linux/drivers/dma/mv_xor_v2.c

936 lines
26 KiB
C
Raw Normal View History

/*
* Copyright (C) 2015-2016 Marvell International Ltd.
* This program is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 2 of the
* License, or any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/msi.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include "dmaengine.h"
/* DMA Engine Registers */
#define MV_XOR_V2_DMA_DESQ_BALR_OFF 0x000
#define MV_XOR_V2_DMA_DESQ_BAHR_OFF 0x004
#define MV_XOR_V2_DMA_DESQ_SIZE_OFF 0x008
#define MV_XOR_V2_DMA_DESQ_DONE_OFF 0x00C
#define MV_XOR_V2_DMA_DESQ_DONE_PENDING_MASK 0x7FFF
#define MV_XOR_V2_DMA_DESQ_DONE_PENDING_SHIFT 0
#define MV_XOR_V2_DMA_DESQ_DONE_READ_PTR_MASK 0x1FFF
#define MV_XOR_V2_DMA_DESQ_DONE_READ_PTR_SHIFT 16
#define MV_XOR_V2_DMA_DESQ_ARATTR_OFF 0x010
#define MV_XOR_V2_DMA_DESQ_ATTR_CACHE_MASK 0x3F3F
#define MV_XOR_V2_DMA_DESQ_ATTR_OUTER_SHAREABLE 0x202
#define MV_XOR_V2_DMA_DESQ_ATTR_CACHEABLE 0x3C3C
#define MV_XOR_V2_DMA_IMSG_CDAT_OFF 0x014
#define MV_XOR_V2_DMA_IMSG_THRD_OFF 0x018
#define MV_XOR_V2_DMA_IMSG_THRD_MASK 0x7FFF
#define MV_XOR_V2_DMA_IMSG_THRD_SHIFT 0x0
#define MV_XOR_V2_DMA_IMSG_TIMER_EN BIT(18)
#define MV_XOR_V2_DMA_DESQ_AWATTR_OFF 0x01C
/* Same flags as MV_XOR_V2_DMA_DESQ_ARATTR_OFF */
#define MV_XOR_V2_DMA_DESQ_ALLOC_OFF 0x04C
#define MV_XOR_V2_DMA_DESQ_ALLOC_WRPTR_MASK 0xFFFF
#define MV_XOR_V2_DMA_DESQ_ALLOC_WRPTR_SHIFT 16
#define MV_XOR_V2_DMA_IMSG_BALR_OFF 0x050
#define MV_XOR_V2_DMA_IMSG_BAHR_OFF 0x054
#define MV_XOR_V2_DMA_DESQ_CTRL_OFF 0x100
#define MV_XOR_V2_DMA_DESQ_CTRL_32B 1
#define MV_XOR_V2_DMA_DESQ_CTRL_128B 7
#define MV_XOR_V2_DMA_DESQ_STOP_OFF 0x800
#define MV_XOR_V2_DMA_DESQ_DEALLOC_OFF 0x804
#define MV_XOR_V2_DMA_DESQ_ADD_OFF 0x808
#define MV_XOR_V2_DMA_IMSG_TMOT 0x810
#define MV_XOR_V2_DMA_IMSG_TIMER_THRD_MASK 0x1FFF
#define MV_XOR_V2_DMA_IMSG_TIMER_THRD_SHIFT 0
/* XOR Global registers */
#define MV_XOR_V2_GLOB_BW_CTRL 0x4
#define MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_RD_SHIFT 0
#define MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_RD_VAL 64
#define MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_WR_SHIFT 8
#define MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_WR_VAL 8
#define MV_XOR_V2_GLOB_BW_CTRL_RD_BURST_LEN_SHIFT 12
#define MV_XOR_V2_GLOB_BW_CTRL_RD_BURST_LEN_VAL 4
#define MV_XOR_V2_GLOB_BW_CTRL_WR_BURST_LEN_SHIFT 16
#define MV_XOR_V2_GLOB_BW_CTRL_WR_BURST_LEN_VAL 4
#define MV_XOR_V2_GLOB_PAUSE 0x014
#define MV_XOR_V2_GLOB_PAUSE_AXI_TIME_DIS_VAL 0x8
#define MV_XOR_V2_GLOB_SYS_INT_CAUSE 0x200
#define MV_XOR_V2_GLOB_SYS_INT_MASK 0x204
#define MV_XOR_V2_GLOB_MEM_INT_CAUSE 0x220
#define MV_XOR_V2_GLOB_MEM_INT_MASK 0x224
#define MV_XOR_V2_MIN_DESC_SIZE 32
#define MV_XOR_V2_EXT_DESC_SIZE 128
#define MV_XOR_V2_DESC_RESERVED_SIZE 12
#define MV_XOR_V2_DESC_BUFF_D_ADDR_SIZE 12
#define MV_XOR_V2_CMD_LINE_NUM_MAX_D_BUF 8
/*
* Descriptors queue size. With 32 bytes descriptors, up to 2^14
* descriptors are allowed, with 128 bytes descriptors, up to 2^12
* descriptors are allowed. This driver uses 128 bytes descriptors,
* but experimentation has shown that a set of 1024 descriptors is
* sufficient to reach a good level of performance.
*/
#define MV_XOR_V2_DESC_NUM 1024
/*
* Threshold values for descriptors and timeout, determined by
* experimentation as giving a good level of performance.
*/
#define MV_XOR_V2_DONE_IMSG_THRD 0x14
#define MV_XOR_V2_TIMER_THRD 0xB0
/**
* struct mv_xor_v2_descriptor - DMA HW descriptor
* @desc_id: used by S/W and is not affected by H/W.
* @flags: error and status flags
* @crc32_result: CRC32 calculation result
* @desc_ctrl: operation mode and control flags
* @buff_size: amount of bytes to be processed
* @fill_pattern_src_addr: Fill-Pattern or Source-Address and
* AW-Attributes
* @data_buff_addr: Source (and might be RAID6 destination)
* addresses of data buffers in RAID5 and RAID6
* @reserved: reserved
*/
struct mv_xor_v2_descriptor {
u16 desc_id;
u16 flags;
u32 crc32_result;
u32 desc_ctrl;
/* Definitions for desc_ctrl */
#define DESC_NUM_ACTIVE_D_BUF_SHIFT 22
#define DESC_OP_MODE_SHIFT 28
#define DESC_OP_MODE_NOP 0 /* Idle operation */
#define DESC_OP_MODE_MEMCPY 1 /* Pure-DMA operation */
#define DESC_OP_MODE_MEMSET 2 /* Mem-Fill operation */
#define DESC_OP_MODE_MEMINIT 3 /* Mem-Init operation */
#define DESC_OP_MODE_MEM_COMPARE 4 /* Mem-Compare operation */
#define DESC_OP_MODE_CRC32 5 /* CRC32 calculation */
#define DESC_OP_MODE_XOR 6 /* RAID5 (XOR) operation */
#define DESC_OP_MODE_RAID6 7 /* RAID6 P&Q-generation */
#define DESC_OP_MODE_RAID6_REC 8 /* RAID6 Recovery */
#define DESC_Q_BUFFER_ENABLE BIT(16)
#define DESC_P_BUFFER_ENABLE BIT(17)
#define DESC_IOD BIT(27)
u32 buff_size;
u32 fill_pattern_src_addr[4];
u32 data_buff_addr[MV_XOR_V2_DESC_BUFF_D_ADDR_SIZE];
u32 reserved[MV_XOR_V2_DESC_RESERVED_SIZE];
};
/**
* struct mv_xor_v2_device - implements a xor device
* @lock: lock for the engine
* @dma_base: memory mapped DMA register base
* @glob_base: memory mapped global register base
* @irq_tasklet:
* @free_sw_desc: linked list of free SW descriptors
* @dmadev: dma device
* @dmachan: dma channel
* @hw_desq: HW descriptors queue
* @hw_desq_virt: virtual address of DESCQ
* @sw_desq: SW descriptors queue
* @desc_size: HW descriptor size
* @npendings: number of pending descriptors (for which tx_submit has
* been called, but not yet issue_pending)
*/
struct mv_xor_v2_device {
spinlock_t lock;
void __iomem *dma_base;
void __iomem *glob_base;
struct clk *clk;
struct clk *reg_clk;
struct tasklet_struct irq_tasklet;
struct list_head free_sw_desc;
struct dma_device dmadev;
struct dma_chan dmachan;
dma_addr_t hw_desq;
struct mv_xor_v2_descriptor *hw_desq_virt;
struct mv_xor_v2_sw_desc *sw_desq;
int desc_size;
unsigned int npendings;
unsigned int hw_queue_idx;
struct msi_desc *msi_desc;
};
/**
* struct mv_xor_v2_sw_desc - implements a xor SW descriptor
* @idx: descriptor index
* @async_tx: support for the async_tx api
* @hw_desc: assosiated HW descriptor
* @free_list: node of the free SW descriprots list
*/
struct mv_xor_v2_sw_desc {
int idx;
struct dma_async_tx_descriptor async_tx;
struct mv_xor_v2_descriptor hw_desc;
struct list_head free_list;
};
/*
* Fill the data buffers to a HW descriptor
*/
static void mv_xor_v2_set_data_buffers(struct mv_xor_v2_device *xor_dev,
struct mv_xor_v2_descriptor *desc,
dma_addr_t src, int index)
{
int arr_index = ((index >> 1) * 3);
/*
* Fill the buffer's addresses to the descriptor.
*
* The format of the buffers address for 2 sequential buffers
* X and X + 1:
*
* First word: Buffer-DX-Address-Low[31:0]
* Second word: Buffer-DX+1-Address-Low[31:0]
* Third word: DX+1-Buffer-Address-High[47:32] [31:16]
* DX-Buffer-Address-High[47:32] [15:0]
*/
if ((index & 0x1) == 0) {
desc->data_buff_addr[arr_index] = lower_32_bits(src);
desc->data_buff_addr[arr_index + 2] &= ~0xFFFF;
desc->data_buff_addr[arr_index + 2] |=
upper_32_bits(src) & 0xFFFF;
} else {
desc->data_buff_addr[arr_index + 1] =
lower_32_bits(src);
desc->data_buff_addr[arr_index + 2] &= ~0xFFFF0000;
desc->data_buff_addr[arr_index + 2] |=
(upper_32_bits(src) & 0xFFFF) << 16;
}
}
/*
* notify the engine of new descriptors, and update the available index.
*/
static void mv_xor_v2_add_desc_to_desq(struct mv_xor_v2_device *xor_dev,
int num_of_desc)
{
/* write the number of new descriptors in the DESQ. */
writel(num_of_desc, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_ADD_OFF);
}
/*
* free HW descriptors
*/
static void mv_xor_v2_free_desc_from_desq(struct mv_xor_v2_device *xor_dev,
int num_of_desc)
{
/* write the number of new descriptors in the DESQ. */
writel(num_of_desc, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_DEALLOC_OFF);
}
/*
* Set descriptor size
* Return the HW descriptor size in bytes
*/
static int mv_xor_v2_set_desc_size(struct mv_xor_v2_device *xor_dev)
{
writel(MV_XOR_V2_DMA_DESQ_CTRL_128B,
xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_CTRL_OFF);
return MV_XOR_V2_EXT_DESC_SIZE;
}
/*
* Set the IMSG threshold
*/
static inline
void mv_xor_v2_enable_imsg_thrd(struct mv_xor_v2_device *xor_dev)
{
u32 reg;
/* Configure threshold of number of descriptors, and enable timer */
reg = readl(xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_THRD_OFF);
reg &= (~MV_XOR_V2_DMA_IMSG_THRD_MASK << MV_XOR_V2_DMA_IMSG_THRD_SHIFT);
reg |= (MV_XOR_V2_DONE_IMSG_THRD << MV_XOR_V2_DMA_IMSG_THRD_SHIFT);
reg |= MV_XOR_V2_DMA_IMSG_TIMER_EN;
writel(reg, xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_THRD_OFF);
/* Configure Timer Threshold */
reg = readl(xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_TMOT);
reg &= (~MV_XOR_V2_DMA_IMSG_TIMER_THRD_MASK <<
MV_XOR_V2_DMA_IMSG_TIMER_THRD_SHIFT);
reg |= (MV_XOR_V2_TIMER_THRD << MV_XOR_V2_DMA_IMSG_TIMER_THRD_SHIFT);
writel(reg, xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_TMOT);
}
static irqreturn_t mv_xor_v2_interrupt_handler(int irq, void *data)
{
struct mv_xor_v2_device *xor_dev = data;
unsigned int ndescs;
u32 reg;
reg = readl(xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_DONE_OFF);
ndescs = ((reg >> MV_XOR_V2_DMA_DESQ_DONE_PENDING_SHIFT) &
MV_XOR_V2_DMA_DESQ_DONE_PENDING_MASK);
/* No descriptors to process */
if (!ndescs)
return IRQ_NONE;
/* schedule a tasklet to handle descriptors callbacks */
tasklet_schedule(&xor_dev->irq_tasklet);
return IRQ_HANDLED;
}
/*
* submit a descriptor to the DMA engine
*/
static dma_cookie_t
mv_xor_v2_tx_submit(struct dma_async_tx_descriptor *tx)
{
void *dest_hw_desc;
dma_cookie_t cookie;
struct mv_xor_v2_sw_desc *sw_desc =
container_of(tx, struct mv_xor_v2_sw_desc, async_tx);
struct mv_xor_v2_device *xor_dev =
container_of(tx->chan, struct mv_xor_v2_device, dmachan);
dev_dbg(xor_dev->dmadev.dev,
"%s sw_desc %p: async_tx %p\n",
__func__, sw_desc, &sw_desc->async_tx);
/* assign coookie */
spin_lock_bh(&xor_dev->lock);
cookie = dma_cookie_assign(tx);
/* copy the HW descriptor from the SW descriptor to the DESQ */
dest_hw_desc = xor_dev->hw_desq_virt + xor_dev->hw_queue_idx;
memcpy(dest_hw_desc, &sw_desc->hw_desc, xor_dev->desc_size);
xor_dev->npendings++;
xor_dev->hw_queue_idx++;
if (xor_dev->hw_queue_idx >= MV_XOR_V2_DESC_NUM)
xor_dev->hw_queue_idx = 0;
spin_unlock_bh(&xor_dev->lock);
return cookie;
}
/*
* Prepare a SW descriptor
*/
static struct mv_xor_v2_sw_desc *
mv_xor_v2_prep_sw_desc(struct mv_xor_v2_device *xor_dev)
{
struct mv_xor_v2_sw_desc *sw_desc;
bool found = false;
/* Lock the channel */
spin_lock_bh(&xor_dev->lock);
if (list_empty(&xor_dev->free_sw_desc)) {
spin_unlock_bh(&xor_dev->lock);
/* schedule tasklet to free some descriptors */
tasklet_schedule(&xor_dev->irq_tasklet);
return NULL;
}
list_for_each_entry(sw_desc, &xor_dev->free_sw_desc, free_list) {
if (async_tx_test_ack(&sw_desc->async_tx)) {
found = true;
break;
}
}
if (!found) {
spin_unlock_bh(&xor_dev->lock);
return NULL;
}
list_del(&sw_desc->free_list);
/* Release the channel */
spin_unlock_bh(&xor_dev->lock);
return sw_desc;
}
/*
* Prepare a HW descriptor for a memcpy operation
*/
static struct dma_async_tx_descriptor *
mv_xor_v2_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
dma_addr_t src, size_t len, unsigned long flags)
{
struct mv_xor_v2_sw_desc *sw_desc;
struct mv_xor_v2_descriptor *hw_descriptor;
struct mv_xor_v2_device *xor_dev;
xor_dev = container_of(chan, struct mv_xor_v2_device, dmachan);
dev_dbg(xor_dev->dmadev.dev,
"%s len: %zu src %pad dest %pad flags: %ld\n",
__func__, len, &src, &dest, flags);
sw_desc = mv_xor_v2_prep_sw_desc(xor_dev);
if (!sw_desc)
return NULL;
sw_desc->async_tx.flags = flags;
/* set the HW descriptor */
hw_descriptor = &sw_desc->hw_desc;
/* save the SW descriptor ID to restore when operation is done */
hw_descriptor->desc_id = sw_desc->idx;
/* Set the MEMCPY control word */
hw_descriptor->desc_ctrl =
DESC_OP_MODE_MEMCPY << DESC_OP_MODE_SHIFT;
if (flags & DMA_PREP_INTERRUPT)
hw_descriptor->desc_ctrl |= DESC_IOD;
/* Set source address */
hw_descriptor->fill_pattern_src_addr[0] = lower_32_bits(src);
hw_descriptor->fill_pattern_src_addr[1] =
upper_32_bits(src) & 0xFFFF;
/* Set Destination address */
hw_descriptor->fill_pattern_src_addr[2] = lower_32_bits(dest);
hw_descriptor->fill_pattern_src_addr[3] =
upper_32_bits(dest) & 0xFFFF;
/* Set buffers size */
hw_descriptor->buff_size = len;
/* return the async tx descriptor */
return &sw_desc->async_tx;
}
/*
* Prepare a HW descriptor for a XOR operation
*/
static struct dma_async_tx_descriptor *
mv_xor_v2_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
unsigned int src_cnt, size_t len, unsigned long flags)
{
struct mv_xor_v2_sw_desc *sw_desc;
struct mv_xor_v2_descriptor *hw_descriptor;
struct mv_xor_v2_device *xor_dev =
container_of(chan, struct mv_xor_v2_device, dmachan);
int i;
if (src_cnt > MV_XOR_V2_CMD_LINE_NUM_MAX_D_BUF || src_cnt < 1)
return NULL;
dev_dbg(xor_dev->dmadev.dev,
"%s src_cnt: %d len: %zu dest %pad flags: %ld\n",
__func__, src_cnt, len, &dest, flags);
sw_desc = mv_xor_v2_prep_sw_desc(xor_dev);
if (!sw_desc)
return NULL;
sw_desc->async_tx.flags = flags;
/* set the HW descriptor */
hw_descriptor = &sw_desc->hw_desc;
/* save the SW descriptor ID to restore when operation is done */
hw_descriptor->desc_id = sw_desc->idx;
/* Set the XOR control word */
hw_descriptor->desc_ctrl =
DESC_OP_MODE_XOR << DESC_OP_MODE_SHIFT;
hw_descriptor->desc_ctrl |= DESC_P_BUFFER_ENABLE;
if (flags & DMA_PREP_INTERRUPT)
hw_descriptor->desc_ctrl |= DESC_IOD;
/* Set the data buffers */
for (i = 0; i < src_cnt; i++)
mv_xor_v2_set_data_buffers(xor_dev, hw_descriptor, src[i], i);
hw_descriptor->desc_ctrl |=
src_cnt << DESC_NUM_ACTIVE_D_BUF_SHIFT;
/* Set Destination address */
hw_descriptor->fill_pattern_src_addr[2] = lower_32_bits(dest);
hw_descriptor->fill_pattern_src_addr[3] =
upper_32_bits(dest) & 0xFFFF;
/* Set buffers size */
hw_descriptor->buff_size = len;
/* return the async tx descriptor */
return &sw_desc->async_tx;
}
/*
* Prepare a HW descriptor for interrupt operation.
*/
static struct dma_async_tx_descriptor *
mv_xor_v2_prep_dma_interrupt(struct dma_chan *chan, unsigned long flags)
{
struct mv_xor_v2_sw_desc *sw_desc;
struct mv_xor_v2_descriptor *hw_descriptor;
struct mv_xor_v2_device *xor_dev =
container_of(chan, struct mv_xor_v2_device, dmachan);
sw_desc = mv_xor_v2_prep_sw_desc(xor_dev);
if (!sw_desc)
return NULL;
/* set the HW descriptor */
hw_descriptor = &sw_desc->hw_desc;
/* save the SW descriptor ID to restore when operation is done */
hw_descriptor->desc_id = sw_desc->idx;
/* Set the INTERRUPT control word */
hw_descriptor->desc_ctrl =
DESC_OP_MODE_NOP << DESC_OP_MODE_SHIFT;
hw_descriptor->desc_ctrl |= DESC_IOD;
/* return the async tx descriptor */
return &sw_desc->async_tx;
}
/*
* push pending transactions to hardware
*/
static void mv_xor_v2_issue_pending(struct dma_chan *chan)
{
struct mv_xor_v2_device *xor_dev =
container_of(chan, struct mv_xor_v2_device, dmachan);
spin_lock_bh(&xor_dev->lock);
/*
* update the engine with the number of descriptors to
* process
*/
mv_xor_v2_add_desc_to_desq(xor_dev, xor_dev->npendings);
xor_dev->npendings = 0;
spin_unlock_bh(&xor_dev->lock);
}
static inline
int mv_xor_v2_get_pending_params(struct mv_xor_v2_device *xor_dev,
int *pending_ptr)
{
u32 reg;
reg = readl(xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_DONE_OFF);
/* get the next pending descriptor index */
*pending_ptr = ((reg >> MV_XOR_V2_DMA_DESQ_DONE_READ_PTR_SHIFT) &
MV_XOR_V2_DMA_DESQ_DONE_READ_PTR_MASK);
/* get the number of descriptors pending handle */
return ((reg >> MV_XOR_V2_DMA_DESQ_DONE_PENDING_SHIFT) &
MV_XOR_V2_DMA_DESQ_DONE_PENDING_MASK);
}
/*
* handle the descriptors after HW process
*/
static void mv_xor_v2_tasklet(unsigned long data)
{
struct mv_xor_v2_device *xor_dev = (struct mv_xor_v2_device *) data;
int pending_ptr, num_of_pending, i;
struct mv_xor_v2_sw_desc *next_pending_sw_desc = NULL;
dev_dbg(xor_dev->dmadev.dev, "%s %d\n", __func__, __LINE__);
/* get the pending descriptors parameters */
num_of_pending = mv_xor_v2_get_pending_params(xor_dev, &pending_ptr);
/* loop over free descriptors */
for (i = 0; i < num_of_pending; i++) {
struct mv_xor_v2_descriptor *next_pending_hw_desc =
xor_dev->hw_desq_virt + pending_ptr;
/* get the SW descriptor related to the HW descriptor */
next_pending_sw_desc =
&xor_dev->sw_desq[next_pending_hw_desc->desc_id];
/* call the callback */
if (next_pending_sw_desc->async_tx.cookie > 0) {
/*
* update the channel's completed cookie - no
* lock is required the IMSG threshold provide
* the locking
*/
dma_cookie_complete(&next_pending_sw_desc->async_tx);
if (next_pending_sw_desc->async_tx.callback)
next_pending_sw_desc->async_tx.callback(
next_pending_sw_desc->async_tx.callback_param);
dma_descriptor_unmap(&next_pending_sw_desc->async_tx);
}
dma_run_dependencies(&next_pending_sw_desc->async_tx);
/* Lock the channel */
spin_lock_bh(&xor_dev->lock);
/* add the SW descriptor to the free descriptors list */
list_add(&next_pending_sw_desc->free_list,
&xor_dev->free_sw_desc);
/* Release the channel */
spin_unlock_bh(&xor_dev->lock);
/* increment the next descriptor */
pending_ptr++;
if (pending_ptr >= MV_XOR_V2_DESC_NUM)
pending_ptr = 0;
}
if (num_of_pending != 0) {
/* free the descriptores */
mv_xor_v2_free_desc_from_desq(xor_dev, num_of_pending);
}
}
/*
* Set DMA Interrupt-message (IMSG) parameters
*/
static void mv_xor_v2_set_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
{
struct mv_xor_v2_device *xor_dev = dev_get_drvdata(desc->dev);
writel(msg->address_lo,
xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_BALR_OFF);
writel(msg->address_hi & 0xFFFF,
xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_BAHR_OFF);
writel(msg->data,
xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_CDAT_OFF);
}
static int mv_xor_v2_descq_init(struct mv_xor_v2_device *xor_dev)
{
u32 reg;
/* write the DESQ size to the DMA engine */
writel(MV_XOR_V2_DESC_NUM,
xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_SIZE_OFF);
/* write the DESQ address to the DMA enngine*/
writel(xor_dev->hw_desq & 0xFFFFFFFF,
xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_BALR_OFF);
writel((xor_dev->hw_desq & 0xFFFF00000000) >> 32,
xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_BAHR_OFF);
/*
* This is a temporary solution, until we activate the
* SMMU. Set the attributes for reading & writing data buffers
* & descriptors to:
*
* - OuterShareable - Snoops will be performed on CPU caches
* - Enable cacheable - Bufferable, Modifiable, Other Allocate
* and Allocate
*/
reg = readl(xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_ARATTR_OFF);
reg &= ~MV_XOR_V2_DMA_DESQ_ATTR_CACHE_MASK;
reg |= MV_XOR_V2_DMA_DESQ_ATTR_OUTER_SHAREABLE |
MV_XOR_V2_DMA_DESQ_ATTR_CACHEABLE;
writel(reg, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_ARATTR_OFF);
reg = readl(xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_AWATTR_OFF);
reg &= ~MV_XOR_V2_DMA_DESQ_ATTR_CACHE_MASK;
reg |= MV_XOR_V2_DMA_DESQ_ATTR_OUTER_SHAREABLE |
MV_XOR_V2_DMA_DESQ_ATTR_CACHEABLE;
writel(reg, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_AWATTR_OFF);
/* BW CTRL - set values to optimize the XOR performance:
*
* - Set WrBurstLen & RdBurstLen - the unit will issue
* maximum of 256B write/read transactions.
* - Limit the number of outstanding write & read data
* (OBB/IBB) requests to the maximal value.
*/
reg = ((MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_RD_VAL <<
MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_RD_SHIFT) |
(MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_WR_VAL <<
MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_WR_SHIFT) |
(MV_XOR_V2_GLOB_BW_CTRL_RD_BURST_LEN_VAL <<
MV_XOR_V2_GLOB_BW_CTRL_RD_BURST_LEN_SHIFT) |
(MV_XOR_V2_GLOB_BW_CTRL_WR_BURST_LEN_VAL <<
MV_XOR_V2_GLOB_BW_CTRL_WR_BURST_LEN_SHIFT));
writel(reg, xor_dev->glob_base + MV_XOR_V2_GLOB_BW_CTRL);
/* Disable the AXI timer feature */
reg = readl(xor_dev->glob_base + MV_XOR_V2_GLOB_PAUSE);
reg |= MV_XOR_V2_GLOB_PAUSE_AXI_TIME_DIS_VAL;
writel(reg, xor_dev->glob_base + MV_XOR_V2_GLOB_PAUSE);
/* enable the DMA engine */
writel(0, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_STOP_OFF);
return 0;
}
static int mv_xor_v2_suspend(struct platform_device *dev, pm_message_t state)
{
struct mv_xor_v2_device *xor_dev = platform_get_drvdata(dev);
/* Set this bit to disable to stop the XOR unit. */
writel(0x1, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_STOP_OFF);
return 0;
}
static int mv_xor_v2_resume(struct platform_device *dev)
{
struct mv_xor_v2_device *xor_dev = platform_get_drvdata(dev);
mv_xor_v2_set_desc_size(xor_dev);
mv_xor_v2_enable_imsg_thrd(xor_dev);
mv_xor_v2_descq_init(xor_dev);
return 0;
}
static int mv_xor_v2_probe(struct platform_device *pdev)
{
struct mv_xor_v2_device *xor_dev;
struct resource *res;
int i, ret = 0;
struct dma_device *dma_dev;
struct mv_xor_v2_sw_desc *sw_desc;
struct msi_desc *msi_desc;
BUILD_BUG_ON(sizeof(struct mv_xor_v2_descriptor) !=
MV_XOR_V2_EXT_DESC_SIZE);
xor_dev = devm_kzalloc(&pdev->dev, sizeof(*xor_dev), GFP_KERNEL);
if (!xor_dev)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
xor_dev->dma_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(xor_dev->dma_base))
return PTR_ERR(xor_dev->dma_base);
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
xor_dev->glob_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(xor_dev->glob_base))
return PTR_ERR(xor_dev->glob_base);
platform_set_drvdata(pdev, xor_dev);
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
if (ret)
return ret;
xor_dev->reg_clk = devm_clk_get(&pdev->dev, "reg");
if (PTR_ERR(xor_dev->reg_clk) != -ENOENT) {
if (!IS_ERR(xor_dev->reg_clk)) {
ret = clk_prepare_enable(xor_dev->reg_clk);
if (ret)
return ret;
} else {
return PTR_ERR(xor_dev->reg_clk);
}
}
xor_dev->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(xor_dev->clk) && PTR_ERR(xor_dev->clk) == -EPROBE_DEFER) {
ret = EPROBE_DEFER;
goto disable_reg_clk;
}
if (!IS_ERR(xor_dev->clk)) {
ret = clk_prepare_enable(xor_dev->clk);
if (ret)
goto disable_reg_clk;
}
ret = platform_msi_domain_alloc_irqs(&pdev->dev, 1,
mv_xor_v2_set_msi_msg);
if (ret)
goto disable_clk;
msi_desc = first_msi_entry(&pdev->dev);
if (!msi_desc)
goto free_msi_irqs;
xor_dev->msi_desc = msi_desc;
ret = devm_request_irq(&pdev->dev, msi_desc->irq,
mv_xor_v2_interrupt_handler, 0,
dev_name(&pdev->dev), xor_dev);
if (ret)
goto free_msi_irqs;
tasklet_init(&xor_dev->irq_tasklet, mv_xor_v2_tasklet,
(unsigned long) xor_dev);
xor_dev->desc_size = mv_xor_v2_set_desc_size(xor_dev);
dma_cookie_init(&xor_dev->dmachan);
/*
* allocate coherent memory for hardware descriptors
* note: writecombine gives slightly better performance, but
* requires that we explicitly flush the writes
*/
xor_dev->hw_desq_virt =
dma_alloc_coherent(&pdev->dev,
xor_dev->desc_size * MV_XOR_V2_DESC_NUM,
&xor_dev->hw_desq, GFP_KERNEL);
if (!xor_dev->hw_desq_virt) {
ret = -ENOMEM;
goto free_msi_irqs;
}
/* alloc memory for the SW descriptors */
treewide: devm_kzalloc() -> devm_kcalloc() The devm_kzalloc() function has a 2-factor argument form, devm_kcalloc(). This patch replaces cases of: devm_kzalloc(handle, a * b, gfp) with: devm_kcalloc(handle, a * b, gfp) as well as handling cases of: devm_kzalloc(handle, a * b * c, gfp) with: devm_kzalloc(handle, array3_size(a, b, c), gfp) as it's slightly less ugly than: devm_kcalloc(handle, array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: devm_kzalloc(handle, 4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. Some manual whitespace fixes were needed in this patch, as Coccinelle really liked to write "=devm_kcalloc..." instead of "= devm_kcalloc...". The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ expression HANDLE; type TYPE; expression THING, E; @@ ( devm_kzalloc(HANDLE, - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | devm_kzalloc(HANDLE, - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression HANDLE; expression COUNT; typedef u8; typedef __u8; @@ ( devm_kzalloc(HANDLE, - sizeof(u8) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(__u8) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(char) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(unsigned char) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(u8) * COUNT + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(__u8) * COUNT + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(char) * COUNT + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ expression HANDLE; type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ expression HANDLE; identifier SIZE, COUNT; @@ - devm_kzalloc + devm_kcalloc (HANDLE, - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression HANDLE; expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( devm_kzalloc(HANDLE, - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression HANDLE; expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ expression HANDLE; identifier STRIDE, SIZE, COUNT; @@ ( devm_kzalloc(HANDLE, - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression HANDLE; expression E1, E2, E3; constant C1, C2, C3; @@ ( devm_kzalloc(HANDLE, C1 * C2 * C3, ...) | devm_kzalloc(HANDLE, - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | devm_kzalloc(HANDLE, - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | devm_kzalloc(HANDLE, - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | devm_kzalloc(HANDLE, - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression HANDLE; expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( devm_kzalloc(HANDLE, sizeof(THING) * C2, ...) | devm_kzalloc(HANDLE, sizeof(TYPE) * C2, ...) | devm_kzalloc(HANDLE, C1 * C2 * C3, ...) | devm_kzalloc(HANDLE, C1 * C2, ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - (E1) * E2 + E1, E2 , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - (E1) * (E2) + E1, E2 , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:07:58 +08:00
xor_dev->sw_desq = devm_kcalloc(&pdev->dev,
MV_XOR_V2_DESC_NUM, sizeof(*sw_desc),
GFP_KERNEL);
if (!xor_dev->sw_desq) {
ret = -ENOMEM;
goto free_hw_desq;
}
spin_lock_init(&xor_dev->lock);
/* init the free SW descriptors list */
INIT_LIST_HEAD(&xor_dev->free_sw_desc);
/* add all SW descriptors to the free list */
for (i = 0; i < MV_XOR_V2_DESC_NUM; i++) {
struct mv_xor_v2_sw_desc *sw_desc =
xor_dev->sw_desq + i;
sw_desc->idx = i;
dma_async_tx_descriptor_init(&sw_desc->async_tx,
&xor_dev->dmachan);
sw_desc->async_tx.tx_submit = mv_xor_v2_tx_submit;
async_tx_ack(&sw_desc->async_tx);
list_add(&sw_desc->free_list,
&xor_dev->free_sw_desc);
}
dma_dev = &xor_dev->dmadev;
/* set DMA capabilities */
dma_cap_zero(dma_dev->cap_mask);
dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
dma_cap_set(DMA_XOR, dma_dev->cap_mask);
dma_cap_set(DMA_INTERRUPT, dma_dev->cap_mask);
/* init dma link list */
INIT_LIST_HEAD(&dma_dev->channels);
/* set base routines */
dma_dev->device_tx_status = dma_cookie_status;
dma_dev->device_issue_pending = mv_xor_v2_issue_pending;
dma_dev->dev = &pdev->dev;
dma_dev->device_prep_dma_memcpy = mv_xor_v2_prep_dma_memcpy;
dma_dev->device_prep_dma_interrupt = mv_xor_v2_prep_dma_interrupt;
dma_dev->max_xor = 8;
dma_dev->device_prep_dma_xor = mv_xor_v2_prep_dma_xor;
xor_dev->dmachan.device = dma_dev;
list_add_tail(&xor_dev->dmachan.device_node,
&dma_dev->channels);
mv_xor_v2_enable_imsg_thrd(xor_dev);
mv_xor_v2_descq_init(xor_dev);
ret = dma_async_device_register(dma_dev);
if (ret)
goto free_hw_desq;
dev_notice(&pdev->dev, "Marvell Version 2 XOR driver\n");
return 0;
free_hw_desq:
dma_free_coherent(&pdev->dev,
xor_dev->desc_size * MV_XOR_V2_DESC_NUM,
xor_dev->hw_desq_virt, xor_dev->hw_desq);
free_msi_irqs:
platform_msi_domain_free_irqs(&pdev->dev);
disable_clk:
clk_disable_unprepare(xor_dev->clk);
disable_reg_clk:
clk_disable_unprepare(xor_dev->reg_clk);
return ret;
}
static int mv_xor_v2_remove(struct platform_device *pdev)
{
struct mv_xor_v2_device *xor_dev = platform_get_drvdata(pdev);
dma_async_device_unregister(&xor_dev->dmadev);
dma_free_coherent(&pdev->dev,
xor_dev->desc_size * MV_XOR_V2_DESC_NUM,
xor_dev->hw_desq_virt, xor_dev->hw_desq);
devm_free_irq(&pdev->dev, xor_dev->msi_desc->irq, xor_dev);
platform_msi_domain_free_irqs(&pdev->dev);
tasklet_kill(&xor_dev->irq_tasklet);
clk_disable_unprepare(xor_dev->clk);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id mv_xor_v2_dt_ids[] = {
{ .compatible = "marvell,xor-v2", },
{},
};
MODULE_DEVICE_TABLE(of, mv_xor_v2_dt_ids);
#endif
static struct platform_driver mv_xor_v2_driver = {
.probe = mv_xor_v2_probe,
.suspend = mv_xor_v2_suspend,
.resume = mv_xor_v2_resume,
.remove = mv_xor_v2_remove,
.driver = {
.name = "mv_xor_v2",
.of_match_table = of_match_ptr(mv_xor_v2_dt_ids),
},
};
module_platform_driver(mv_xor_v2_driver);
MODULE_DESCRIPTION("DMA engine driver for Marvell's Version 2 of XOR engine");
MODULE_LICENSE("GPL");