linux/arch/alpha/kernel/core_cia.c

1217 lines
33 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* linux/arch/alpha/kernel/core_cia.c
*
* Written by David A Rusling (david.rusling@reo.mts.dec.com).
* December 1995.
*
* Copyright (C) 1995 David A Rusling
* Copyright (C) 1997, 1998 Jay Estabrook
* Copyright (C) 1998, 1999, 2000 Richard Henderson
*
* Code common to all CIA core logic chips.
*/
#define __EXTERN_INLINE inline
#include <asm/io.h>
#include <asm/core_cia.h>
#undef __EXTERN_INLINE
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/sched.h>
#include <linux/init.h>
mm: remove include/linux/bootmem.h Move remaining definitions and declarations from include/linux/bootmem.h into include/linux/memblock.h and remove the redundant header. The includes were replaced with the semantic patch below and then semi-automated removal of duplicated '#include <linux/memblock.h> @@ @@ - #include <linux/bootmem.h> + #include <linux/memblock.h> [sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au [sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au [sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal] Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Jonas Bonn <jonas@southpole.se> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ley Foon Tan <lftan@altera.com> Cc: Mark Salter <msalter@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Paul Burton <paul.burton@mips.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Serge Semin <fancer.lancer@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 06:09:49 +08:00
#include <linux/memblock.h>
#include <asm/ptrace.h>
#include <asm/mce.h>
#include "proto.h"
#include "pci_impl.h"
/*
* NOTE: Herein lie back-to-back mb instructions. They are magic.
* One plausible explanation is that the i/o controller does not properly
* handle the system transaction. Another involves timing. Ho hum.
*/
#define DEBUG_CONFIG 0
#if DEBUG_CONFIG
# define DBGC(args) printk args
#else
# define DBGC(args)
#endif
#define vip volatile int *
/*
* Given a bus, device, and function number, compute resulting
* configuration space address. It is therefore not safe to have
* concurrent invocations to configuration space access routines, but
* there really shouldn't be any need for this.
*
* Type 0:
*
* 3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1
* 3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | | |D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|0|
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
* 31:11 Device select bit.
* 10:8 Function number
* 7:2 Register number
*
* Type 1:
*
* 3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1
* 3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | | | | | | | | | | |B|B|B|B|B|B|B|B|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|1|
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
* 31:24 reserved
* 23:16 bus number (8 bits = 128 possible buses)
* 15:11 Device number (5 bits)
* 10:8 function number
* 7:2 register number
*
* Notes:
* The function number selects which function of a multi-function device
* (e.g., SCSI and Ethernet).
*
* The register selects a DWORD (32 bit) register offset. Hence it
* doesn't get shifted by 2 bits as we want to "drop" the bottom two
* bits.
*/
static int
mk_conf_addr(struct pci_bus *bus_dev, unsigned int device_fn, int where,
unsigned long *pci_addr, unsigned char *type1)
{
u8 bus = bus_dev->number;
*type1 = (bus != 0);
*pci_addr = (bus << 16) | (device_fn << 8) | where;
DBGC(("mk_conf_addr(bus=%d ,device_fn=0x%x, where=0x%x,"
" returning address 0x%p\n"
bus, device_fn, where, *pci_addr));
return 0;
}
static unsigned int
conf_read(unsigned long addr, unsigned char type1)
{
unsigned long flags;
int stat0, value;
int cia_cfg = 0;
DBGC(("conf_read(addr=0x%lx, type1=%d) ", addr, type1));
local_irq_save(flags);
/* Reset status register to avoid losing errors. */
stat0 = *(vip)CIA_IOC_CIA_ERR;
*(vip)CIA_IOC_CIA_ERR = stat0;
mb();
*(vip)CIA_IOC_CIA_ERR; /* re-read to force write */
/* If Type1 access, must set CIA CFG. */
if (type1) {
cia_cfg = *(vip)CIA_IOC_CFG;
*(vip)CIA_IOC_CFG = (cia_cfg & ~3) | 1;
mb();
*(vip)CIA_IOC_CFG;
}
mb();
draina();
mcheck_expected(0) = 1;
mcheck_taken(0) = 0;
mb();
/* Access configuration space. */
value = *(vip)addr;
mb();
mb(); /* magic */
if (mcheck_taken(0)) {
mcheck_taken(0) = 0;
value = 0xffffffff;
mb();
}
mcheck_expected(0) = 0;
mb();
/* If Type1 access, must reset IOC CFG so normal IO space ops work. */
if (type1) {
*(vip)CIA_IOC_CFG = cia_cfg;
mb();
*(vip)CIA_IOC_CFG;
}
local_irq_restore(flags);
DBGC(("done\n"));
return value;
}
static void
conf_write(unsigned long addr, unsigned int value, unsigned char type1)
{
unsigned long flags;
int stat0, cia_cfg = 0;
DBGC(("conf_write(addr=0x%lx, type1=%d) ", addr, type1));
local_irq_save(flags);
/* Reset status register to avoid losing errors. */
stat0 = *(vip)CIA_IOC_CIA_ERR;
*(vip)CIA_IOC_CIA_ERR = stat0;
mb();
*(vip)CIA_IOC_CIA_ERR; /* re-read to force write */
/* If Type1 access, must set CIA CFG. */
if (type1) {
cia_cfg = *(vip)CIA_IOC_CFG;
*(vip)CIA_IOC_CFG = (cia_cfg & ~3) | 1;
mb();
*(vip)CIA_IOC_CFG;
}
mb();
draina();
mcheck_expected(0) = 1;
mcheck_taken(0) = 0;
mb();
/* Access configuration space. */
*(vip)addr = value;
mb();
*(vip)addr; /* read back to force the write */
mcheck_expected(0) = 0;
mb();
/* If Type1 access, must reset IOC CFG so normal IO space ops work. */
if (type1) {
*(vip)CIA_IOC_CFG = cia_cfg;
mb();
*(vip)CIA_IOC_CFG;
}
local_irq_restore(flags);
DBGC(("done\n"));
}
static int
cia_read_config(struct pci_bus *bus, unsigned int devfn, int where, int size,
u32 *value)
{
unsigned long addr, pci_addr;
long mask;
unsigned char type1;
int shift;
if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1))
return PCIBIOS_DEVICE_NOT_FOUND;
mask = (size - 1) * 8;
shift = (where & 3) * 8;
addr = (pci_addr << 5) + mask + CIA_CONF;
*value = conf_read(addr, type1) >> (shift);
return PCIBIOS_SUCCESSFUL;
}
static int
cia_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size,
u32 value)
{
unsigned long addr, pci_addr;
long mask;
unsigned char type1;
if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1))
return PCIBIOS_DEVICE_NOT_FOUND;
mask = (size - 1) * 8;
addr = (pci_addr << 5) + mask + CIA_CONF;
conf_write(addr, value << ((where & 3) * 8), type1);
return PCIBIOS_SUCCESSFUL;
}
struct pci_ops cia_pci_ops =
{
.read = cia_read_config,
.write = cia_write_config,
};
/*
* CIA Pass 1 and PYXIS Pass 1 and 2 have a broken scatter-gather tlb.
* It cannot be invalidated. Rather than hard code the pass numbers,
* actually try the tbia to see if it works.
*/
void
cia_pci_tbi(struct pci_controller *hose, dma_addr_t start, dma_addr_t end)
{
wmb();
*(vip)CIA_IOC_PCI_TBIA = 3; /* Flush all locked and unlocked. */
mb();
*(vip)CIA_IOC_PCI_TBIA;
}
/*
* On PYXIS, even if the tbia works, we cannot use it. It effectively locks
* the chip (as well as direct write to the tag registers) if there is a
* SG DMA operation in progress. This is true at least for PYXIS rev. 1,
* so always use the method below.
*/
/*
* This is the method NT and NetBSD use.
*
* Allocate mappings, and put the chip into DMA loopback mode to read a
* garbage page. This works by causing TLB misses, causing old entries to
* be purged to make room for the new entries coming in for the garbage page.
*/
#define CIA_BROKEN_TBIA_BASE 0x30000000
#define CIA_BROKEN_TBIA_SIZE 1024
/* Always called with interrupts disabled */
void
cia_pci_tbi_try2(struct pci_controller *hose,
dma_addr_t start, dma_addr_t end)
{
void __iomem *bus_addr;
int ctrl;
/* Put the chip into PCI loopback mode. */
mb();
ctrl = *(vip)CIA_IOC_CIA_CTRL;
*(vip)CIA_IOC_CIA_CTRL = ctrl | CIA_CTRL_PCI_LOOP_EN;
mb();
*(vip)CIA_IOC_CIA_CTRL;
mb();
/* Read from PCI dense memory space at TBI_ADDR, skipping 32k on
each read. This forces SG TLB misses. NetBSD claims that the
TLB entries are not quite LRU, meaning that we need to read more
times than there are actual tags. The 2117x docs claim strict
round-robin. Oh well, we've come this far... */
/* Even better - as seen on the PYXIS rev 1 the TLB tags 0-3 can
be filled by the TLB misses *only once* after being invalidated
(by tbia or direct write). Next misses won't update them even
though the lock bits are cleared. Tags 4-7 are "quite LRU" though,
so use them and read at window 3 base exactly 4 times. Reading
more sometimes makes the chip crazy. -ink */
bus_addr = cia_ioremap(CIA_BROKEN_TBIA_BASE, 32768 * 4);
cia_readl(bus_addr + 0x00000);
cia_readl(bus_addr + 0x08000);
cia_readl(bus_addr + 0x10000);
cia_readl(bus_addr + 0x18000);
cia_iounmap(bus_addr);
/* Restore normal PCI operation. */
mb();
*(vip)CIA_IOC_CIA_CTRL = ctrl;
mb();
*(vip)CIA_IOC_CIA_CTRL;
mb();
}
static inline void
cia_prepare_tbia_workaround(int window)
{
unsigned long *ppte, pte;
long i;
/* Use minimal 1K map. */
arch: use memblock_alloc() instead of memblock_alloc_from(size, align, 0) The last parameter of memblock_alloc_from() is the lower limit for the memory allocation. When it is 0, the call is equivalent to memblock_alloc(). Link: http://lkml.kernel.org/r/1548057848-15136-13-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Paul Burton <paul.burton@mips.com> # MIPS part Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Christoph Hellwig <hch@lst.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Dennis Zhou <dennis@kernel.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Guo Ren <guoren@kernel.org> Cc: Guo Ren <ren_guo@c-sky.com> [c-sky] Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Juergen Gross <jgross@suse.com> [Xen] Cc: Mark Salter <msalter@redhat.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Petr Mladek <pmladek@suse.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh+dt@kernel.org> Cc: Rob Herring <robh@kernel.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-12 14:29:50 +08:00
ppte = memblock_alloc(CIA_BROKEN_TBIA_SIZE, 32768);
treewide: add checks for the return value of memblock_alloc*() Add check for the return value of memblock_alloc*() functions and call panic() in case of error. The panic message repeats the one used by panicing memblock allocators with adjustment of parameters to include only relevant ones. The replacement was mostly automated with semantic patches like the one below with manual massaging of format strings. @@ expression ptr, size, align; @@ ptr = memblock_alloc(size, align); + if (!ptr) + panic("%s: Failed to allocate %lu bytes align=0x%lx\n", __func__, size, align); [anders.roxell@linaro.org: use '%pa' with 'phys_addr_t' type] Link: http://lkml.kernel.org/r/20190131161046.21886-1-anders.roxell@linaro.org [rppt@linux.ibm.com: fix format strings for panics after memblock_alloc] Link: http://lkml.kernel.org/r/1548950940-15145-1-git-send-email-rppt@linux.ibm.com [rppt@linux.ibm.com: don't panic if the allocation in sparse_buffer_init fails] Link: http://lkml.kernel.org/r/20190131074018.GD28876@rapoport-lnx [akpm@linux-foundation.org: fix xtensa printk warning] Link: http://lkml.kernel.org/r/1548057848-15136-20-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Anders Roxell <anders.roxell@linaro.org> Reviewed-by: Guo Ren <ren_guo@c-sky.com> [c-sky] Acked-by: Paul Burton <paul.burton@mips.com> [MIPS] Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> [s390] Reviewed-by: Juergen Gross <jgross@suse.com> [Xen] Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k] Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa] Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Christoph Hellwig <hch@lst.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Dennis Zhou <dennis@kernel.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Guo Ren <guoren@kernel.org> Cc: Mark Salter <msalter@redhat.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Petr Mladek <pmladek@suse.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh+dt@kernel.org> Cc: Rob Herring <robh@kernel.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-12 14:30:31 +08:00
if (!ppte)
panic("%s: Failed to allocate %u bytes align=0x%x\n",
__func__, CIA_BROKEN_TBIA_SIZE, 32768);
pte = (virt_to_phys(ppte) >> (PAGE_SHIFT - 1)) | 1;
for (i = 0; i < CIA_BROKEN_TBIA_SIZE / sizeof(unsigned long); ++i)
ppte[i] = pte;
*(vip)CIA_IOC_PCI_Wn_BASE(window) = CIA_BROKEN_TBIA_BASE | 3;
*(vip)CIA_IOC_PCI_Wn_MASK(window)
= (CIA_BROKEN_TBIA_SIZE*1024 - 1) & 0xfff00000;
*(vip)CIA_IOC_PCI_Tn_BASE(window) = virt_to_phys(ppte) >> 2;
}
static void __init
verify_tb_operation(void)
{
static int page[PAGE_SIZE/4]
__attribute__((aligned(PAGE_SIZE)))
__initdata = { 0 };
struct pci_iommu_arena *arena = pci_isa_hose->sg_isa;
int ctrl, addr0, tag0, pte0, data0;
int temp, use_tbia_try2 = 0;
void __iomem *bus_addr;
/* pyxis -- tbia is broken */
if (pci_isa_hose->dense_io_base)
use_tbia_try2 = 1;
/* Put the chip into PCI loopback mode. */
mb();
ctrl = *(vip)CIA_IOC_CIA_CTRL;
*(vip)CIA_IOC_CIA_CTRL = ctrl | CIA_CTRL_PCI_LOOP_EN;
mb();
*(vip)CIA_IOC_CIA_CTRL;
mb();
/* Write a valid entry directly into the TLB registers. */
addr0 = arena->dma_base;
tag0 = addr0 | 1;
pte0 = (virt_to_phys(page) >> (PAGE_SHIFT - 1)) | 1;
*(vip)CIA_IOC_TB_TAGn(0) = tag0;
*(vip)CIA_IOC_TB_TAGn(1) = 0;
*(vip)CIA_IOC_TB_TAGn(2) = 0;
*(vip)CIA_IOC_TB_TAGn(3) = 0;
*(vip)CIA_IOC_TB_TAGn(4) = 0;
*(vip)CIA_IOC_TB_TAGn(5) = 0;
*(vip)CIA_IOC_TB_TAGn(6) = 0;
*(vip)CIA_IOC_TB_TAGn(7) = 0;
*(vip)CIA_IOC_TBn_PAGEm(0,0) = pte0;
*(vip)CIA_IOC_TBn_PAGEm(0,1) = 0;
*(vip)CIA_IOC_TBn_PAGEm(0,2) = 0;
*(vip)CIA_IOC_TBn_PAGEm(0,3) = 0;
mb();
/* Get a usable bus address */
bus_addr = cia_ioremap(addr0, 8*PAGE_SIZE);
/* First, verify we can read back what we've written. If
this fails, we can't be sure of any of the other testing
we're going to do, so bail. */
/* ??? Actually, we could do the work with machine checks.
By passing this register update test, we pretty much
guarantee that cia_pci_tbi_try1 works. If this test
fails, cia_pci_tbi_try2 might still work. */
temp = *(vip)CIA_IOC_TB_TAGn(0);
if (temp != tag0) {
printk("pci: failed tb register update test "
"(tag0 %#x != %#x)\n", temp, tag0);
goto failed;
}
temp = *(vip)CIA_IOC_TB_TAGn(1);
if (temp != 0) {
printk("pci: failed tb register update test "
"(tag1 %#x != 0)\n", temp);
goto failed;
}
temp = *(vip)CIA_IOC_TBn_PAGEm(0,0);
if (temp != pte0) {
printk("pci: failed tb register update test "
"(pte0 %#x != %#x)\n", temp, pte0);
goto failed;
}
printk("pci: passed tb register update test\n");
/* Second, verify we can actually do I/O through this entry. */
data0 = 0xdeadbeef;
page[0] = data0;
mcheck_expected(0) = 1;
mcheck_taken(0) = 0;
mb();
temp = cia_readl(bus_addr);
mb();
mcheck_expected(0) = 0;
mb();
if (mcheck_taken(0)) {
printk("pci: failed sg loopback i/o read test (mcheck)\n");
goto failed;
}
if (temp != data0) {
printk("pci: failed sg loopback i/o read test "
"(%#x != %#x)\n", temp, data0);
goto failed;
}
printk("pci: passed sg loopback i/o read test\n");
/* Third, try to invalidate the TLB. */
if (! use_tbia_try2) {
cia_pci_tbi(arena->hose, 0, -1);
temp = *(vip)CIA_IOC_TB_TAGn(0);
if (temp & 1) {
use_tbia_try2 = 1;
printk("pci: failed tbia test; workaround available\n");
} else {
printk("pci: passed tbia test\n");
}
}
/* Fourth, verify the TLB snoops the EV5's caches when
doing a tlb fill. */
data0 = 0x5adda15e;
page[0] = data0;
arena->ptes[4] = pte0;
mcheck_expected(0) = 1;
mcheck_taken(0) = 0;
mb();
temp = cia_readl(bus_addr + 4*PAGE_SIZE);
mb();
mcheck_expected(0) = 0;
mb();
if (mcheck_taken(0)) {
printk("pci: failed pte write cache snoop test (mcheck)\n");
goto failed;
}
if (temp != data0) {
printk("pci: failed pte write cache snoop test "
"(%#x != %#x)\n", temp, data0);
goto failed;
}
printk("pci: passed pte write cache snoop test\n");
/* Fifth, verify that a previously invalid PTE entry gets
filled from the page table. */
data0 = 0xabcdef12;
page[0] = data0;
arena->ptes[5] = pte0;
mcheck_expected(0) = 1;
mcheck_taken(0) = 0;
mb();
temp = cia_readl(bus_addr + 5*PAGE_SIZE);
mb();
mcheck_expected(0) = 0;
mb();
if (mcheck_taken(0)) {
printk("pci: failed valid tag invalid pte reload test "
"(mcheck; workaround available)\n");
/* Work around this bug by aligning new allocations
on 4 page boundaries. */
arena->align_entry = 4;
} else if (temp != data0) {
printk("pci: failed valid tag invalid pte reload test "
"(%#x != %#x)\n", temp, data0);
goto failed;
} else {
printk("pci: passed valid tag invalid pte reload test\n");
}
/* Sixth, verify machine checks are working. Test invalid
pte under the same valid tag as we used above. */
mcheck_expected(0) = 1;
mcheck_taken(0) = 0;
mb();
temp = cia_readl(bus_addr + 6*PAGE_SIZE);
mb();
mcheck_expected(0) = 0;
mb();
printk("pci: %s pci machine check test\n",
mcheck_taken(0) ? "passed" : "failed");
/* Clean up after the tests. */
arena->ptes[4] = 0;
arena->ptes[5] = 0;
if (use_tbia_try2) {
alpha_mv.mv_pci_tbi = cia_pci_tbi_try2;
/* Tags 0-3 must be disabled if we use this workaraund. */
wmb();
*(vip)CIA_IOC_TB_TAGn(0) = 2;
*(vip)CIA_IOC_TB_TAGn(1) = 2;
*(vip)CIA_IOC_TB_TAGn(2) = 2;
*(vip)CIA_IOC_TB_TAGn(3) = 2;
printk("pci: tbia workaround enabled\n");
}
alpha_mv.mv_pci_tbi(arena->hose, 0, -1);
exit:
/* unmap the bus addr */
cia_iounmap(bus_addr);
/* Restore normal PCI operation. */
mb();
*(vip)CIA_IOC_CIA_CTRL = ctrl;
mb();
*(vip)CIA_IOC_CIA_CTRL;
mb();
return;
failed:
printk("pci: disabling sg translation window\n");
*(vip)CIA_IOC_PCI_W0_BASE = 0;
*(vip)CIA_IOC_PCI_W1_BASE = 0;
pci_isa_hose->sg_isa = NULL;
alpha_mv.mv_pci_tbi = NULL;
goto exit;
}
#if defined(ALPHA_RESTORE_SRM_SETUP)
/* Save CIA configuration data as the console had it set up. */
struct
{
unsigned int hae_mem;
unsigned int hae_io;
unsigned int pci_dac_offset;
unsigned int err_mask;
unsigned int cia_ctrl;
unsigned int cia_cnfg;
struct {
unsigned int w_base;
unsigned int w_mask;
unsigned int t_base;
} window[4];
} saved_config __attribute((common));
void
cia_save_srm_settings(int is_pyxis)
{
int i;
/* Save some important registers. */
saved_config.err_mask = *(vip)CIA_IOC_ERR_MASK;
saved_config.cia_ctrl = *(vip)CIA_IOC_CIA_CTRL;
saved_config.hae_mem = *(vip)CIA_IOC_HAE_MEM;
saved_config.hae_io = *(vip)CIA_IOC_HAE_IO;
saved_config.pci_dac_offset = *(vip)CIA_IOC_PCI_W_DAC;
if (is_pyxis)
saved_config.cia_cnfg = *(vip)CIA_IOC_CIA_CNFG;
else
saved_config.cia_cnfg = 0;
/* Save DMA windows configuration. */
for (i = 0; i < 4; i++) {
saved_config.window[i].w_base = *(vip)CIA_IOC_PCI_Wn_BASE(i);
saved_config.window[i].w_mask = *(vip)CIA_IOC_PCI_Wn_MASK(i);
saved_config.window[i].t_base = *(vip)CIA_IOC_PCI_Tn_BASE(i);
}
mb();
}
void
cia_restore_srm_settings(void)
{
int i;
for (i = 0; i < 4; i++) {
*(vip)CIA_IOC_PCI_Wn_BASE(i) = saved_config.window[i].w_base;
*(vip)CIA_IOC_PCI_Wn_MASK(i) = saved_config.window[i].w_mask;
*(vip)CIA_IOC_PCI_Tn_BASE(i) = saved_config.window[i].t_base;
}
*(vip)CIA_IOC_HAE_MEM = saved_config.hae_mem;
*(vip)CIA_IOC_HAE_IO = saved_config.hae_io;
*(vip)CIA_IOC_PCI_W_DAC = saved_config.pci_dac_offset;
*(vip)CIA_IOC_ERR_MASK = saved_config.err_mask;
*(vip)CIA_IOC_CIA_CTRL = saved_config.cia_ctrl;
if (saved_config.cia_cnfg) /* Must be pyxis. */
*(vip)CIA_IOC_CIA_CNFG = saved_config.cia_cnfg;
mb();
}
#else /* ALPHA_RESTORE_SRM_SETUP */
#define cia_save_srm_settings(p) do {} while (0)
#define cia_restore_srm_settings() do {} while (0)
#endif /* ALPHA_RESTORE_SRM_SETUP */
static void __init
do_init_arch(int is_pyxis)
{
struct pci_controller *hose;
int temp, cia_rev, tbia_window;
cia_rev = *(vip)CIA_IOC_CIA_REV & CIA_REV_MASK;
printk("pci: cia revision %d%s\n",
cia_rev, is_pyxis ? " (pyxis)" : "");
if (alpha_using_srm)
cia_save_srm_settings(is_pyxis);
/* Set up error reporting. */
temp = *(vip)CIA_IOC_ERR_MASK;
temp &= ~(CIA_ERR_CPU_PE | CIA_ERR_MEM_NEM | CIA_ERR_PA_PTE_INV
| CIA_ERR_RCVD_MAS_ABT | CIA_ERR_RCVD_TAR_ABT);
*(vip)CIA_IOC_ERR_MASK = temp;
/* Clear all currently pending errors. */
temp = *(vip)CIA_IOC_CIA_ERR;
*(vip)CIA_IOC_CIA_ERR = temp;
/* Turn on mchecks. */
temp = *(vip)CIA_IOC_CIA_CTRL;
temp |= CIA_CTRL_FILL_ERR_EN | CIA_CTRL_MCHK_ERR_EN;
*(vip)CIA_IOC_CIA_CTRL = temp;
/* Clear the CFG register, which gets used for PCI config space
accesses. That is the way we want to use it, and we do not
want to depend on what ARC or SRM might have left behind. */
*(vip)CIA_IOC_CFG = 0;
/* Zero the HAEs. */
*(vip)CIA_IOC_HAE_MEM = 0;
*(vip)CIA_IOC_HAE_IO = 0;
/* For PYXIS, we always use BWX bus and i/o accesses. To that end,
make sure they're enabled on the controller. At the same time,
enable the monster window. */
if (is_pyxis) {
temp = *(vip)CIA_IOC_CIA_CNFG;
temp |= CIA_CNFG_IOA_BWEN | CIA_CNFG_PCI_MWEN;
*(vip)CIA_IOC_CIA_CNFG = temp;
}
/* Synchronize with all previous changes. */
mb();
*(vip)CIA_IOC_CIA_REV;
/*
* Create our single hose.
*/
pci_isa_hose = hose = alloc_pci_controller();
hose->io_space = &ioport_resource;
hose->mem_space = &iomem_resource;
hose->index = 0;
if (! is_pyxis) {
struct resource *hae_mem = alloc_resource();
hose->mem_space = hae_mem;
hae_mem->start = 0;
hae_mem->end = CIA_MEM_R1_MASK;
hae_mem->name = pci_hae0_name;
hae_mem->flags = IORESOURCE_MEM;
if (request_resource(&iomem_resource, hae_mem) < 0)
printk(KERN_ERR "Failed to request HAE_MEM\n");
hose->sparse_mem_base = CIA_SPARSE_MEM - IDENT_ADDR;
hose->dense_mem_base = CIA_DENSE_MEM - IDENT_ADDR;
hose->sparse_io_base = CIA_IO - IDENT_ADDR;
hose->dense_io_base = 0;
} else {
hose->sparse_mem_base = 0;
hose->dense_mem_base = CIA_BW_MEM - IDENT_ADDR;
hose->sparse_io_base = 0;
hose->dense_io_base = CIA_BW_IO - IDENT_ADDR;
}
/*
* Set up the PCI to main memory translation windows.
*
* Window 0 is S/G 8MB at 8MB (for isa)
* Window 1 is S/G 1MB at 768MB (for tbia) (unused for CIA rev 1)
* Window 2 is direct access 2GB at 2GB
* Window 3 is DAC access 4GB at 8GB (or S/G for tbia if CIA rev 1)
*
* ??? NetBSD hints that page tables must be aligned to 32K,
* possibly due to a hardware bug. This is over-aligned
* from the 8K alignment one would expect for an 8MB window.
* No description of what revisions affected.
*/
hose->sg_pci = NULL;
hose->sg_isa = iommu_arena_new(hose, 0x00800000, 0x00800000, 32768);
__direct_map_base = 0x80000000;
__direct_map_size = 0x80000000;
*(vip)CIA_IOC_PCI_W0_BASE = hose->sg_isa->dma_base | 3;
*(vip)CIA_IOC_PCI_W0_MASK = (hose->sg_isa->size - 1) & 0xfff00000;
*(vip)CIA_IOC_PCI_T0_BASE = virt_to_phys(hose->sg_isa->ptes) >> 2;
*(vip)CIA_IOC_PCI_W2_BASE = __direct_map_base | 1;
*(vip)CIA_IOC_PCI_W2_MASK = (__direct_map_size - 1) & 0xfff00000;
*(vip)CIA_IOC_PCI_T2_BASE = 0 >> 2;
/* On PYXIS we have the monster window, selected by bit 40, so
there is no need for window3 to be enabled.
On CIA, we don't have true arbitrary addressing -- bits <39:32>
are compared against W_DAC. We can, however, directly map 4GB,
which is better than before. However, due to assumptions made
elsewhere, we should not claim that we support DAC unless that
4GB covers all of physical memory.
On CIA rev 1, apparently W1 and W2 can't be used for SG.
At least, there are reports that it doesn't work for Alcor.
In that case, we have no choice but to use W3 for the TBIA
workaround, which means we can't use DAC at all. */
tbia_window = 1;
if (is_pyxis) {
*(vip)CIA_IOC_PCI_W3_BASE = 0;
} else if (cia_rev == 1) {
*(vip)CIA_IOC_PCI_W1_BASE = 0;
tbia_window = 3;
} else if (max_low_pfn > (0x100000000UL >> PAGE_SHIFT)) {
*(vip)CIA_IOC_PCI_W3_BASE = 0;
} else {
*(vip)CIA_IOC_PCI_W3_BASE = 0x00000000 | 1 | 8;
*(vip)CIA_IOC_PCI_W3_MASK = 0xfff00000;
*(vip)CIA_IOC_PCI_T3_BASE = 0 >> 2;
alpha_mv.pci_dac_offset = 0x200000000UL;
*(vip)CIA_IOC_PCI_W_DAC = alpha_mv.pci_dac_offset >> 32;
}
/* Prepare workaround for apparently broken tbia. */
cia_prepare_tbia_workaround(tbia_window);
}
void __init
cia_init_arch(void)
{
do_init_arch(0);
}
void __init
pyxis_init_arch(void)
{
/* On pyxis machines we can precisely calculate the
CPU clock frequency using pyxis real time counter.
It's especially useful for SX164 with broken RTC.
Both CPU and chipset are driven by the single 16.666M
or 16.667M crystal oscillator. PYXIS_RT_COUNT clock is
66.66 MHz. -ink */
unsigned int cc0, cc1;
unsigned long pyxis_cc;
__asm__ __volatile__ ("rpcc %0" : "=r"(cc0));
pyxis_cc = *(vulp)PYXIS_RT_COUNT;
do { } while(*(vulp)PYXIS_RT_COUNT - pyxis_cc < 4096);
__asm__ __volatile__ ("rpcc %0" : "=r"(cc1));
cc1 -= cc0;
hwrpb->cycle_freq = ((cc1 >> 11) * 100000000UL) / 3;
hwrpb_update_checksum(hwrpb);
do_init_arch(1);
}
void
cia_kill_arch(int mode)
{
if (alpha_using_srm)
cia_restore_srm_settings();
}
void __init
cia_init_pci(void)
{
/* Must delay this from init_arch, as we need machine checks. */
verify_tb_operation();
common_init_pci();
}
static inline void
cia_pci_clr_err(void)
{
int jd;
jd = *(vip)CIA_IOC_CIA_ERR;
*(vip)CIA_IOC_CIA_ERR = jd;
mb();
*(vip)CIA_IOC_CIA_ERR; /* re-read to force write. */
}
#ifdef CONFIG_VERBOSE_MCHECK
static void
cia_decode_pci_error(struct el_CIA_sysdata_mcheck *cia, const char *msg)
{
static const char * const pci_cmd_desc[16] = {
"Interrupt Acknowledge", "Special Cycle", "I/O Read",
"I/O Write", "Reserved 0x4", "Reserved 0x5", "Memory Read",
"Memory Write", "Reserved 0x8", "Reserved 0x9",
"Configuration Read", "Configuration Write",
"Memory Read Multiple", "Dual Address Cycle",
"Memory Read Line", "Memory Write and Invalidate"
};
if (cia->cia_err & (CIA_ERR_COR_ERR
| CIA_ERR_UN_COR_ERR
| CIA_ERR_MEM_NEM
| CIA_ERR_PA_PTE_INV)) {
static const char * const window_desc[6] = {
"No window active", "Window 0 hit", "Window 1 hit",
"Window 2 hit", "Window 3 hit", "Monster window hit"
};
const char *window;
const char *cmd;
unsigned long addr, tmp;
int lock, dac;
cmd = pci_cmd_desc[cia->pci_err0 & 0x7];
lock = (cia->pci_err0 >> 4) & 1;
dac = (cia->pci_err0 >> 5) & 1;
tmp = (cia->pci_err0 >> 8) & 0x1F;
tmp = ffs(tmp);
window = window_desc[tmp];
addr = cia->pci_err1;
if (dac) {
tmp = *(vip)CIA_IOC_PCI_W_DAC & 0xFFUL;
addr |= tmp << 32;
}
printk(KERN_CRIT "CIA machine check: %s\n", msg);
printk(KERN_CRIT " DMA command: %s\n", cmd);
printk(KERN_CRIT " PCI address: %#010lx\n", addr);
printk(KERN_CRIT " %s, Lock: %d, DAC: %d\n",
window, lock, dac);
} else if (cia->cia_err & (CIA_ERR_PERR
| CIA_ERR_PCI_ADDR_PE
| CIA_ERR_RCVD_MAS_ABT
| CIA_ERR_RCVD_TAR_ABT
| CIA_ERR_IOA_TIMEOUT)) {
static const char * const master_st_desc[16] = {
"Idle", "Drive bus", "Address step cycle",
"Address cycle", "Data cycle", "Last read data cycle",
"Last write data cycle", "Read stop cycle",
"Write stop cycle", "Read turnaround cycle",
"Write turnaround cycle", "Reserved 0xB",
"Reserved 0xC", "Reserved 0xD", "Reserved 0xE",
"Unknown state"
};
static const char * const target_st_desc[16] = {
"Idle", "Busy", "Read data cycle", "Write data cycle",
"Read stop cycle", "Write stop cycle",
"Read turnaround cycle", "Write turnaround cycle",
"Read wait cycle", "Write wait cycle",
"Reserved 0xA", "Reserved 0xB", "Reserved 0xC",
"Reserved 0xD", "Reserved 0xE", "Unknown state"
};
const char *cmd;
const char *master, *target;
unsigned long addr, tmp;
int dac;
master = master_st_desc[(cia->pci_err0 >> 16) & 0xF];
target = target_st_desc[(cia->pci_err0 >> 20) & 0xF];
cmd = pci_cmd_desc[(cia->pci_err0 >> 24) & 0xF];
dac = (cia->pci_err0 >> 28) & 1;
addr = cia->pci_err2;
if (dac) {
tmp = *(volatile int *)CIA_IOC_PCI_W_DAC & 0xFFUL;
addr |= tmp << 32;
}
printk(KERN_CRIT "CIA machine check: %s\n", msg);
printk(KERN_CRIT " PCI command: %s\n", cmd);
printk(KERN_CRIT " Master state: %s, Target state: %s\n",
master, target);
printk(KERN_CRIT " PCI address: %#010lx, DAC: %d\n",
addr, dac);
} else {
printk(KERN_CRIT "CIA machine check: %s\n", msg);
printk(KERN_CRIT " Unknown PCI error\n");
printk(KERN_CRIT " PCI_ERR0 = %#08lx", cia->pci_err0);
printk(KERN_CRIT " PCI_ERR1 = %#08lx", cia->pci_err1);
printk(KERN_CRIT " PCI_ERR2 = %#08lx", cia->pci_err2);
}
}
static void
cia_decode_mem_error(struct el_CIA_sysdata_mcheck *cia, const char *msg)
{
unsigned long mem_port_addr;
unsigned long mem_port_mask;
const char *mem_port_cmd;
const char *seq_state;
const char *set_select;
unsigned long tmp;
/* If this is a DMA command, also decode the PCI bits. */
if ((cia->mem_err1 >> 20) & 1)
cia_decode_pci_error(cia, msg);
else
printk(KERN_CRIT "CIA machine check: %s\n", msg);
mem_port_addr = cia->mem_err0 & 0xfffffff0;
mem_port_addr |= (cia->mem_err1 & 0x83UL) << 32;
mem_port_mask = (cia->mem_err1 >> 12) & 0xF;
tmp = (cia->mem_err1 >> 8) & 0xF;
tmp |= ((cia->mem_err1 >> 20) & 1) << 4;
if ((tmp & 0x1E) == 0x06)
mem_port_cmd = "WRITE BLOCK or WRITE BLOCK LOCK";
else if ((tmp & 0x1C) == 0x08)
mem_port_cmd = "READ MISS or READ MISS MODIFY";
else if (tmp == 0x1C)
mem_port_cmd = "BC VICTIM";
else if ((tmp & 0x1E) == 0x0E)
mem_port_cmd = "READ MISS MODIFY";
else if ((tmp & 0x1C) == 0x18)
mem_port_cmd = "DMA READ or DMA READ MODIFY";
else if ((tmp & 0x1E) == 0x12)
mem_port_cmd = "DMA WRITE";
else
mem_port_cmd = "Unknown";
tmp = (cia->mem_err1 >> 16) & 0xF;
switch (tmp) {
case 0x0:
seq_state = "Idle";
break;
case 0x1:
seq_state = "DMA READ or DMA WRITE";
break;
case 0x2: case 0x3:
seq_state = "READ MISS (or READ MISS MODIFY) with victim";
break;
case 0x4: case 0x5: case 0x6:
seq_state = "READ MISS (or READ MISS MODIFY) with no victim";
break;
case 0x8: case 0x9: case 0xB:
seq_state = "Refresh";
break;
case 0xC:
seq_state = "Idle, waiting for DMA pending read";
break;
case 0xE: case 0xF:
seq_state = "Idle, ras precharge";
break;
default:
seq_state = "Unknown";
break;
}
tmp = (cia->mem_err1 >> 24) & 0x1F;
switch (tmp) {
case 0x00: set_select = "Set 0 selected"; break;
case 0x01: set_select = "Set 1 selected"; break;
case 0x02: set_select = "Set 2 selected"; break;
case 0x03: set_select = "Set 3 selected"; break;
case 0x04: set_select = "Set 4 selected"; break;
case 0x05: set_select = "Set 5 selected"; break;
case 0x06: set_select = "Set 6 selected"; break;
case 0x07: set_select = "Set 7 selected"; break;
case 0x08: set_select = "Set 8 selected"; break;
case 0x09: set_select = "Set 9 selected"; break;
case 0x0A: set_select = "Set A selected"; break;
case 0x0B: set_select = "Set B selected"; break;
case 0x0C: set_select = "Set C selected"; break;
case 0x0D: set_select = "Set D selected"; break;
case 0x0E: set_select = "Set E selected"; break;
case 0x0F: set_select = "Set F selected"; break;
case 0x10: set_select = "No set selected"; break;
case 0x1F: set_select = "Refresh cycle"; break;
default: set_select = "Unknown"; break;
}
printk(KERN_CRIT " Memory port command: %s\n", mem_port_cmd);
printk(KERN_CRIT " Memory port address: %#010lx, mask: %#lx\n",
mem_port_addr, mem_port_mask);
printk(KERN_CRIT " Memory sequencer state: %s\n", seq_state);
printk(KERN_CRIT " Memory set: %s\n", set_select);
}
static void
cia_decode_ecc_error(struct el_CIA_sysdata_mcheck *cia, const char *msg)
{
long syn;
long i;
const char *fmt;
cia_decode_mem_error(cia, msg);
syn = cia->cia_syn & 0xff;
if (syn == (syn & -syn)) {
fmt = KERN_CRIT " ECC syndrome %#x -- check bit %d\n";
i = ffs(syn) - 1;
} else {
static unsigned char const data_bit[64] = {
0xCE, 0xCB, 0xD3, 0xD5,
0xD6, 0xD9, 0xDA, 0xDC,
0x23, 0x25, 0x26, 0x29,
0x2A, 0x2C, 0x31, 0x34,
0x0E, 0x0B, 0x13, 0x15,
0x16, 0x19, 0x1A, 0x1C,
0xE3, 0xE5, 0xE6, 0xE9,
0xEA, 0xEC, 0xF1, 0xF4,
0x4F, 0x4A, 0x52, 0x54,
0x57, 0x58, 0x5B, 0x5D,
0xA2, 0xA4, 0xA7, 0xA8,
0xAB, 0xAD, 0xB0, 0xB5,
0x8F, 0x8A, 0x92, 0x94,
0x97, 0x98, 0x9B, 0x9D,
0x62, 0x64, 0x67, 0x68,
0x6B, 0x6D, 0x70, 0x75
};
for (i = 0; i < 64; ++i)
if (data_bit[i] == syn)
break;
if (i < 64)
fmt = KERN_CRIT " ECC syndrome %#x -- data bit %d\n";
else
fmt = KERN_CRIT " ECC syndrome %#x -- unknown bit\n";
}
printk (fmt, syn, i);
}
static void
cia_decode_parity_error(struct el_CIA_sysdata_mcheck *cia)
{
static const char * const cmd_desc[16] = {
"NOP", "LOCK", "FETCH", "FETCH_M", "MEMORY BARRIER",
"SET DIRTY", "WRITE BLOCK", "WRITE BLOCK LOCK",
"READ MISS0", "READ MISS1", "READ MISS MOD0",
"READ MISS MOD1", "BCACHE VICTIM", "Spare",
"READ MISS MOD STC0", "READ MISS MOD STC1"
};
unsigned long addr;
unsigned long mask;
const char *cmd;
int par;
addr = cia->cpu_err0 & 0xfffffff0;
addr |= (cia->cpu_err1 & 0x83UL) << 32;
cmd = cmd_desc[(cia->cpu_err1 >> 8) & 0xF];
mask = (cia->cpu_err1 >> 12) & 0xF;
par = (cia->cpu_err1 >> 21) & 1;
printk(KERN_CRIT "CIA machine check: System bus parity error\n");
printk(KERN_CRIT " Command: %s, Parity bit: %d\n", cmd, par);
printk(KERN_CRIT " Address: %#010lx, Mask: %#lx\n", addr, mask);
}
#endif /* CONFIG_VERBOSE_MCHECK */
static int
cia_decode_mchk(unsigned long la_ptr)
{
struct el_common *com;
struct el_CIA_sysdata_mcheck *cia;
com = (void *)la_ptr;
cia = (void *)(la_ptr + com->sys_offset);
if ((cia->cia_err & CIA_ERR_VALID) == 0)
return 0;
#ifdef CONFIG_VERBOSE_MCHECK
if (!alpha_verbose_mcheck)
return 1;
switch (ffs(cia->cia_err & 0xfff) - 1) {
case 0: /* CIA_ERR_COR_ERR */
cia_decode_ecc_error(cia, "Corrected ECC error");
break;
case 1: /* CIA_ERR_UN_COR_ERR */
cia_decode_ecc_error(cia, "Uncorrected ECC error");
break;
case 2: /* CIA_ERR_CPU_PE */
cia_decode_parity_error(cia);
break;
case 3: /* CIA_ERR_MEM_NEM */
cia_decode_mem_error(cia, "Access to nonexistent memory");
break;
case 4: /* CIA_ERR_PCI_SERR */
cia_decode_pci_error(cia, "PCI bus system error");
break;
case 5: /* CIA_ERR_PERR */
cia_decode_pci_error(cia, "PCI data parity error");
break;
case 6: /* CIA_ERR_PCI_ADDR_PE */
cia_decode_pci_error(cia, "PCI address parity error");
break;
case 7: /* CIA_ERR_RCVD_MAS_ABT */
cia_decode_pci_error(cia, "PCI master abort");
break;
case 8: /* CIA_ERR_RCVD_TAR_ABT */
cia_decode_pci_error(cia, "PCI target abort");
break;
case 9: /* CIA_ERR_PA_PTE_INV */
cia_decode_pci_error(cia, "PCI invalid PTE");
break;
case 10: /* CIA_ERR_FROM_WRT_ERR */
cia_decode_mem_error(cia, "Write to flash ROM attempted");
break;
case 11: /* CIA_ERR_IOA_TIMEOUT */
cia_decode_pci_error(cia, "I/O timeout");
break;
}
if (cia->cia_err & CIA_ERR_LOST_CORR_ERR)
printk(KERN_CRIT "CIA lost machine check: "
"Correctable ECC error\n");
if (cia->cia_err & CIA_ERR_LOST_UN_CORR_ERR)
printk(KERN_CRIT "CIA lost machine check: "
"Uncorrectable ECC error\n");
if (cia->cia_err & CIA_ERR_LOST_CPU_PE)
printk(KERN_CRIT "CIA lost machine check: "
"System bus parity error\n");
if (cia->cia_err & CIA_ERR_LOST_MEM_NEM)
printk(KERN_CRIT "CIA lost machine check: "
"Access to nonexistent memory\n");
if (cia->cia_err & CIA_ERR_LOST_PERR)
printk(KERN_CRIT "CIA lost machine check: "
"PCI data parity error\n");
if (cia->cia_err & CIA_ERR_LOST_PCI_ADDR_PE)
printk(KERN_CRIT "CIA lost machine check: "
"PCI address parity error\n");
if (cia->cia_err & CIA_ERR_LOST_RCVD_MAS_ABT)
printk(KERN_CRIT "CIA lost machine check: "
"PCI master abort\n");
if (cia->cia_err & CIA_ERR_LOST_RCVD_TAR_ABT)
printk(KERN_CRIT "CIA lost machine check: "
"PCI target abort\n");
if (cia->cia_err & CIA_ERR_LOST_PA_PTE_INV)
printk(KERN_CRIT "CIA lost machine check: "
"PCI invalid PTE\n");
if (cia->cia_err & CIA_ERR_LOST_FROM_WRT_ERR)
printk(KERN_CRIT "CIA lost machine check: "
"Write to flash ROM attempted\n");
if (cia->cia_err & CIA_ERR_LOST_IOA_TIMEOUT)
printk(KERN_CRIT "CIA lost machine check: "
"I/O timeout\n");
#endif /* CONFIG_VERBOSE_MCHECK */
return 1;
}
void
cia_machine_check(unsigned long vector, unsigned long la_ptr)
{
int expected;
/* Clear the error before any reporting. */
mb();
mb(); /* magic */
draina();
cia_pci_clr_err();
wrmces(rdmces()); /* reset machine check pending flag. */
mb();
expected = mcheck_expected(0);
if (!expected && vector == 0x660)
expected = cia_decode_mchk(la_ptr);
process_mcheck_info(vector, la_ptr, "CIA", expected);
}