linux/drivers/usb/host/xhci-pci.c

332 lines
9.1 KiB
C
Raw Normal View History

/*
* xHCI host controller driver PCI Bus Glue.
*
* Copyright (C) 2008 Intel Corp.
*
* Author: Sarah Sharp
* Some code borrowed from the Linux EHCI driver.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/pci.h>
#include <linux/slab.h>
#include "xhci.h"
/* Device for a quirk */
#define PCI_VENDOR_ID_FRESCO_LOGIC 0x1b73
#define PCI_DEVICE_ID_FRESCO_LOGIC_PDK 0x1000
#define PCI_VENDOR_ID_ETRON 0x1b6f
#define PCI_DEVICE_ID_ASROCK_P67 0x7023
static const char hcd_name[] = "xhci_hcd";
/* called after powerup, by probe or system-pm "wakeup" */
static int xhci_pci_reinit(struct xhci_hcd *xhci, struct pci_dev *pdev)
{
/*
* TODO: Implement finding debug ports later.
* TODO: see if there are any quirks that need to be added to handle
* new extended capabilities.
*/
/* PCI Memory-Write-Invalidate cycle support is optional (uncommon) */
if (!pci_set_mwi(pdev))
xhci_dbg(xhci, "MWI active\n");
xhci_dbg(xhci, "Finished xhci_pci_reinit\n");
return 0;
}
static void xhci_pci_quirks(struct device *dev, struct xhci_hcd *xhci)
{
struct pci_dev *pdev = to_pci_dev(dev);
/* Look for vendor-specific quirks */
if (pdev->vendor == PCI_VENDOR_ID_FRESCO_LOGIC &&
pdev->device == PCI_DEVICE_ID_FRESCO_LOGIC_PDK) {
if (pdev->revision == 0x0) {
xhci->quirks |= XHCI_RESET_EP_QUIRK;
xhci_dbg(xhci, "QUIRK: Fresco Logic xHC needs configure"
" endpoint cmd after reset endpoint\n");
}
/* Fresco Logic confirms: all revisions of this chip do not
* support MSI, even though some of them claim to in their PCI
* capabilities.
*/
xhci->quirks |= XHCI_BROKEN_MSI;
xhci_dbg(xhci, "QUIRK: Fresco Logic revision %u "
"has broken MSI implementation\n",
pdev->revision);
}
if (pdev->vendor == PCI_VENDOR_ID_NEC)
xhci->quirks |= XHCI_NEC_HOST;
if (pdev->vendor == PCI_VENDOR_ID_AMD && xhci->hci_version == 0x96)
xhci->quirks |= XHCI_AMD_0x96_HOST;
/* AMD PLL quirk */
if (pdev->vendor == PCI_VENDOR_ID_AMD && usb_amd_find_chipset_info())
xhci->quirks |= XHCI_AMD_PLL_FIX;
if (pdev->vendor == PCI_VENDOR_ID_INTEL &&
pdev->device == PCI_DEVICE_ID_INTEL_PANTHERPOINT_XHCI) {
xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
Intel xhci: Limit number of active endpoints to 64. The Panther Point chipset has an xHCI host controller that has a limit to the number of active endpoints it can handle. Ideally, it would signal that it can't handle anymore endpoints by returning a Resource Error for the Configure Endpoint command, but they don't. Instead it needs software to keep track of the number of active endpoints, across configure endpoint commands, reset device commands, disable slot commands, and address device commands. Add a new endpoint context counter, xhci_hcd->num_active_eps, and use it to track the number of endpoints the xHC has active. This gets a little tricky, because commands to change the number of active endpoints can fail. This patch adds a new xHCI quirk for these Intel hosts, and the new code should not have any effect on other xHCI host controllers. Fail a new device allocation if we don't have room for the new default control endpoint. Use the endpoint ring pointers to determine what endpoints were active before a Reset Device command or a Disable Slot command, and drop those once the command completes. Fail a configure endpoint command if it would add too many new endpoints. We have to be a bit over zealous here, and only count the number of new endpoints to be added, without subtracting the number of dropped endpoints. That's because a second configure endpoint command for a different device could sneak in before we know if the first command is completed. If the first command dropped resources, the host controller fails the command for some reason, and we're nearing the limit of endpoints, we could end up oversubscribing the host. To fix this race condition, when evaluating whether a configure endpoint command will fix in our bandwidth budget, only add the new endpoints to xhci->num_active_eps, and don't subtract the dropped endpoints. Ignore changed endpoints (ones that are dropped and then re-added), as that shouldn't effect the host's endpoint resources. When the configure endpoint command completes, subtract off the dropped endpoints. This may mean some configuration changes may temporarily fail, but it's always better to under-subscribe than over-subscribe resources. (Originally my plan had been to push the resource allocation down into the ring allocation functions. However, that would cause us to allocate unnecessary resources when endpoints were changed, because the xHCI driver allocates a new ring for the changed endpoint, and only deletes the old ring once the Configure Endpoint command succeeds. A further complication would have been dealing with the per-device endpoint ring cache.) Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
2011-05-12 07:14:58 +08:00
xhci->quirks |= XHCI_EP_LIMIT_QUIRK;
xhci->limit_active_eps = 64;
xhci->quirks |= XHCI_SW_BW_CHECKING;
}
if (pdev->vendor == PCI_VENDOR_ID_ETRON &&
pdev->device == PCI_DEVICE_ID_ASROCK_P67) {
xhci->quirks |= XHCI_RESET_ON_RESUME;
xhci_dbg(xhci, "QUIRK: Resetting on resume\n");
}
}
/* called during probe() after chip reset completes */
static int xhci_pci_setup(struct usb_hcd *hcd)
{
struct xhci_hcd *xhci;
struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
int retval;
retval = xhci_gen_setup(hcd, xhci_pci_quirks);
if (retval)
return retval;
xhci = hcd_to_xhci(hcd);
if (!usb_hcd_is_primary_hcd(hcd))
return 0;
pci_read_config_byte(pdev, XHCI_SBRN_OFFSET, &xhci->sbrn);
xhci_dbg(xhci, "Got SBRN %u\n", (unsigned int) xhci->sbrn);
/* Find any debug ports */
retval = xhci_pci_reinit(xhci, pdev);
if (!retval)
return retval;
kfree(xhci);
return retval;
}
xhci: Register second xHCI roothub. This patch changes the xHCI driver to allocate two roothubs. This touches the driver initialization and shutdown paths, roothub emulation code, and port status change event handlers. This is a rather large patch, but it can't be broken up, or it would break git-bisect. Make the xHCI driver register its own PCI probe function. This will call the USB core to create the USB 2.0 roothub, and then create the USB 3.0 roothub. This gets the code for registering a shared roothub out of the USB core, and allows other HCDs later to decide if and how many shared roothubs they want to allocate. Make sure the xHCI's reset method marks the xHCI host controller's primary roothub as the USB 2.0 roothub. This ensures that the high speed bus will be processed first when the PCI device is resumed, and any USB 3.0 devices that have migrated over to high speed will migrate back after being reset. This ensures that USB persist works with these odd devices. The reset method will also mark the xHCI USB2 roothub as having an integrated TT. Like EHCI host controllers with a "rate matching hub" the xHCI USB 2.0 roothub doesn't have an OHCI or UHCI companion controller. It doesn't really have a TT, but we'll lie and say it has an integrated TT. We need to do this because the USB core will reject LS/FS devices under a HS hub without a TT. Other details: ------------- The roothub emulation code is changed to return the correct number of ports for the two roothubs. For the USB 3.0 roothub, it only reports the USB 3.0 ports. For the USB 2.0 roothub, it reports all the LS/FS/HS ports. The code to disable a port now checks the speed of the roothub, and refuses to disable SuperSpeed ports under the USB 3.0 roothub. The code for initializing a new device context must be changed to set the proper roothub port number. Since we've split the xHCI host into two roothubs, we can't just use the port number in the ancestor hub. Instead, we loop through the array of hardware port status register speeds and find the Nth port with a similar speed. The port status change event handler is updated to figure out whether the port that reported the change is a USB 3.0 port, or a non-SuperSpeed port. Once it figures out the port speed, it kicks the proper roothub. The function to find a slot ID based on the port index is updated to take into account that the two roothubs will have over-lapping port indexes. It checks that the virtual device with a matching port index is the same speed as the passed in roothub. There's also changes to the driver initialization and shutdown paths: 1. Make sure that the xhci_hcd pointer is shared across the two usb_hcd structures. The xhci_hcd pointer is allocated and the registers are mapped in when xhci_pci_setup() is called with the primary HCD. When xhci_pci_setup() is called with the non-primary HCD, the xhci_hcd pointer is stored. 2. Make sure to set the sg_tablesize for both usb_hcd structures. Set the PCI DMA mask for the non-primary HCD to allow for 64-bit or 32-bit DMA. (The PCI DMA mask is set from the primary HCD further down in the xhci_pci_setup() function.) 3. Ensure that the host controller doesn't start kicking khubd in response to port status changes before both usb_hcd structures are registered. xhci_run() only starts the xHC running once it has been called with the non-primary roothub. Similarly, the xhci_stop() function only halts the host controller when it is called with the non-primary HCD. Then on the second call, it resets and cleans up the MSI-X irqs. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
2010-12-17 03:21:10 +08:00
/*
* We need to register our own PCI probe function (instead of the USB core's
* function) in order to create a second roothub under xHCI.
*/
static int xhci_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
int retval;
struct xhci_hcd *xhci;
struct hc_driver *driver;
struct usb_hcd *hcd;
driver = (struct hc_driver *)id->driver_data;
/* Register the USB 2.0 roothub.
* FIXME: USB core must know to register the USB 2.0 roothub first.
* This is sort of silly, because we could just set the HCD driver flags
* to say USB 2.0, but I'm not sure what the implications would be in
* the other parts of the HCD code.
*/
retval = usb_hcd_pci_probe(dev, id);
if (retval)
return retval;
/* USB 2.0 roothub is stored in the PCI device now. */
hcd = dev_get_drvdata(&dev->dev);
xhci = hcd_to_xhci(hcd);
xhci->shared_hcd = usb_create_shared_hcd(driver, &dev->dev,
pci_name(dev), hcd);
if (!xhci->shared_hcd) {
retval = -ENOMEM;
goto dealloc_usb2_hcd;
}
/* Set the xHCI pointer before xhci_pci_setup() (aka hcd_driver.reset)
* is called by usb_add_hcd().
*/
*((struct xhci_hcd **) xhci->shared_hcd->hcd_priv) = xhci;
retval = usb_add_hcd(xhci->shared_hcd, dev->irq,
IRQF_SHARED);
xhci: Register second xHCI roothub. This patch changes the xHCI driver to allocate two roothubs. This touches the driver initialization and shutdown paths, roothub emulation code, and port status change event handlers. This is a rather large patch, but it can't be broken up, or it would break git-bisect. Make the xHCI driver register its own PCI probe function. This will call the USB core to create the USB 2.0 roothub, and then create the USB 3.0 roothub. This gets the code for registering a shared roothub out of the USB core, and allows other HCDs later to decide if and how many shared roothubs they want to allocate. Make sure the xHCI's reset method marks the xHCI host controller's primary roothub as the USB 2.0 roothub. This ensures that the high speed bus will be processed first when the PCI device is resumed, and any USB 3.0 devices that have migrated over to high speed will migrate back after being reset. This ensures that USB persist works with these odd devices. The reset method will also mark the xHCI USB2 roothub as having an integrated TT. Like EHCI host controllers with a "rate matching hub" the xHCI USB 2.0 roothub doesn't have an OHCI or UHCI companion controller. It doesn't really have a TT, but we'll lie and say it has an integrated TT. We need to do this because the USB core will reject LS/FS devices under a HS hub without a TT. Other details: ------------- The roothub emulation code is changed to return the correct number of ports for the two roothubs. For the USB 3.0 roothub, it only reports the USB 3.0 ports. For the USB 2.0 roothub, it reports all the LS/FS/HS ports. The code to disable a port now checks the speed of the roothub, and refuses to disable SuperSpeed ports under the USB 3.0 roothub. The code for initializing a new device context must be changed to set the proper roothub port number. Since we've split the xHCI host into two roothubs, we can't just use the port number in the ancestor hub. Instead, we loop through the array of hardware port status register speeds and find the Nth port with a similar speed. The port status change event handler is updated to figure out whether the port that reported the change is a USB 3.0 port, or a non-SuperSpeed port. Once it figures out the port speed, it kicks the proper roothub. The function to find a slot ID based on the port index is updated to take into account that the two roothubs will have over-lapping port indexes. It checks that the virtual device with a matching port index is the same speed as the passed in roothub. There's also changes to the driver initialization and shutdown paths: 1. Make sure that the xhci_hcd pointer is shared across the two usb_hcd structures. The xhci_hcd pointer is allocated and the registers are mapped in when xhci_pci_setup() is called with the primary HCD. When xhci_pci_setup() is called with the non-primary HCD, the xhci_hcd pointer is stored. 2. Make sure to set the sg_tablesize for both usb_hcd structures. Set the PCI DMA mask for the non-primary HCD to allow for 64-bit or 32-bit DMA. (The PCI DMA mask is set from the primary HCD further down in the xhci_pci_setup() function.) 3. Ensure that the host controller doesn't start kicking khubd in response to port status changes before both usb_hcd structures are registered. xhci_run() only starts the xHC running once it has been called with the non-primary roothub. Similarly, the xhci_stop() function only halts the host controller when it is called with the non-primary HCD. Then on the second call, it resets and cleans up the MSI-X irqs. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
2010-12-17 03:21:10 +08:00
if (retval)
goto put_usb3_hcd;
/* Roothub already marked as USB 3.0 speed */
return 0;
put_usb3_hcd:
usb_put_hcd(xhci->shared_hcd);
dealloc_usb2_hcd:
usb_hcd_pci_remove(dev);
return retval;
}
static void xhci_pci_remove(struct pci_dev *dev)
{
struct xhci_hcd *xhci;
xhci = hcd_to_xhci(pci_get_drvdata(dev));
xhci: Register second xHCI roothub. This patch changes the xHCI driver to allocate two roothubs. This touches the driver initialization and shutdown paths, roothub emulation code, and port status change event handlers. This is a rather large patch, but it can't be broken up, or it would break git-bisect. Make the xHCI driver register its own PCI probe function. This will call the USB core to create the USB 2.0 roothub, and then create the USB 3.0 roothub. This gets the code for registering a shared roothub out of the USB core, and allows other HCDs later to decide if and how many shared roothubs they want to allocate. Make sure the xHCI's reset method marks the xHCI host controller's primary roothub as the USB 2.0 roothub. This ensures that the high speed bus will be processed first when the PCI device is resumed, and any USB 3.0 devices that have migrated over to high speed will migrate back after being reset. This ensures that USB persist works with these odd devices. The reset method will also mark the xHCI USB2 roothub as having an integrated TT. Like EHCI host controllers with a "rate matching hub" the xHCI USB 2.0 roothub doesn't have an OHCI or UHCI companion controller. It doesn't really have a TT, but we'll lie and say it has an integrated TT. We need to do this because the USB core will reject LS/FS devices under a HS hub without a TT. Other details: ------------- The roothub emulation code is changed to return the correct number of ports for the two roothubs. For the USB 3.0 roothub, it only reports the USB 3.0 ports. For the USB 2.0 roothub, it reports all the LS/FS/HS ports. The code to disable a port now checks the speed of the roothub, and refuses to disable SuperSpeed ports under the USB 3.0 roothub. The code for initializing a new device context must be changed to set the proper roothub port number. Since we've split the xHCI host into two roothubs, we can't just use the port number in the ancestor hub. Instead, we loop through the array of hardware port status register speeds and find the Nth port with a similar speed. The port status change event handler is updated to figure out whether the port that reported the change is a USB 3.0 port, or a non-SuperSpeed port. Once it figures out the port speed, it kicks the proper roothub. The function to find a slot ID based on the port index is updated to take into account that the two roothubs will have over-lapping port indexes. It checks that the virtual device with a matching port index is the same speed as the passed in roothub. There's also changes to the driver initialization and shutdown paths: 1. Make sure that the xhci_hcd pointer is shared across the two usb_hcd structures. The xhci_hcd pointer is allocated and the registers are mapped in when xhci_pci_setup() is called with the primary HCD. When xhci_pci_setup() is called with the non-primary HCD, the xhci_hcd pointer is stored. 2. Make sure to set the sg_tablesize for both usb_hcd structures. Set the PCI DMA mask for the non-primary HCD to allow for 64-bit or 32-bit DMA. (The PCI DMA mask is set from the primary HCD further down in the xhci_pci_setup() function.) 3. Ensure that the host controller doesn't start kicking khubd in response to port status changes before both usb_hcd structures are registered. xhci_run() only starts the xHC running once it has been called with the non-primary roothub. Similarly, the xhci_stop() function only halts the host controller when it is called with the non-primary HCD. Then on the second call, it resets and cleans up the MSI-X irqs. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
2010-12-17 03:21:10 +08:00
if (xhci->shared_hcd) {
usb_remove_hcd(xhci->shared_hcd);
usb_put_hcd(xhci->shared_hcd);
}
usb_hcd_pci_remove(dev);
kfree(xhci);
}
#ifdef CONFIG_PM
static int xhci_pci_suspend(struct usb_hcd *hcd, bool do_wakeup)
{
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
int retval = 0;
if (hcd->state != HC_STATE_SUSPENDED ||
xhci->shared_hcd->state != HC_STATE_SUSPENDED)
return -EINVAL;
retval = xhci_suspend(xhci);
return retval;
}
static int xhci_pci_resume(struct usb_hcd *hcd, bool hibernated)
{
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
Intel xhci: Support EHCI/xHCI port switching. The Intel Panther Point chipsets contain an EHCI and xHCI host controller that shares some number of skew-dependent ports. These ports can be switched from the EHCI to the xHCI host (and vice versa) by a hardware MUX that is controlled by registers in the xHCI PCI configuration space. The USB 3.0 SuperSpeed terminations on the xHCI ports can be controlled separately from the USB 2.0 data wires. This switchover mechanism is there to support users who do a custom install of certain non-Linux operating systems that don't have official USB 3.0 support. By default, the ports are under EHCI, SuperSpeed terminations are off, and USB 3.0 devices will show up under the EHCI controller at reduced speeds. (This was more palatable for the marketing folks than having completely dead USB 3.0 ports if no xHCI drivers are available.) Users should be able to turn on xHCI by default through a BIOS option, but users are happiest when they don't have to change random BIOS settings. This patch introduces a driver method to switchover the ports from EHCI to xHCI before the EHCI driver finishes PCI enumeration. We want to switch the ports over before the USB core has the chance to enumerate devices under EHCI, or boot from USB mass storage will fail if the boot device connects under EHCI first, and then gets disconnected when the port switches over to xHCI. Add code to the xHCI PCI quirk to switch the ports from EHCI to xHCI. The PCI quirks code will run before any other PCI probe function is called, so this avoids the issue with boot devices. Another issue is with BIOS behavior during system resume from hibernate. If the BIOS doesn't support xHCI, it may switch the devices under EHCI to allow use of the USB keyboard, mice, and mass storage devices. It's supposed to remember the value of the port routing registers and switch them back when the OS attempts to take control of the xHCI host controller, but we all know not to trust BIOS writers. Make both the xHCI driver and the EHCI driver attempt to switchover the ports in their PCI resume functions. We can't guarantee which PCI device will be resumed first, so this avoids any race conditions. Writing a '1' to an already set port switchover bit or a '0' to a cleared port switchover bit should have no effect. The xHCI PCI configuration registers will be documented in the EDS-level chipset spec, which is not public yet. I have permission from legal and the Intel chipset group to release this patch early to allow good Linux support at product launch. I've tried to document the registers as much as possible, so please let me know if anything is unclear. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
2011-02-23 01:57:15 +08:00
struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
int retval = 0;
Intel xhci: Support EHCI/xHCI port switching. The Intel Panther Point chipsets contain an EHCI and xHCI host controller that shares some number of skew-dependent ports. These ports can be switched from the EHCI to the xHCI host (and vice versa) by a hardware MUX that is controlled by registers in the xHCI PCI configuration space. The USB 3.0 SuperSpeed terminations on the xHCI ports can be controlled separately from the USB 2.0 data wires. This switchover mechanism is there to support users who do a custom install of certain non-Linux operating systems that don't have official USB 3.0 support. By default, the ports are under EHCI, SuperSpeed terminations are off, and USB 3.0 devices will show up under the EHCI controller at reduced speeds. (This was more palatable for the marketing folks than having completely dead USB 3.0 ports if no xHCI drivers are available.) Users should be able to turn on xHCI by default through a BIOS option, but users are happiest when they don't have to change random BIOS settings. This patch introduces a driver method to switchover the ports from EHCI to xHCI before the EHCI driver finishes PCI enumeration. We want to switch the ports over before the USB core has the chance to enumerate devices under EHCI, or boot from USB mass storage will fail if the boot device connects under EHCI first, and then gets disconnected when the port switches over to xHCI. Add code to the xHCI PCI quirk to switch the ports from EHCI to xHCI. The PCI quirks code will run before any other PCI probe function is called, so this avoids the issue with boot devices. Another issue is with BIOS behavior during system resume from hibernate. If the BIOS doesn't support xHCI, it may switch the devices under EHCI to allow use of the USB keyboard, mice, and mass storage devices. It's supposed to remember the value of the port routing registers and switch them back when the OS attempts to take control of the xHCI host controller, but we all know not to trust BIOS writers. Make both the xHCI driver and the EHCI driver attempt to switchover the ports in their PCI resume functions. We can't guarantee which PCI device will be resumed first, so this avoids any race conditions. Writing a '1' to an already set port switchover bit or a '0' to a cleared port switchover bit should have no effect. The xHCI PCI configuration registers will be documented in the EDS-level chipset spec, which is not public yet. I have permission from legal and the Intel chipset group to release this patch early to allow good Linux support at product launch. I've tried to document the registers as much as possible, so please let me know if anything is unclear. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
2011-02-23 01:57:15 +08:00
/* The BIOS on systems with the Intel Panther Point chipset may or may
* not support xHCI natively. That means that during system resume, it
* may switch the ports back to EHCI so that users can use their
* keyboard to select a kernel from GRUB after resume from hibernate.
*
* The BIOS is supposed to remember whether the OS had xHCI ports
* enabled before resume, and switch the ports back to xHCI when the
* BIOS/OS semaphore is written, but we all know we can't trust BIOS
* writers.
*
* Unconditionally switch the ports back to xHCI after a system resume.
* We can't tell whether the EHCI or xHCI controller will be resumed
* first, so we have to do the port switchover in both drivers. Writing
* a '1' to the port switchover registers should have no effect if the
* port was already switched over.
*/
if (usb_is_intel_switchable_xhci(pdev))
usb_enable_xhci_ports(pdev);
retval = xhci_resume(xhci, hibernated);
return retval;
}
#endif /* CONFIG_PM */
static const struct hc_driver xhci_pci_hc_driver = {
.description = hcd_name,
.product_desc = "xHCI Host Controller",
.hcd_priv_size = sizeof(struct xhci_hcd *),
/*
* generic hardware linkage
*/
.irq = xhci_irq,
xhci: Register second xHCI roothub. This patch changes the xHCI driver to allocate two roothubs. This touches the driver initialization and shutdown paths, roothub emulation code, and port status change event handlers. This is a rather large patch, but it can't be broken up, or it would break git-bisect. Make the xHCI driver register its own PCI probe function. This will call the USB core to create the USB 2.0 roothub, and then create the USB 3.0 roothub. This gets the code for registering a shared roothub out of the USB core, and allows other HCDs later to decide if and how many shared roothubs they want to allocate. Make sure the xHCI's reset method marks the xHCI host controller's primary roothub as the USB 2.0 roothub. This ensures that the high speed bus will be processed first when the PCI device is resumed, and any USB 3.0 devices that have migrated over to high speed will migrate back after being reset. This ensures that USB persist works with these odd devices. The reset method will also mark the xHCI USB2 roothub as having an integrated TT. Like EHCI host controllers with a "rate matching hub" the xHCI USB 2.0 roothub doesn't have an OHCI or UHCI companion controller. It doesn't really have a TT, but we'll lie and say it has an integrated TT. We need to do this because the USB core will reject LS/FS devices under a HS hub without a TT. Other details: ------------- The roothub emulation code is changed to return the correct number of ports for the two roothubs. For the USB 3.0 roothub, it only reports the USB 3.0 ports. For the USB 2.0 roothub, it reports all the LS/FS/HS ports. The code to disable a port now checks the speed of the roothub, and refuses to disable SuperSpeed ports under the USB 3.0 roothub. The code for initializing a new device context must be changed to set the proper roothub port number. Since we've split the xHCI host into two roothubs, we can't just use the port number in the ancestor hub. Instead, we loop through the array of hardware port status register speeds and find the Nth port with a similar speed. The port status change event handler is updated to figure out whether the port that reported the change is a USB 3.0 port, or a non-SuperSpeed port. Once it figures out the port speed, it kicks the proper roothub. The function to find a slot ID based on the port index is updated to take into account that the two roothubs will have over-lapping port indexes. It checks that the virtual device with a matching port index is the same speed as the passed in roothub. There's also changes to the driver initialization and shutdown paths: 1. Make sure that the xhci_hcd pointer is shared across the two usb_hcd structures. The xhci_hcd pointer is allocated and the registers are mapped in when xhci_pci_setup() is called with the primary HCD. When xhci_pci_setup() is called with the non-primary HCD, the xhci_hcd pointer is stored. 2. Make sure to set the sg_tablesize for both usb_hcd structures. Set the PCI DMA mask for the non-primary HCD to allow for 64-bit or 32-bit DMA. (The PCI DMA mask is set from the primary HCD further down in the xhci_pci_setup() function.) 3. Ensure that the host controller doesn't start kicking khubd in response to port status changes before both usb_hcd structures are registered. xhci_run() only starts the xHC running once it has been called with the non-primary roothub. Similarly, the xhci_stop() function only halts the host controller when it is called with the non-primary HCD. Then on the second call, it resets and cleans up the MSI-X irqs. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
2010-12-17 03:21:10 +08:00
.flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED,
/*
* basic lifecycle operations
*/
.reset = xhci_pci_setup,
.start = xhci_run,
#ifdef CONFIG_PM
.pci_suspend = xhci_pci_suspend,
.pci_resume = xhci_pci_resume,
#endif
.stop = xhci_stop,
.shutdown = xhci_shutdown,
/*
* managing i/o requests and associated device resources
*/
.urb_enqueue = xhci_urb_enqueue,
.urb_dequeue = xhci_urb_dequeue,
.alloc_dev = xhci_alloc_dev,
.free_dev = xhci_free_dev,
.alloc_streams = xhci_alloc_streams,
.free_streams = xhci_free_streams,
USB: xhci: Bandwidth allocation support Since the xHCI host controller hardware (xHC) has an internal schedule, it needs a better representation of what devices are consuming bandwidth on the bus. Each device is represented by a device context, with data about the device, endpoints, and pointers to each endpoint ring. We need to update the endpoint information for a device context before a new configuration or alternate interface setting is selected. We setup an input device context with modified endpoint information and newly allocated endpoint rings, and then submit a Configure Endpoint Command to the hardware. The host controller can reject the new configuration if it exceeds the bus bandwidth, or the host controller doesn't have enough internal resources for the configuration. If the command fails, we still have the older device context with the previous configuration. If the command succeeds, we free the old endpoint rings. The root hub isn't a real device, so always say yes to any bandwidth changes for it. The USB core will enable, disable, and then enable endpoint 0 several times during the initialization sequence. The device will always have an endpoint ring for endpoint 0 and bandwidth allocated for that, unless the device is disconnected or gets a SetAddress 0 request. So we don't pay attention for when xhci_check_bandwidth() is called for a re-add of endpoint 0. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-04-28 10:58:38 +08:00
.add_endpoint = xhci_add_endpoint,
.drop_endpoint = xhci_drop_endpoint,
.endpoint_reset = xhci_endpoint_reset,
USB: xhci: Bandwidth allocation support Since the xHCI host controller hardware (xHC) has an internal schedule, it needs a better representation of what devices are consuming bandwidth on the bus. Each device is represented by a device context, with data about the device, endpoints, and pointers to each endpoint ring. We need to update the endpoint information for a device context before a new configuration or alternate interface setting is selected. We setup an input device context with modified endpoint information and newly allocated endpoint rings, and then submit a Configure Endpoint Command to the hardware. The host controller can reject the new configuration if it exceeds the bus bandwidth, or the host controller doesn't have enough internal resources for the configuration. If the command fails, we still have the older device context with the previous configuration. If the command succeeds, we free the old endpoint rings. The root hub isn't a real device, so always say yes to any bandwidth changes for it. The USB core will enable, disable, and then enable endpoint 0 several times during the initialization sequence. The device will always have an endpoint ring for endpoint 0 and bandwidth allocated for that, unless the device is disconnected or gets a SetAddress 0 request. So we don't pay attention for when xhci_check_bandwidth() is called for a re-add of endpoint 0. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-04-28 10:58:38 +08:00
.check_bandwidth = xhci_check_bandwidth,
.reset_bandwidth = xhci_reset_bandwidth,
.address_device = xhci_address_device,
.update_hub_device = xhci_update_hub_device,
.reset_device = xhci_discover_or_reset_device,
/*
* scheduling support
*/
.get_frame_number = xhci_get_frame,
/* Root hub support */
.hub_control = xhci_hub_control,
.hub_status_data = xhci_hub_status_data,
.bus_suspend = xhci_bus_suspend,
.bus_resume = xhci_bus_resume,
/*
* call back when device connected and addressed
*/
.update_device = xhci_update_device,
.set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
};
/*-------------------------------------------------------------------------*/
/* PCI driver selection metadata; PCI hotplugging uses this */
static const struct pci_device_id pci_ids[] = { {
/* handle any USB 3.0 xHCI controller */
PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_XHCI, ~0),
.driver_data = (unsigned long) &xhci_pci_hc_driver,
},
{ /* end: all zeroes */ }
};
MODULE_DEVICE_TABLE(pci, pci_ids);
/* pci driver glue; this is a "new style" PCI driver module */
static struct pci_driver xhci_pci_driver = {
.name = (char *) hcd_name,
.id_table = pci_ids,
xhci: Register second xHCI roothub. This patch changes the xHCI driver to allocate two roothubs. This touches the driver initialization and shutdown paths, roothub emulation code, and port status change event handlers. This is a rather large patch, but it can't be broken up, or it would break git-bisect. Make the xHCI driver register its own PCI probe function. This will call the USB core to create the USB 2.0 roothub, and then create the USB 3.0 roothub. This gets the code for registering a shared roothub out of the USB core, and allows other HCDs later to decide if and how many shared roothubs they want to allocate. Make sure the xHCI's reset method marks the xHCI host controller's primary roothub as the USB 2.0 roothub. This ensures that the high speed bus will be processed first when the PCI device is resumed, and any USB 3.0 devices that have migrated over to high speed will migrate back after being reset. This ensures that USB persist works with these odd devices. The reset method will also mark the xHCI USB2 roothub as having an integrated TT. Like EHCI host controllers with a "rate matching hub" the xHCI USB 2.0 roothub doesn't have an OHCI or UHCI companion controller. It doesn't really have a TT, but we'll lie and say it has an integrated TT. We need to do this because the USB core will reject LS/FS devices under a HS hub without a TT. Other details: ------------- The roothub emulation code is changed to return the correct number of ports for the two roothubs. For the USB 3.0 roothub, it only reports the USB 3.0 ports. For the USB 2.0 roothub, it reports all the LS/FS/HS ports. The code to disable a port now checks the speed of the roothub, and refuses to disable SuperSpeed ports under the USB 3.0 roothub. The code for initializing a new device context must be changed to set the proper roothub port number. Since we've split the xHCI host into two roothubs, we can't just use the port number in the ancestor hub. Instead, we loop through the array of hardware port status register speeds and find the Nth port with a similar speed. The port status change event handler is updated to figure out whether the port that reported the change is a USB 3.0 port, or a non-SuperSpeed port. Once it figures out the port speed, it kicks the proper roothub. The function to find a slot ID based on the port index is updated to take into account that the two roothubs will have over-lapping port indexes. It checks that the virtual device with a matching port index is the same speed as the passed in roothub. There's also changes to the driver initialization and shutdown paths: 1. Make sure that the xhci_hcd pointer is shared across the two usb_hcd structures. The xhci_hcd pointer is allocated and the registers are mapped in when xhci_pci_setup() is called with the primary HCD. When xhci_pci_setup() is called with the non-primary HCD, the xhci_hcd pointer is stored. 2. Make sure to set the sg_tablesize for both usb_hcd structures. Set the PCI DMA mask for the non-primary HCD to allow for 64-bit or 32-bit DMA. (The PCI DMA mask is set from the primary HCD further down in the xhci_pci_setup() function.) 3. Ensure that the host controller doesn't start kicking khubd in response to port status changes before both usb_hcd structures are registered. xhci_run() only starts the xHC running once it has been called with the non-primary roothub. Similarly, the xhci_stop() function only halts the host controller when it is called with the non-primary HCD. Then on the second call, it resets and cleans up the MSI-X irqs. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
2010-12-17 03:21:10 +08:00
.probe = xhci_pci_probe,
.remove = xhci_pci_remove,
/* suspend and resume implemented later */
.shutdown = usb_hcd_pci_shutdown,
#ifdef CONFIG_PM_SLEEP
.driver = {
.pm = &usb_hcd_pci_pm_ops
},
#endif
};
int __init xhci_register_pci(void)
{
return pci_register_driver(&xhci_pci_driver);
}
void __exit xhci_unregister_pci(void)
{
pci_unregister_driver(&xhci_pci_driver);
}