linux/arch/sparc/kernel/sun4m_smp.c

419 lines
9.5 KiB
C
Raw Normal View History

/* sun4m_smp.c: Sparc SUN4M SMP support.
*
* Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
*/
#include <asm/head.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/threads.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/profile.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/irq_regs.h>
#include <asm/ptrace.h>
#include <asm/atomic.h>
#include <asm/delay.h>
#include <asm/irq.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/oplib.h>
#include <asm/cpudata.h>
#define IRQ_RESCHEDULE 13
#define IRQ_STOP_CPU 14
#define IRQ_CROSS_CALL 15
extern ctxd_t *srmmu_ctx_table_phys;
extern void calibrate_delay(void);
extern volatile unsigned long cpu_callin_map[NR_CPUS];
extern unsigned char boot_cpu_id;
extern cpumask_t smp_commenced_mask;
extern int __smp4m_processor_id(void);
/*#define SMP_DEBUG*/
#ifdef SMP_DEBUG
#define SMP_PRINTK(x) printk x
#else
#define SMP_PRINTK(x)
#endif
static inline unsigned long swap(volatile unsigned long *ptr, unsigned long val)
{
__asm__ __volatile__("swap [%1], %0\n\t" :
"=&r" (val), "=&r" (ptr) :
"0" (val), "1" (ptr));
return val;
}
static void smp_setup_percpu_timer(void);
extern void cpu_probe(void);
void __cpuinit smp4m_callin(void)
{
int cpuid = hard_smp_processor_id();
local_flush_cache_all();
local_flush_tlb_all();
/* Get our local ticker going. */
smp_setup_percpu_timer();
calibrate_delay();
smp_store_cpu_info(cpuid);
local_flush_cache_all();
local_flush_tlb_all();
/*
* Unblock the master CPU _only_ when the scheduler state
* of all secondary CPUs will be up-to-date, so after
* the SMP initialization the master will be just allowed
* to call the scheduler code.
*/
/* Allow master to continue. */
swap(&cpu_callin_map[cpuid], 1);
/* XXX: What's up with all the flushes? */
local_flush_cache_all();
local_flush_tlb_all();
cpu_probe();
/* Fix idle thread fields. */
__asm__ __volatile__("ld [%0], %%g6\n\t"
: : "r" (&current_set[cpuid])
: "memory" /* paranoid */);
/* Attach to the address space of init_task. */
atomic_inc(&init_mm.mm_count);
current->active_mm = &init_mm;
while (!cpu_isset(cpuid, smp_commenced_mask))
mb();
local_irq_enable();
cpu_set(cpuid, cpu_online_map);
}
/*
* Cycle through the processors asking the PROM to start each one.
*/
extern struct linux_prom_registers smp_penguin_ctable;
extern unsigned long trapbase_cpu1[];
extern unsigned long trapbase_cpu2[];
extern unsigned long trapbase_cpu3[];
void __init smp4m_boot_cpus(void)
{
smp_setup_percpu_timer();
local_flush_cache_all();
}
int __cpuinit smp4m_boot_one_cpu(int i)
{
extern unsigned long sun4m_cpu_startup;
unsigned long *entry = &sun4m_cpu_startup;
struct task_struct *p;
int timeout;
int cpu_node;
cpu_find_by_mid(i, &cpu_node);
/* Cook up an idler for this guy. */
p = fork_idle(i);
current_set[i] = task_thread_info(p);
/* See trampoline.S for details... */
entry += ((i-1) * 3);
/*
* Initialize the contexts table
* Since the call to prom_startcpu() trashes the structure,
* we need to re-initialize it for each cpu
*/
smp_penguin_ctable.which_io = 0;
smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys;
smp_penguin_ctable.reg_size = 0;
/* whirrr, whirrr, whirrrrrrrrr... */
printk("Starting CPU %d at %p\n", i, entry);
local_flush_cache_all();
prom_startcpu(cpu_node,
&smp_penguin_ctable, 0, (char *)entry);
/* wheee... it's going... */
for(timeout = 0; timeout < 10000; timeout++) {
if(cpu_callin_map[i])
break;
udelay(200);
}
if (!(cpu_callin_map[i])) {
printk("Processor %d is stuck.\n", i);
return -ENODEV;
}
local_flush_cache_all();
return 0;
}
void __init smp4m_smp_done(void)
{
int i, first;
int *prev;
/* setup cpu list for irq rotation */
first = 0;
prev = &first;
for (i = 0; i < NR_CPUS; i++) {
if (cpu_online(i)) {
*prev = i;
prev = &cpu_data(i).next;
}
}
*prev = first;
local_flush_cache_all();
/* Free unneeded trap tables */
if (!cpu_isset(1, cpu_present_map)) {
ClearPageReserved(virt_to_page(trapbase_cpu1));
init_page_count(virt_to_page(trapbase_cpu1));
free_page((unsigned long)trapbase_cpu1);
totalram_pages++;
num_physpages++;
}
if (!cpu_isset(2, cpu_present_map)) {
ClearPageReserved(virt_to_page(trapbase_cpu2));
init_page_count(virt_to_page(trapbase_cpu2));
free_page((unsigned long)trapbase_cpu2);
totalram_pages++;
num_physpages++;
}
if (!cpu_isset(3, cpu_present_map)) {
ClearPageReserved(virt_to_page(trapbase_cpu3));
init_page_count(virt_to_page(trapbase_cpu3));
free_page((unsigned long)trapbase_cpu3);
totalram_pages++;
num_physpages++;
}
/* Ok, they are spinning and ready to go. */
}
/* At each hardware IRQ, we get this called to forward IRQ reception
* to the next processor. The caller must disable the IRQ level being
* serviced globally so that there are no double interrupts received.
*
* XXX See sparc64 irq.c.
*/
void smp4m_irq_rotate(int cpu)
{
int next = cpu_data(cpu).next;
if (next != cpu)
set_irq_udt(next);
}
/* Cross calls, in order to work efficiently and atomically do all
* the message passing work themselves, only stopcpu and reschedule
* messages come through here.
*/
void smp4m_message_pass(int target, int msg, unsigned long data, int wait)
{
static unsigned long smp_cpu_in_msg[NR_CPUS];
cpumask_t mask;
int me = smp_processor_id();
int irq, i;
if(msg == MSG_RESCHEDULE) {
irq = IRQ_RESCHEDULE;
if(smp_cpu_in_msg[me])
return;
} else if(msg == MSG_STOP_CPU) {
irq = IRQ_STOP_CPU;
} else {
goto barf;
}
smp_cpu_in_msg[me]++;
if(target == MSG_ALL_BUT_SELF || target == MSG_ALL) {
mask = cpu_online_map;
if(target == MSG_ALL_BUT_SELF)
cpu_clear(me, mask);
for(i = 0; i < 4; i++) {
if (cpu_isset(i, mask))
set_cpu_int(i, irq);
}
} else {
set_cpu_int(target, irq);
}
smp_cpu_in_msg[me]--;
return;
barf:
printk("Yeeee, trying to send SMP msg(%d) on cpu %d\n", msg, me);
panic("Bogon SMP message pass.");
}
static struct smp_funcall {
smpfunc_t func;
unsigned long arg1;
unsigned long arg2;
unsigned long arg3;
unsigned long arg4;
unsigned long arg5;
unsigned long processors_in[SUN4M_NCPUS]; /* Set when ipi entered. */
unsigned long processors_out[SUN4M_NCPUS]; /* Set when ipi exited. */
} ccall_info;
static DEFINE_SPINLOCK(cross_call_lock);
/* Cross calls must be serialized, at least currently. */
void smp4m_cross_call(smpfunc_t func, unsigned long arg1, unsigned long arg2,
unsigned long arg3, unsigned long arg4, unsigned long arg5)
{
register int ncpus = SUN4M_NCPUS;
unsigned long flags;
spin_lock_irqsave(&cross_call_lock, flags);
/* Init function glue. */
ccall_info.func = func;
ccall_info.arg1 = arg1;
ccall_info.arg2 = arg2;
ccall_info.arg3 = arg3;
ccall_info.arg4 = arg4;
ccall_info.arg5 = arg5;
/* Init receive/complete mapping, plus fire the IPI's off. */
{
cpumask_t mask = cpu_online_map;
register int i;
cpu_clear(smp_processor_id(), mask);
for(i = 0; i < ncpus; i++) {
if (cpu_isset(i, mask)) {
ccall_info.processors_in[i] = 0;
ccall_info.processors_out[i] = 0;
set_cpu_int(i, IRQ_CROSS_CALL);
} else {
ccall_info.processors_in[i] = 1;
ccall_info.processors_out[i] = 1;
}
}
}
{
register int i;
i = 0;
do {
while(!ccall_info.processors_in[i])
barrier();
} while(++i < ncpus);
i = 0;
do {
while(!ccall_info.processors_out[i])
barrier();
} while(++i < ncpus);
}
spin_unlock_irqrestore(&cross_call_lock, flags);
}
/* Running cross calls. */
void smp4m_cross_call_irq(void)
{
int i = smp_processor_id();
ccall_info.processors_in[i] = 1;
ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3,
ccall_info.arg4, ccall_info.arg5);
ccall_info.processors_out[i] = 1;
}
void smp4m_percpu_timer_interrupt(struct pt_regs *regs)
{
struct pt_regs *old_regs;
int cpu = smp_processor_id();
old_regs = set_irq_regs(regs);
clear_profile_irq(cpu);
profile_tick(CPU_PROFILING);
if(!--prof_counter(cpu)) {
int user = user_mode(regs);
irq_enter();
update_process_times(user);
irq_exit();
prof_counter(cpu) = prof_multiplier(cpu);
}
set_irq_regs(old_regs);
}
extern unsigned int lvl14_resolution;
static void __init smp_setup_percpu_timer(void)
{
int cpu = smp_processor_id();
prof_counter(cpu) = prof_multiplier(cpu) = 1;
load_profile_irq(cpu, lvl14_resolution);
if(cpu == boot_cpu_id)
enable_pil_irq(14);
}
void __init smp4m_blackbox_id(unsigned *addr)
{
int rd = *addr & 0x3e000000;
int rs1 = rd >> 11;
addr[0] = 0x81580000 | rd; /* rd %tbr, reg */
addr[1] = 0x8130200c | rd | rs1; /* srl reg, 0xc, reg */
addr[2] = 0x80082003 | rd | rs1; /* and reg, 3, reg */
}
void __init smp4m_blackbox_current(unsigned *addr)
{
int rd = *addr & 0x3e000000;
int rs1 = rd >> 11;
addr[0] = 0x81580000 | rd; /* rd %tbr, reg */
addr[2] = 0x8130200a | rd | rs1; /* srl reg, 0xa, reg */
addr[4] = 0x8008200c | rd | rs1; /* and reg, 3, reg */
}
void __init sun4m_init_smp(void)
{
BTFIXUPSET_BLACKBOX(hard_smp_processor_id, smp4m_blackbox_id);
BTFIXUPSET_BLACKBOX(load_current, smp4m_blackbox_current);
BTFIXUPSET_CALL(smp_cross_call, smp4m_cross_call, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(smp_message_pass, smp4m_message_pass, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(__hard_smp_processor_id, __smp4m_processor_id, BTFIXUPCALL_NORM);
}