting alone isn't enough. The system still locks up unless the dividers are limited to 1. A hunch was if the PLL was stuck in some unknown state, perhaps gating then ungating it would bring it back to normal. Tests done by Icenowy Zheng using Ondrej's test firmware shows this to be a valid solution. [1] http://www.spinics.net/lists/arm-kernel/msg552501.html Reported-by: Ondrej Jirman <megous@megous.com> Signed-off-by: Chen-Yu Tsai <wens@csie.org> Tested-by: Icenowy Zheng <icenowy@aosc.io> Tested-by: Quentin Schulz <quentin.schulz@free-electrons.com> Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com>
2017-04-13 10:13:52 +08:00
#include "ccu_gate.h"
#include "ccu_reset.h"
static DEFINE_SPINLOCK(ccu_lock);
void ccu_helper_wait_for_lock(struct ccu_common *common, u32 lock)
{
void __iomem *addr;
u32 reg;
if (!lock)
return;
if (common->features & CCU_FEATURE_LOCK_REG)
addr = common->base + common->lock_reg;
else
addr = common->base + common->reg;
WARN_ON(readl_relaxed_poll_timeout(addr, reg, reg & lock, 100, 70000));
}
clk: sunxi-ng: Add clk notifier to gate then ungate PLL clocks In common PLL designs, changes to the dividers take effect almost immediately, while changes to the multipliers (implemented as dividers in the feedback loop) take a few cycles to work into the feedback loop for the PLL to stablize. Sometimes when the PLL clock rate is changed, the decrease in the divider is too much for the decrease in the multiplier to catch up. The PLL clock rate will spike, and in some cases, might lock up completely. This is especially the case if the divider changed is the pre-divider, which affects the reference frequency. This patch introduces a clk notifier callback that will gate and then ungate a clk after a rate change, effectively resetting it, so it continues to work, despite any possible lockups. Care must be taken to reparent any consumers to other temporary clocks during the rate change, and that this notifier callback must be the first to be registered. This is intended to fix occasional lockups with cpufreq on newer Allwinner SoCs, such as the A33 and the H3. Previously it was thought that reparenting the cpu clock away from the PLL while it stabilized was enough, as this worked quite well on the A31. On the A33, hangs have been observed after cpufreq was recently introduced. With the H3, a more thorough test [1] showed that reparenting alone isn't enough. The system still locks up unless the dividers are limited to 1. A hunch was if the PLL was stuck in some unknown state, perhaps gating then ungating it would bring it back to normal. Tests done by Icenowy Zheng using Ondrej's test firmware shows this to be a valid solution. [1] http://www.spinics.net/lists/arm-kernel/msg552501.html Reported-by: Ondrej Jirman <megous@megous.com> Signed-off-by: Chen-Yu Tsai <wens@csie.org> Tested-by: Icenowy Zheng <icenowy@aosc.io> Tested-by: Quentin Schulz <quentin.schulz@free-electrons.com> Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com>
2017-04-13 10:13:52 +08:00
/*
* This clock notifier is called when the frequency of a PLL clock is
* changed. In common PLL designs, changes to the dividers take effect
* almost immediately, while changes to the multipliers (implemented
* as dividers in the feedback loop) take a few cycles to work into
* the feedback loop for the PLL to stablize.
*
* Sometimes when the PLL clock rate is changed, the decrease in the
* divider is too much for the decrease in the multiplier to catch up.
* The PLL clock rate will spike, and in some cases, might lock up
* completely.
*
* This notifier callback will gate and then ungate the clock,
* effectively resetting it, so it proceeds to work. Care must be
* taken to reparent consumers to other temporary clocks during the
* rate change, and that this notifier callback must be the first
* to be registered.
*/
static int ccu_pll_notifier_cb(struct notifier_block *nb,
unsigned long event, void *data)
{
struct ccu_pll_nb *pll = to_ccu_pll_nb(nb);
int ret = 0;
if (event != POST_RATE_CHANGE)
goto out;
ccu_gate_helper_disable(pll->common, pll->enable);
ret = ccu_gate_helper_enable(pll->common, pll->enable);
if (ret)
goto out;
ccu_helper_wait_for_lock(pll->common, pll->lock);
out:
return notifier_from_errno(ret);
}
int ccu_pll_notifier_register(struct ccu_pll_nb *pll_nb)
{
pll_nb->clk_nb.notifier_call = ccu_pll_notifier_cb;
return clk_notifier_register(pll_nb->common->hw.clk,
&pll_nb->clk_nb);
}
int sunxi_ccu_probe(struct device_node *node, void __iomem *reg,
const struct sunxi_ccu_desc *desc)
{
struct ccu_reset *reset;
int i, ret;
for (i = 0; i < desc->num_ccu_clks; i++) {
struct ccu_common *cclk = desc->ccu_clks[i];
if (!cclk)
continue;
cclk->base = reg;
cclk->lock = &ccu_lock;
}
for (i = 0; i < desc->hw_clks->num ; i++) {
struct clk_hw *hw = desc->hw_clks->hws[i];
if (!hw)
continue;
ret = clk_hw_register(NULL, hw);
if (ret) {
pr_err("Couldn't register clock %d - %s\n",
i, clk_hw_get_name(hw));
goto err_clk_unreg;
}
}
ret = of_clk_add_hw_provider(node, of_clk_hw_onecell_get,
desc->hw_clks);
if (ret)
goto err_clk_unreg;
reset = kzalloc(sizeof(*reset), GFP_KERNEL);
if (!reset) {
ret = -ENOMEM;
goto err_alloc_reset;
}
reset->rcdev.of_node = node;
reset->rcdev.ops = &ccu_reset_ops;
reset->rcdev.owner = THIS_MODULE;
reset->rcdev.nr_resets = desc->num_resets;
reset->base = reg;
reset->lock = &ccu_lock;
reset->reset_map = desc->resets;
ret = reset_controller_register(&reset->rcdev);
if (ret)
goto err_of_clk_unreg;
return 0;
err_of_clk_unreg:
kfree(reset);
err_alloc_reset:
of_clk_del_provider(node);
err_clk_unreg:
while (--i >= 0) {
struct clk_hw *hw = desc->hw_clks->hws[i];
if (!hw)
continue;
clk_hw_unregister(hw);
}
return ret;
}