linux/drivers/net/ethernet/mellanox/mlx4/cmd.c

1483 lines
37 KiB
C
Raw Normal View History

/*
* Copyright (c) 2004, 2005 Topspin Communications. All rights reserved.
* Copyright (c) 2005, 2006, 2007, 2008 Mellanox Technologies. All rights reserved.
* Copyright (c) 2005, 2006, 2007 Cisco Systems, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/sched.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/pci.h>
#include <linux/errno.h>
#include <linux/mlx4/cmd.h>
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
#include <linux/semaphore.h>
#include <asm/io.h>
#include "mlx4.h"
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
#include "fw.h"
#define CMD_POLL_TOKEN 0xffff
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
#define INBOX_MASK 0xffffffffffffff00ULL
#define CMD_CHAN_VER 1
#define CMD_CHAN_IF_REV 1
enum {
/* command completed successfully: */
CMD_STAT_OK = 0x00,
/* Internal error (such as a bus error) occurred while processing command: */
CMD_STAT_INTERNAL_ERR = 0x01,
/* Operation/command not supported or opcode modifier not supported: */
CMD_STAT_BAD_OP = 0x02,
/* Parameter not supported or parameter out of range: */
CMD_STAT_BAD_PARAM = 0x03,
/* System not enabled or bad system state: */
CMD_STAT_BAD_SYS_STATE = 0x04,
/* Attempt to access reserved or unallocaterd resource: */
CMD_STAT_BAD_RESOURCE = 0x05,
/* Requested resource is currently executing a command, or is otherwise busy: */
CMD_STAT_RESOURCE_BUSY = 0x06,
/* Required capability exceeds device limits: */
CMD_STAT_EXCEED_LIM = 0x08,
/* Resource is not in the appropriate state or ownership: */
CMD_STAT_BAD_RES_STATE = 0x09,
/* Index out of range: */
CMD_STAT_BAD_INDEX = 0x0a,
/* FW image corrupted: */
CMD_STAT_BAD_NVMEM = 0x0b,
/* Error in ICM mapping (e.g. not enough auxiliary ICM pages to execute command): */
CMD_STAT_ICM_ERROR = 0x0c,
/* Attempt to modify a QP/EE which is not in the presumed state: */
CMD_STAT_BAD_QP_STATE = 0x10,
/* Bad segment parameters (Address/Size): */
CMD_STAT_BAD_SEG_PARAM = 0x20,
/* Memory Region has Memory Windows bound to: */
CMD_STAT_REG_BOUND = 0x21,
/* HCA local attached memory not present: */
CMD_STAT_LAM_NOT_PRE = 0x22,
/* Bad management packet (silently discarded): */
CMD_STAT_BAD_PKT = 0x30,
/* More outstanding CQEs in CQ than new CQ size: */
CMD_STAT_BAD_SIZE = 0x40,
/* Multi Function device support required: */
CMD_STAT_MULTI_FUNC_REQ = 0x50,
};
enum {
HCR_IN_PARAM_OFFSET = 0x00,
HCR_IN_MODIFIER_OFFSET = 0x08,
HCR_OUT_PARAM_OFFSET = 0x0c,
HCR_TOKEN_OFFSET = 0x14,
HCR_STATUS_OFFSET = 0x18,
HCR_OPMOD_SHIFT = 12,
HCR_T_BIT = 21,
HCR_E_BIT = 22,
HCR_GO_BIT = 23
};
enum {
GO_BIT_TIMEOUT_MSECS = 10000
};
struct mlx4_cmd_context {
struct completion done;
int result;
int next;
u64 out_param;
u16 token;
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
u8 fw_status;
};
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
static int mlx4_master_process_vhcr(struct mlx4_dev *dev, int slave,
struct mlx4_vhcr_cmd *in_vhcr);
static int mlx4_status_to_errno(u8 status)
{
static const int trans_table[] = {
[CMD_STAT_INTERNAL_ERR] = -EIO,
[CMD_STAT_BAD_OP] = -EPERM,
[CMD_STAT_BAD_PARAM] = -EINVAL,
[CMD_STAT_BAD_SYS_STATE] = -ENXIO,
[CMD_STAT_BAD_RESOURCE] = -EBADF,
[CMD_STAT_RESOURCE_BUSY] = -EBUSY,
[CMD_STAT_EXCEED_LIM] = -ENOMEM,
[CMD_STAT_BAD_RES_STATE] = -EBADF,
[CMD_STAT_BAD_INDEX] = -EBADF,
[CMD_STAT_BAD_NVMEM] = -EFAULT,
[CMD_STAT_ICM_ERROR] = -ENFILE,
[CMD_STAT_BAD_QP_STATE] = -EINVAL,
[CMD_STAT_BAD_SEG_PARAM] = -EFAULT,
[CMD_STAT_REG_BOUND] = -EBUSY,
[CMD_STAT_LAM_NOT_PRE] = -EAGAIN,
[CMD_STAT_BAD_PKT] = -EINVAL,
[CMD_STAT_BAD_SIZE] = -ENOMEM,
[CMD_STAT_MULTI_FUNC_REQ] = -EACCES,
};
if (status >= ARRAY_SIZE(trans_table) ||
(status != CMD_STAT_OK && trans_table[status] == 0))
return -EIO;
return trans_table[status];
}
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
static int comm_pending(struct mlx4_dev *dev)
{
struct mlx4_priv *priv = mlx4_priv(dev);
u32 status = readl(&priv->mfunc.comm->slave_read);
return (swab32(status) >> 31) != priv->cmd.comm_toggle;
}
static void mlx4_comm_cmd_post(struct mlx4_dev *dev, u8 cmd, u16 param)
{
struct mlx4_priv *priv = mlx4_priv(dev);
u32 val;
priv->cmd.comm_toggle ^= 1;
val = param | (cmd << 16) | (priv->cmd.comm_toggle << 31);
__raw_writel((__force u32) cpu_to_be32(val),
&priv->mfunc.comm->slave_write);
mmiowb();
}
static int mlx4_comm_cmd_poll(struct mlx4_dev *dev, u8 cmd, u16 param,
unsigned long timeout)
{
struct mlx4_priv *priv = mlx4_priv(dev);
unsigned long end;
int err = 0;
int ret_from_pending = 0;
/* First, verify that the master reports correct status */
if (comm_pending(dev)) {
mlx4_warn(dev, "Communication channel is not idle."
"my toggle is %d (cmd:0x%x)\n",
priv->cmd.comm_toggle, cmd);
return -EAGAIN;
}
/* Write command */
down(&priv->cmd.poll_sem);
mlx4_comm_cmd_post(dev, cmd, param);
end = msecs_to_jiffies(timeout) + jiffies;
while (comm_pending(dev) && time_before(jiffies, end))
cond_resched();
ret_from_pending = comm_pending(dev);
if (ret_from_pending) {
/* check if the slave is trying to boot in the middle of
* FLR process. The only non-zero result in the RESET command
* is MLX4_DELAY_RESET_SLAVE*/
if ((MLX4_COMM_CMD_RESET == cmd)) {
mlx4_warn(dev, "Got slave FLRed from Communication"
" channel (ret:0x%x)\n", ret_from_pending);
err = MLX4_DELAY_RESET_SLAVE;
} else {
mlx4_warn(dev, "Communication channel timed out\n");
err = -ETIMEDOUT;
}
}
up(&priv->cmd.poll_sem);
return err;
}
static int mlx4_comm_cmd_wait(struct mlx4_dev *dev, u8 op,
u16 param, unsigned long timeout)
{
struct mlx4_cmd *cmd = &mlx4_priv(dev)->cmd;
struct mlx4_cmd_context *context;
int err = 0;
down(&cmd->event_sem);
spin_lock(&cmd->context_lock);
BUG_ON(cmd->free_head < 0);
context = &cmd->context[cmd->free_head];
context->token += cmd->token_mask + 1;
cmd->free_head = context->next;
spin_unlock(&cmd->context_lock);
init_completion(&context->done);
mlx4_comm_cmd_post(dev, op, param);
if (!wait_for_completion_timeout(&context->done,
msecs_to_jiffies(timeout))) {
err = -EBUSY;
goto out;
}
err = context->result;
if (err && context->fw_status != CMD_STAT_MULTI_FUNC_REQ) {
mlx4_err(dev, "command 0x%x failed: fw status = 0x%x\n",
op, context->fw_status);
goto out;
}
out:
spin_lock(&cmd->context_lock);
context->next = cmd->free_head;
cmd->free_head = context - cmd->context;
spin_unlock(&cmd->context_lock);
up(&cmd->event_sem);
return err;
}
static int mlx4_comm_cmd(struct mlx4_dev *dev, u8 cmd, u16 param,
unsigned long timeout)
{
if (mlx4_priv(dev)->cmd.use_events)
return mlx4_comm_cmd_wait(dev, cmd, param, timeout);
return mlx4_comm_cmd_poll(dev, cmd, param, timeout);
}
static int cmd_pending(struct mlx4_dev *dev)
{
u32 status = readl(mlx4_priv(dev)->cmd.hcr + HCR_STATUS_OFFSET);
return (status & swab32(1 << HCR_GO_BIT)) ||
(mlx4_priv(dev)->cmd.toggle ==
!!(status & swab32(1 << HCR_T_BIT)));
}
static int mlx4_cmd_post(struct mlx4_dev *dev, u64 in_param, u64 out_param,
u32 in_modifier, u8 op_modifier, u16 op, u16 token,
int event)
{
struct mlx4_cmd *cmd = &mlx4_priv(dev)->cmd;
u32 __iomem *hcr = cmd->hcr;
int ret = -EAGAIN;
unsigned long end;
mutex_lock(&cmd->hcr_mutex);
end = jiffies;
if (event)
end += msecs_to_jiffies(GO_BIT_TIMEOUT_MSECS);
while (cmd_pending(dev)) {
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
if (time_after_eq(jiffies, end)) {
mlx4_err(dev, "%s:cmd_pending failed\n", __func__);
goto out;
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
}
cond_resched();
}
/*
* We use writel (instead of something like memcpy_toio)
* because writes of less than 32 bits to the HCR don't work
* (and some architectures such as ia64 implement memcpy_toio
* in terms of writeb).
*/
__raw_writel((__force u32) cpu_to_be32(in_param >> 32), hcr + 0);
__raw_writel((__force u32) cpu_to_be32(in_param & 0xfffffffful), hcr + 1);
__raw_writel((__force u32) cpu_to_be32(in_modifier), hcr + 2);
__raw_writel((__force u32) cpu_to_be32(out_param >> 32), hcr + 3);
__raw_writel((__force u32) cpu_to_be32(out_param & 0xfffffffful), hcr + 4);
__raw_writel((__force u32) cpu_to_be32(token << 16), hcr + 5);
/* __raw_writel may not order writes. */
wmb();
__raw_writel((__force u32) cpu_to_be32((1 << HCR_GO_BIT) |
(cmd->toggle << HCR_T_BIT) |
(event ? (1 << HCR_E_BIT) : 0) |
(op_modifier << HCR_OPMOD_SHIFT) |
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
op), hcr + 6);
/*
* Make sure that our HCR writes don't get mixed in with
* writes from another CPU starting a FW command.
*/
mmiowb();
cmd->toggle = cmd->toggle ^ 1;
ret = 0;
out:
mutex_unlock(&cmd->hcr_mutex);
return ret;
}
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
static int mlx4_slave_cmd(struct mlx4_dev *dev, u64 in_param, u64 *out_param,
int out_is_imm, u32 in_modifier, u8 op_modifier,
u16 op, unsigned long timeout)
{
struct mlx4_priv *priv = mlx4_priv(dev);
struct mlx4_vhcr_cmd *vhcr = priv->mfunc.vhcr;
int ret;
down(&priv->cmd.slave_sem);
vhcr->in_param = cpu_to_be64(in_param);
vhcr->out_param = out_param ? cpu_to_be64(*out_param) : 0;
vhcr->in_modifier = cpu_to_be32(in_modifier);
vhcr->opcode = cpu_to_be16((((u16) op_modifier) << 12) | (op & 0xfff));
vhcr->token = cpu_to_be16(CMD_POLL_TOKEN);
vhcr->status = 0;
vhcr->flags = !!(priv->cmd.use_events) << 6;
if (mlx4_is_master(dev)) {
ret = mlx4_master_process_vhcr(dev, dev->caps.function, vhcr);
if (!ret) {
if (out_is_imm) {
if (out_param)
*out_param =
be64_to_cpu(vhcr->out_param);
else {
mlx4_err(dev, "response expected while"
"output mailbox is NULL for "
"command 0x%x\n", op);
vhcr->status = -EINVAL;
}
}
ret = vhcr->status;
}
} else {
ret = mlx4_comm_cmd(dev, MLX4_COMM_CMD_VHCR_POST, 0,
MLX4_COMM_TIME + timeout);
if (!ret) {
if (out_is_imm) {
if (out_param)
*out_param =
be64_to_cpu(vhcr->out_param);
else {
mlx4_err(dev, "response expected while"
"output mailbox is NULL for "
"command 0x%x\n", op);
vhcr->status = -EINVAL;
}
}
ret = vhcr->status;
} else
mlx4_err(dev, "failed execution of VHCR_POST command"
"opcode 0x%x\n", op);
}
up(&priv->cmd.slave_sem);
return ret;
}
static int mlx4_cmd_poll(struct mlx4_dev *dev, u64 in_param, u64 *out_param,
int out_is_imm, u32 in_modifier, u8 op_modifier,
u16 op, unsigned long timeout)
{
struct mlx4_priv *priv = mlx4_priv(dev);
void __iomem *hcr = priv->cmd.hcr;
int err = 0;
unsigned long end;
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
u32 stat;
down(&priv->cmd.poll_sem);
err = mlx4_cmd_post(dev, in_param, out_param ? *out_param : 0,
in_modifier, op_modifier, op, CMD_POLL_TOKEN, 0);
if (err)
goto out;
end = msecs_to_jiffies(timeout) + jiffies;
while (cmd_pending(dev) && time_before(jiffies, end))
cond_resched();
if (cmd_pending(dev)) {
err = -ETIMEDOUT;
goto out;
}
if (out_is_imm)
*out_param =
(u64) be32_to_cpu((__force __be32)
__raw_readl(hcr + HCR_OUT_PARAM_OFFSET)) << 32 |
(u64) be32_to_cpu((__force __be32)
__raw_readl(hcr + HCR_OUT_PARAM_OFFSET + 4));
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
stat = be32_to_cpu((__force __be32)
__raw_readl(hcr + HCR_STATUS_OFFSET)) >> 24;
err = mlx4_status_to_errno(stat);
if (err)
mlx4_err(dev, "command 0x%x failed: fw status = 0x%x\n",
op, stat);
out:
up(&priv->cmd.poll_sem);
return err;
}
void mlx4_cmd_event(struct mlx4_dev *dev, u16 token, u8 status, u64 out_param)
{
struct mlx4_priv *priv = mlx4_priv(dev);
struct mlx4_cmd_context *context =
&priv->cmd.context[token & priv->cmd.token_mask];
/* previously timed out command completing at long last */
if (token != context->token)
return;
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
context->fw_status = status;
context->result = mlx4_status_to_errno(status);
context->out_param = out_param;
complete(&context->done);
}
static int mlx4_cmd_wait(struct mlx4_dev *dev, u64 in_param, u64 *out_param,
int out_is_imm, u32 in_modifier, u8 op_modifier,
u16 op, unsigned long timeout)
{
struct mlx4_cmd *cmd = &mlx4_priv(dev)->cmd;
struct mlx4_cmd_context *context;
int err = 0;
down(&cmd->event_sem);
spin_lock(&cmd->context_lock);
BUG_ON(cmd->free_head < 0);
context = &cmd->context[cmd->free_head];
context->token += cmd->token_mask + 1;
cmd->free_head = context->next;
spin_unlock(&cmd->context_lock);
init_completion(&context->done);
mlx4_cmd_post(dev, in_param, out_param ? *out_param : 0,
in_modifier, op_modifier, op, context->token, 1);
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
if (!wait_for_completion_timeout(&context->done,
msecs_to_jiffies(timeout))) {
err = -EBUSY;
goto out;
}
err = context->result;
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
if (err) {
mlx4_err(dev, "command 0x%x failed: fw status = 0x%x\n",
op, context->fw_status);
goto out;
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
}
if (out_is_imm)
*out_param = context->out_param;
out:
spin_lock(&cmd->context_lock);
context->next = cmd->free_head;
cmd->free_head = context - cmd->context;
spin_unlock(&cmd->context_lock);
up(&cmd->event_sem);
return err;
}
int __mlx4_cmd(struct mlx4_dev *dev, u64 in_param, u64 *out_param,
int out_is_imm, u32 in_modifier, u8 op_modifier,
u16 op, unsigned long timeout, int native)
{
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
if (!mlx4_is_mfunc(dev) || (native && mlx4_is_master(dev))) {
if (mlx4_priv(dev)->cmd.use_events)
return mlx4_cmd_wait(dev, in_param, out_param,
out_is_imm, in_modifier,
op_modifier, op, timeout);
else
return mlx4_cmd_poll(dev, in_param, out_param,
out_is_imm, in_modifier,
op_modifier, op, timeout);
}
return mlx4_slave_cmd(dev, in_param, out_param, out_is_imm,
in_modifier, op_modifier, op, timeout);
}
EXPORT_SYMBOL_GPL(__mlx4_cmd);
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
static int mlx4_ARM_COMM_CHANNEL(struct mlx4_dev *dev)
{
return mlx4_cmd(dev, 0, 0, 0, MLX4_CMD_ARM_COMM_CHANNEL,
MLX4_CMD_TIME_CLASS_B, MLX4_CMD_NATIVE);
}
static int mlx4_ACCESS_MEM(struct mlx4_dev *dev, u64 master_addr,
int slave, u64 slave_addr,
int size, int is_read)
{
u64 in_param;
u64 out_param;
if ((slave_addr & 0xfff) | (master_addr & 0xfff) |
(slave & ~0x7f) | (size & 0xff)) {
mlx4_err(dev, "Bad access mem params - slave_addr:0x%llx "
"master_addr:0x%llx slave_id:%d size:%d\n",
slave_addr, master_addr, slave, size);
return -EINVAL;
}
if (is_read) {
in_param = (u64) slave | slave_addr;
out_param = (u64) dev->caps.function | master_addr;
} else {
in_param = (u64) dev->caps.function | master_addr;
out_param = (u64) slave | slave_addr;
}
return mlx4_cmd_imm(dev, in_param, &out_param, size, 0,
MLX4_CMD_ACCESS_MEM,
MLX4_CMD_TIME_CLASS_A, MLX4_CMD_NATIVE);
}
int mlx4_DMA_wrapper(struct mlx4_dev *dev, int slave,
struct mlx4_vhcr *vhcr,
struct mlx4_cmd_mailbox *inbox,
struct mlx4_cmd_mailbox *outbox,
struct mlx4_cmd_info *cmd)
{
u64 in_param;
u64 out_param;
int err;
in_param = cmd->has_inbox ? (u64) inbox->dma : vhcr->in_param;
out_param = cmd->has_outbox ? (u64) outbox->dma : vhcr->out_param;
if (cmd->encode_slave_id) {
in_param &= 0xffffffffffffff00ll;
in_param |= slave;
}
err = __mlx4_cmd(dev, in_param, &out_param, cmd->out_is_imm,
vhcr->in_modifier, vhcr->op_modifier, vhcr->op,
MLX4_CMD_TIME_CLASS_A, MLX4_CMD_NATIVE);
if (cmd->out_is_imm)
vhcr->out_param = out_param;
return err;
}
static struct mlx4_cmd_info cmd_info[] = {
{
.opcode = MLX4_CMD_QUERY_FW,
.has_inbox = false,
.has_outbox = true,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = NULL
},
{
.opcode = MLX4_CMD_QUERY_HCA,
.has_inbox = false,
.has_outbox = true,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = NULL
},
{
.opcode = MLX4_CMD_QUERY_DEV_CAP,
.has_inbox = false,
.has_outbox = true,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = NULL
},
{
.opcode = MLX4_CMD_QUERY_FUNC_CAP,
.has_inbox = false,
.has_outbox = true,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_QUERY_FUNC_CAP_wrapper
},
{
.opcode = MLX4_CMD_QUERY_ADAPTER,
.has_inbox = false,
.has_outbox = true,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = NULL
},
{
.opcode = MLX4_CMD_INIT_PORT,
.has_inbox = false,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_INIT_PORT_wrapper
},
{
.opcode = MLX4_CMD_CLOSE_PORT,
.has_inbox = false,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_CLOSE_PORT_wrapper
},
{
.opcode = MLX4_CMD_QUERY_PORT,
.has_inbox = false,
.has_outbox = true,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_QUERY_PORT_wrapper
},
{
.opcode = MLX4_CMD_MAP_EQ,
.has_inbox = false,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_MAP_EQ_wrapper
},
{
.opcode = MLX4_CMD_SW2HW_EQ,
.has_inbox = true,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = true,
.verify = NULL,
.wrapper = mlx4_SW2HW_EQ_wrapper
},
{
.opcode = MLX4_CMD_HW_HEALTH_CHECK,
.has_inbox = false,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = NULL
},
{
.opcode = MLX4_CMD_NOP,
.has_inbox = false,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = NULL
},
{
.opcode = MLX4_CMD_ALLOC_RES,
.has_inbox = false,
.has_outbox = false,
.out_is_imm = true,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_ALLOC_RES_wrapper
},
{
.opcode = MLX4_CMD_FREE_RES,
.has_inbox = false,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_FREE_RES_wrapper
},
{
.opcode = MLX4_CMD_SW2HW_MPT,
.has_inbox = true,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = true,
.verify = NULL,
.wrapper = mlx4_SW2HW_MPT_wrapper
},
{
.opcode = MLX4_CMD_QUERY_MPT,
.has_inbox = false,
.has_outbox = true,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_QUERY_MPT_wrapper
},
{
.opcode = MLX4_CMD_HW2SW_MPT,
.has_inbox = false,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_HW2SW_MPT_wrapper
},
{
.opcode = MLX4_CMD_READ_MTT,
.has_inbox = false,
.has_outbox = true,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = NULL
},
{
.opcode = MLX4_CMD_WRITE_MTT,
.has_inbox = true,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_WRITE_MTT_wrapper
},
{
.opcode = MLX4_CMD_SYNC_TPT,
.has_inbox = true,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = NULL
},
{
.opcode = MLX4_CMD_HW2SW_EQ,
.has_inbox = false,
.has_outbox = true,
.out_is_imm = false,
.encode_slave_id = true,
.verify = NULL,
.wrapper = mlx4_HW2SW_EQ_wrapper
},
{
.opcode = MLX4_CMD_QUERY_EQ,
.has_inbox = false,
.has_outbox = true,
.out_is_imm = false,
.encode_slave_id = true,
.verify = NULL,
.wrapper = mlx4_QUERY_EQ_wrapper
},
{
.opcode = MLX4_CMD_SW2HW_CQ,
.has_inbox = true,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = true,
.verify = NULL,
.wrapper = mlx4_SW2HW_CQ_wrapper
},
{
.opcode = MLX4_CMD_HW2SW_CQ,
.has_inbox = false,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_HW2SW_CQ_wrapper
},
{
.opcode = MLX4_CMD_QUERY_CQ,
.has_inbox = false,
.has_outbox = true,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_QUERY_CQ_wrapper
},
{
.opcode = MLX4_CMD_MODIFY_CQ,
.has_inbox = true,
.has_outbox = false,
.out_is_imm = true,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_MODIFY_CQ_wrapper
},
{
.opcode = MLX4_CMD_SW2HW_SRQ,
.has_inbox = true,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = true,
.verify = NULL,
.wrapper = mlx4_SW2HW_SRQ_wrapper
},
{
.opcode = MLX4_CMD_HW2SW_SRQ,
.has_inbox = false,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_HW2SW_SRQ_wrapper
},
{
.opcode = MLX4_CMD_QUERY_SRQ,
.has_inbox = false,
.has_outbox = true,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_QUERY_SRQ_wrapper
},
{
.opcode = MLX4_CMD_ARM_SRQ,
.has_inbox = false,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_ARM_SRQ_wrapper
},
{
.opcode = MLX4_CMD_RST2INIT_QP,
.has_inbox = true,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = true,
.verify = NULL,
.wrapper = mlx4_RST2INIT_QP_wrapper
},
{
.opcode = MLX4_CMD_INIT2INIT_QP,
.has_inbox = true,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_GEN_QP_wrapper
},
{
.opcode = MLX4_CMD_INIT2RTR_QP,
.has_inbox = true,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_INIT2RTR_QP_wrapper
},
{
.opcode = MLX4_CMD_RTR2RTS_QP,
.has_inbox = true,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_GEN_QP_wrapper
},
{
.opcode = MLX4_CMD_RTS2RTS_QP,
.has_inbox = true,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_GEN_QP_wrapper
},
{
.opcode = MLX4_CMD_SQERR2RTS_QP,
.has_inbox = true,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_GEN_QP_wrapper
},
{
.opcode = MLX4_CMD_2ERR_QP,
.has_inbox = false,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_GEN_QP_wrapper
},
{
.opcode = MLX4_CMD_RTS2SQD_QP,
.has_inbox = false,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_GEN_QP_wrapper
},
{
.opcode = MLX4_CMD_SQD2SQD_QP,
.has_inbox = true,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_GEN_QP_wrapper
},
{
.opcode = MLX4_CMD_SQD2RTS_QP,
.has_inbox = true,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_GEN_QP_wrapper
},
{
.opcode = MLX4_CMD_2RST_QP,
.has_inbox = false,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_2RST_QP_wrapper
},
{
.opcode = MLX4_CMD_QUERY_QP,
.has_inbox = false,
.has_outbox = true,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_GEN_QP_wrapper
},
{
.opcode = MLX4_CMD_SUSPEND_QP,
.has_inbox = false,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_GEN_QP_wrapper
},
{
.opcode = MLX4_CMD_UNSUSPEND_QP,
.has_inbox = false,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_GEN_QP_wrapper
},
{
.opcode = MLX4_CMD_QUERY_IF_STAT,
.has_inbox = false,
.has_outbox = true,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_QUERY_IF_STAT_wrapper
},
/* Native multicast commands are not available for guests */
{
.opcode = MLX4_CMD_QP_ATTACH,
.has_inbox = true,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = mlx4_QP_ATTACH_wrapper
},
{
.opcode = MLX4_CMD_INFORM_FLR_DONE,
.has_inbox = false,
.has_outbox = false,
.out_is_imm = false,
.encode_slave_id = false,
.verify = NULL,
.wrapper = NULL
},
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
};
static int mlx4_master_process_vhcr(struct mlx4_dev *dev, int slave,
struct mlx4_vhcr_cmd *in_vhcr)
{
struct mlx4_priv *priv = mlx4_priv(dev);
struct mlx4_cmd_info *cmd = NULL;
struct mlx4_vhcr_cmd *vhcr_cmd = in_vhcr ? in_vhcr : priv->mfunc.vhcr;
struct mlx4_vhcr *vhcr;
struct mlx4_cmd_mailbox *inbox = NULL;
struct mlx4_cmd_mailbox *outbox = NULL;
u64 in_param;
u64 out_param;
int ret = 0;
int i;
/* Create sw representation of Virtual HCR */
vhcr = kzalloc(sizeof(struct mlx4_vhcr), GFP_KERNEL);
if (!vhcr)
return -ENOMEM;
/* DMA in the vHCR */
if (!in_vhcr) {
ret = mlx4_ACCESS_MEM(dev, priv->mfunc.vhcr_dma, slave,
priv->mfunc.master.slave_state[slave].vhcr_dma,
ALIGN(sizeof(struct mlx4_vhcr_cmd),
MLX4_ACCESS_MEM_ALIGN), 1);
if (ret) {
mlx4_err(dev, "%s:Failed reading vhcr"
"ret: 0x%x\n", __func__, ret);
kfree(vhcr);
return ret;
}
}
/* Fill SW VHCR fields */
vhcr->in_param = be64_to_cpu(vhcr_cmd->in_param);
vhcr->out_param = be64_to_cpu(vhcr_cmd->out_param);
vhcr->in_modifier = be32_to_cpu(vhcr_cmd->in_modifier);
vhcr->token = be16_to_cpu(vhcr_cmd->token);
vhcr->op = be16_to_cpu(vhcr_cmd->opcode) & 0xfff;
vhcr->op_modifier = (u8) (be16_to_cpu(vhcr_cmd->opcode) >> 12);
vhcr->e_bit = vhcr_cmd->flags & (1 << 6);
/* Lookup command */
for (i = 0; i < ARRAY_SIZE(cmd_info); ++i) {
if (vhcr->op == cmd_info[i].opcode) {
cmd = &cmd_info[i];
break;
}
}
if (!cmd) {
mlx4_err(dev, "Unknown command:0x%x accepted from slave:%d\n",
vhcr->op, slave);
vhcr_cmd->status = -EINVAL;
goto out_status;
}
/* Read inbox */
if (cmd->has_inbox) {
vhcr->in_param &= INBOX_MASK;
inbox = mlx4_alloc_cmd_mailbox(dev);
if (IS_ERR(inbox)) {
ret = PTR_ERR(inbox);
inbox = NULL;
goto out;
}
ret = mlx4_ACCESS_MEM(dev, inbox->dma, slave,
vhcr->in_param,
MLX4_MAILBOX_SIZE, 1);
if (ret) {
mlx4_err(dev, "%s: Failed reading inbox (cmd:0x%x)\n",
__func__, cmd->opcode);
goto out;
}
}
/* Apply permission and bound checks if applicable */
if (cmd->verify && cmd->verify(dev, slave, vhcr, inbox)) {
mlx4_warn(dev, "Command:0x%x from slave: %d failed protection "
"checks for resource_id:%d\n", vhcr->op, slave,
vhcr->in_modifier);
vhcr_cmd->status = -EPERM;
goto out_status;
}
/* Allocate outbox */
if (cmd->has_outbox) {
outbox = mlx4_alloc_cmd_mailbox(dev);
if (IS_ERR(outbox)) {
ret = PTR_ERR(outbox);
outbox = NULL;
goto out;
}
}
/* Execute the command! */
if (cmd->wrapper) {
vhcr_cmd->status = cmd->wrapper(dev, slave, vhcr, inbox, outbox,
cmd);
if (cmd->out_is_imm)
vhcr_cmd->out_param = cpu_to_be64(vhcr->out_param);
} else {
in_param = cmd->has_inbox ? (u64) inbox->dma :
vhcr->in_param;
out_param = cmd->has_outbox ? (u64) outbox->dma :
vhcr->out_param;
vhcr_cmd->status = __mlx4_cmd(dev, in_param, &out_param,
cmd->out_is_imm, vhcr->in_modifier,
vhcr->op_modifier, vhcr->op,
MLX4_CMD_TIME_CLASS_A,
MLX4_CMD_NATIVE);
if (vhcr_cmd->status) {
mlx4_warn(dev, "vhcr command:0x%x slave:%d failed with"
" error:%d, status %d\n",
vhcr->op, slave, vhcr->errno,
vhcr_cmd->status);
ret = vhcr_cmd->status;
goto out;
}
if (cmd->out_is_imm) {
vhcr->out_param = out_param;
vhcr_cmd->out_param = cpu_to_be64(vhcr->out_param);
}
}
/* Write outbox if command completed successfully */
if (cmd->has_outbox && !vhcr->errno) {
ret = mlx4_ACCESS_MEM(dev, outbox->dma, slave,
vhcr->out_param,
MLX4_MAILBOX_SIZE, MLX4_CMD_WRAPPED);
if (ret) {
mlx4_err(dev, "%s:Failed writing outbox\n", __func__);
goto out;
}
}
out_status:
/* DMA back vhcr result */
if (!in_vhcr) {
ret = mlx4_ACCESS_MEM(dev, priv->mfunc.vhcr_dma, slave,
priv->mfunc.master.slave_state[slave].vhcr_dma,
ALIGN(sizeof(struct mlx4_vhcr),
MLX4_ACCESS_MEM_ALIGN),
MLX4_CMD_WRAPPED);
if (ret)
mlx4_err(dev, "%s:Failed writing vhcr result\n",
__func__);
else if (vhcr->e_bit &&
mlx4_GEN_EQE(dev, slave, &priv->mfunc.master.cmd_eqe))
mlx4_warn(dev, "Failed to generate command completion "
"eqe for slave %d\n", slave);
}
out:
kfree(vhcr);
mlx4_free_cmd_mailbox(dev, inbox);
mlx4_free_cmd_mailbox(dev, outbox);
return ret;
}
static void mlx4_master_do_cmd(struct mlx4_dev *dev, int slave, u8 cmd,
u16 param, u8 toggle)
{
struct mlx4_priv *priv = mlx4_priv(dev);
struct mlx4_slave_state *slave_state = priv->mfunc.master.slave_state;
u32 reply;
u32 slave_status = 0;
u8 is_going_down = 0;
slave_state[slave].comm_toggle ^= 1;
reply = (u32) slave_state[slave].comm_toggle << 31;
if (toggle != slave_state[slave].comm_toggle) {
mlx4_warn(dev, "Incorrect toggle %d from slave %d. *** MASTER"
"STATE COMPROMISIED ***\n", toggle, slave);
goto reset_slave;
}
if (cmd == MLX4_COMM_CMD_RESET) {
mlx4_warn(dev, "Received reset from slave:%d\n", slave);
slave_state[slave].active = false;
/*check if we are in the middle of FLR process,
if so return "retry" status to the slave*/
if (MLX4_COMM_CMD_FLR == slave_state[slave].last_cmd) {
slave_status = MLX4_DELAY_RESET_SLAVE;
goto inform_slave_state;
}
/* write the version in the event field */
reply |= mlx4_comm_get_version();
goto reset_slave;
}
/*command from slave in the middle of FLR*/
if (cmd != MLX4_COMM_CMD_RESET &&
MLX4_COMM_CMD_FLR == slave_state[slave].last_cmd) {
mlx4_warn(dev, "slave:%d is Trying to run cmd(0x%x) "
"in the middle of FLR\n", slave, cmd);
return;
}
switch (cmd) {
case MLX4_COMM_CMD_VHCR0:
if (slave_state[slave].last_cmd != MLX4_COMM_CMD_RESET)
goto reset_slave;
slave_state[slave].vhcr_dma = ((u64) param) << 48;
priv->mfunc.master.slave_state[slave].cookie = 0;
mutex_init(&priv->mfunc.master.gen_eqe_mutex[slave]);
break;
case MLX4_COMM_CMD_VHCR1:
if (slave_state[slave].last_cmd != MLX4_COMM_CMD_VHCR0)
goto reset_slave;
slave_state[slave].vhcr_dma |= ((u64) param) << 32;
break;
case MLX4_COMM_CMD_VHCR2:
if (slave_state[slave].last_cmd != MLX4_COMM_CMD_VHCR1)
goto reset_slave;
slave_state[slave].vhcr_dma |= ((u64) param) << 16;
break;
case MLX4_COMM_CMD_VHCR_EN:
if (slave_state[slave].last_cmd != MLX4_COMM_CMD_VHCR2)
goto reset_slave;
slave_state[slave].vhcr_dma |= param;
slave_state[slave].active = true;
break;
case MLX4_COMM_CMD_VHCR_POST:
if ((slave_state[slave].last_cmd != MLX4_COMM_CMD_VHCR_EN) &&
(slave_state[slave].last_cmd != MLX4_COMM_CMD_VHCR_POST))
goto reset_slave;
down(&priv->cmd.slave_sem);
if (mlx4_master_process_vhcr(dev, slave, NULL)) {
mlx4_err(dev, "Failed processing vhcr for slave:%d,"
" reseting slave.\n", slave);
up(&priv->cmd.slave_sem);
goto reset_slave;
}
up(&priv->cmd.slave_sem);
break;
default:
mlx4_warn(dev, "Bad comm cmd:%d from slave:%d\n", cmd, slave);
goto reset_slave;
}
spin_lock(&priv->mfunc.master.slave_state_lock);
if (!slave_state[slave].is_slave_going_down)
slave_state[slave].last_cmd = cmd;
else
is_going_down = 1;
spin_unlock(&priv->mfunc.master.slave_state_lock);
if (is_going_down) {
mlx4_warn(dev, "Slave is going down aborting command(%d)"
" executing from slave:%d\n",
cmd, slave);
return;
}
__raw_writel((__force u32) cpu_to_be32(reply),
&priv->mfunc.comm[slave].slave_read);
mmiowb();
return;
reset_slave:
/* cleanup any slave resources */
mlx4_delete_all_resources_for_slave(dev, slave);
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
spin_lock(&priv->mfunc.master.slave_state_lock);
if (!slave_state[slave].is_slave_going_down)
slave_state[slave].last_cmd = MLX4_COMM_CMD_RESET;
spin_unlock(&priv->mfunc.master.slave_state_lock);
/*with slave in the middle of flr, no need to clean resources again.*/
inform_slave_state:
memset(&slave_state[slave].event_eq, 0,
sizeof(struct mlx4_slave_event_eq_info));
__raw_writel((__force u32) cpu_to_be32(reply),
&priv->mfunc.comm[slave].slave_read);
wmb();
}
/* master command processing */
void mlx4_master_comm_channel(struct work_struct *work)
{
struct mlx4_mfunc_master_ctx *master =
container_of(work,
struct mlx4_mfunc_master_ctx,
comm_work);
struct mlx4_mfunc *mfunc =
container_of(master, struct mlx4_mfunc, master);
struct mlx4_priv *priv =
container_of(mfunc, struct mlx4_priv, mfunc);
struct mlx4_dev *dev = &priv->dev;
__be32 *bit_vec;
u32 comm_cmd;
u32 vec;
int i, j, slave;
int toggle;
int served = 0;
int reported = 0;
u32 slt;
bit_vec = master->comm_arm_bit_vector;
for (i = 0; i < COMM_CHANNEL_BIT_ARRAY_SIZE; i++) {
vec = be32_to_cpu(bit_vec[i]);
for (j = 0; j < 32; j++) {
if (!(vec & (1 << j)))
continue;
++reported;
slave = (i * 32) + j;
comm_cmd = swab32(readl(
&mfunc->comm[slave].slave_write));
slt = swab32(readl(&mfunc->comm[slave].slave_read))
>> 31;
toggle = comm_cmd >> 31;
if (toggle != slt) {
if (master->slave_state[slave].comm_toggle
!= slt) {
printk(KERN_INFO "slave %d out of sync."
" read toggle %d, state toggle %d. "
"Resynching.\n", slave, slt,
master->slave_state[slave].comm_toggle);
master->slave_state[slave].comm_toggle =
slt;
}
mlx4_master_do_cmd(dev, slave,
comm_cmd >> 16 & 0xff,
comm_cmd & 0xffff, toggle);
++served;
}
}
}
if (reported && reported != served)
mlx4_warn(dev, "Got command event with bitmask from %d slaves"
" but %d were served\n",
reported, served);
if (mlx4_ARM_COMM_CHANNEL(dev))
mlx4_warn(dev, "Failed to arm comm channel events\n");
}
int mlx4_cmd_init(struct mlx4_dev *dev)
{
struct mlx4_priv *priv = mlx4_priv(dev);
mutex_init(&priv->cmd.hcr_mutex);
sema_init(&priv->cmd.poll_sem, 1);
priv->cmd.use_events = 0;
priv->cmd.toggle = 1;
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
priv->cmd.hcr = NULL;
priv->mfunc.vhcr = NULL;
if (!mlx4_is_slave(dev)) {
priv->cmd.hcr = ioremap(pci_resource_start(dev->pdev, 0) +
MLX4_HCR_BASE, MLX4_HCR_SIZE);
if (!priv->cmd.hcr) {
mlx4_err(dev, "Couldn't map command register.\n");
return -ENOMEM;
}
}
priv->cmd.pool = pci_pool_create("mlx4_cmd", dev->pdev,
MLX4_MAILBOX_SIZE,
MLX4_MAILBOX_SIZE, 0);
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
if (!priv->cmd.pool)
goto err_hcr;
return 0;
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
err_hcr:
if (!mlx4_is_slave(dev))
iounmap(priv->cmd.hcr);
return -ENOMEM;
}
void mlx4_cmd_cleanup(struct mlx4_dev *dev)
{
struct mlx4_priv *priv = mlx4_priv(dev);
pci_pool_destroy(priv->cmd.pool);
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
if (!mlx4_is_slave(dev))
iounmap(priv->cmd.hcr);
}
/*
* Switch to using events to issue FW commands (can only be called
* after event queue for command events has been initialized).
*/
int mlx4_cmd_use_events(struct mlx4_dev *dev)
{
struct mlx4_priv *priv = mlx4_priv(dev);
int i;
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
int err = 0;
priv->cmd.context = kmalloc(priv->cmd.max_cmds *
sizeof (struct mlx4_cmd_context),
GFP_KERNEL);
if (!priv->cmd.context)
return -ENOMEM;
for (i = 0; i < priv->cmd.max_cmds; ++i) {
priv->cmd.context[i].token = i;
priv->cmd.context[i].next = i + 1;
}
priv->cmd.context[priv->cmd.max_cmds - 1].next = -1;
priv->cmd.free_head = 0;
sema_init(&priv->cmd.event_sem, priv->cmd.max_cmds);
spin_lock_init(&priv->cmd.context_lock);
for (priv->cmd.token_mask = 1;
priv->cmd.token_mask < priv->cmd.max_cmds;
priv->cmd.token_mask <<= 1)
; /* nothing */
--priv->cmd.token_mask;
down(&priv->cmd.poll_sem);
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
priv->cmd.use_events = 1;
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
return err;
}
/*
* Switch back to polling (used when shutting down the device)
*/
void mlx4_cmd_use_polling(struct mlx4_dev *dev)
{
struct mlx4_priv *priv = mlx4_priv(dev);
int i;
priv->cmd.use_events = 0;
for (i = 0; i < priv->cmd.max_cmds; ++i)
down(&priv->cmd.event_sem);
kfree(priv->cmd.context);
up(&priv->cmd.poll_sem);
}
struct mlx4_cmd_mailbox *mlx4_alloc_cmd_mailbox(struct mlx4_dev *dev)
{
struct mlx4_cmd_mailbox *mailbox;
mailbox = kmalloc(sizeof *mailbox, GFP_KERNEL);
if (!mailbox)
return ERR_PTR(-ENOMEM);
mailbox->buf = pci_pool_alloc(mlx4_priv(dev)->cmd.pool, GFP_KERNEL,
&mailbox->dma);
if (!mailbox->buf) {
kfree(mailbox);
return ERR_PTR(-ENOMEM);
}
return mailbox;
}
EXPORT_SYMBOL_GPL(mlx4_alloc_cmd_mailbox);
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
void mlx4_free_cmd_mailbox(struct mlx4_dev *dev,
struct mlx4_cmd_mailbox *mailbox)
{
if (!mailbox)
return;
pci_pool_free(mlx4_priv(dev)->cmd.pool, mailbox->buf, mailbox->dma);
kfree(mailbox);
}
EXPORT_SYMBOL_GPL(mlx4_free_cmd_mailbox);
net/mlx4_core: Implement the master-slave communication channel When SRIOV is enabled, pf and vfs communicate via shared comm channel. The vf gets its side of the comm channel via a VF BAR. Each VF (slave) creates its vHCR (virtual HCA Command Register), Its DMA address is passed to the PF (master) using Communication Channel Register. The same Register is used to notify the master of commands posted by the slaves and for the master to pass events to the slaves, such as command completions and asynchronous events. The vHCR format is identical to the HCR format, except for the 'go' and 't' bits, which are reserved in the vHCR. Posting commands to the vHCR is identical to the way it is done with the HCR, albeit that the function/PF token fields are used instead of the HCR go bit. Specifically: - When the function prepares a new command in the vHCR, it issues the Post_vHCR_cmd communication channel command and toggles the value of the function token; when PF token has an equal value, the command has been accepted and a new command may be posted. - When the PF detects a Post_vHCR_cmd command, it concludes that a new command is available in the vHCR; after processing the command, the PF toggles the PF token to match the function token. When the 'e' bit is not set, the completion of a Post_vHCR_cmd command also indicates the completion the vHCR command. If, however, the 'e' bit is set, the completion of a Post_vHCR_cmd command only indicates that the vHCR command has been accepted for execution by the PF. Function commands are processed by the PF as follows: -DMA (using the ACCESS_MEM command) the vHCR image into a shadow buffer. -Validate that the opcode is non-privileged, and that the opcode- and input-modifiers are legal. -DMA the in-box (if required) into a shadow buffer. -Validate the command: o Resource ranges (e.g., QP ranges). o Partition key. o Ranges of referenced resources (e.g., CQs within QP contexts). -If the 'e' bit is set o complete the Post_vHCR_cmd command -Execute the command on the HCR. -DMA the results to the vHCR out-box (if required). -If the 'e' bit is set o Indicate command completion by generating a completion event using the GEN_EQE command -Otherwise o DMA the command status to the vHCR o Complete the Post_vHCR_cmd command Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Yevgeny Petrillin <yevgenyp@mellanox.com> Signed-off-by: Liran Liss <liranl@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-13 12:12:25 +08:00
u32 mlx4_comm_get_version(void)
{
return ((u32) CMD_CHAN_IF_REV << 8) | (u32) CMD_CHAN_VER;
}