linux/drivers/bus/qcom-ebi2.c

408 lines
11 KiB
C
Raw Normal View History

/*
* Qualcomm External Bus Interface 2 (EBI2) driver
* an older version of the Qualcomm Parallel Interface Controller (QPIC)
*
* Copyright (C) 2016 Linaro Ltd.
*
* Author: Linus Walleij <linus.walleij@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2, as
* published by the Free Software Foundation.
*
* See the device tree bindings for this block for more details on the
* hardware.
*/
#include <linux/module.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/bitops.h>
/*
* CS0, CS1, CS4 and CS5 are two bits wide, CS2 and CS3 are one bit.
*/
#define EBI2_CS0_ENABLE_MASK BIT(0)|BIT(1)
#define EBI2_CS1_ENABLE_MASK BIT(2)|BIT(3)
#define EBI2_CS2_ENABLE_MASK BIT(4)
#define EBI2_CS3_ENABLE_MASK BIT(5)
#define EBI2_CS4_ENABLE_MASK BIT(6)|BIT(7)
#define EBI2_CS5_ENABLE_MASK BIT(8)|BIT(9)
#define EBI2_CSN_MASK GENMASK(9, 0)
#define EBI2_XMEM_CFG 0x0000 /* Power management etc */
/*
* SLOW CSn CFG
*
* Bits 31-28: RECOVERY recovery cycles (0 = 1, 1 = 2 etc) this is the time the
* memory continues to drive the data bus after OE is de-asserted.
* Inserted when reading one CS and switching to another CS or read
* followed by write on the same CS. Valid values 0 thru 15.
* Bits 27-24: WR_HOLD write hold cycles, these are extra cycles inserted after
* every write minimum 1. The data out is driven from the time WE is
* asserted until CS is asserted. With a hold of 1, the CS stays
* active for 1 extra cycle etc. Valid values 0 thru 15.
* Bits 23-16: WR_DELTA initial latency for write cycles inserted for the first
* write to a page or burst memory
* Bits 15-8: RD_DELTA initial latency for read cycles inserted for the first
* read to a page or burst memory
* Bits 7-4: WR_WAIT number of wait cycles for every write access, 0=1 cycle
* so 1 thru 16 cycles.
* Bits 3-0: RD_WAIT number of wait cycles for every read access, 0=1 cycle
* so 1 thru 16 cycles.
*/
#define EBI2_XMEM_CS0_SLOW_CFG 0x0008
#define EBI2_XMEM_CS1_SLOW_CFG 0x000C
#define EBI2_XMEM_CS2_SLOW_CFG 0x0010
#define EBI2_XMEM_CS3_SLOW_CFG 0x0014
#define EBI2_XMEM_CS4_SLOW_CFG 0x0018
#define EBI2_XMEM_CS5_SLOW_CFG 0x001C
#define EBI2_XMEM_RECOVERY_SHIFT 28
#define EBI2_XMEM_WR_HOLD_SHIFT 24
#define EBI2_XMEM_WR_DELTA_SHIFT 16
#define EBI2_XMEM_RD_DELTA_SHIFT 8
#define EBI2_XMEM_WR_WAIT_SHIFT 4
#define EBI2_XMEM_RD_WAIT_SHIFT 0
/*
* FAST CSn CFG
* Bits 31-28: ?
* Bits 27-24: RD_HOLD: the length in cycles of the first segment of a read
* transfer. For a single read trandfer this will be the time
* from CS assertion to OE assertion.
* Bits 18-24: ?
* Bits 17-16: ADV_OE_RECOVERY, the number of cycles elapsed before an OE
* assertion, with respect to the cycle where ADV is asserted.
* 2 means 2 cycles between ADV and OE. Values 0, 1, 2 or 3.
* Bits 5: ADDR_HOLD_ENA, The address is held for an extra cycle to meet
* hold time requirements with ADV assertion.
*
* The manual mentions "write precharge cycles" and "precharge cycles".
* We have not been able to figure out which bit fields these correspond to
* in the hardware, or what valid values exist. The current hypothesis is that
* this is something just used on the FAST chip selects. There is also a "byte
* device enable" flag somewhere for 8bit memories.
*/
#define EBI2_XMEM_CS0_FAST_CFG 0x0028
#define EBI2_XMEM_CS1_FAST_CFG 0x002C
#define EBI2_XMEM_CS2_FAST_CFG 0x0030
#define EBI2_XMEM_CS3_FAST_CFG 0x0034
#define EBI2_XMEM_CS4_FAST_CFG 0x0038
#define EBI2_XMEM_CS5_FAST_CFG 0x003C
#define EBI2_XMEM_RD_HOLD_SHIFT 24
#define EBI2_XMEM_ADV_OE_RECOVERY_SHIFT 16
#define EBI2_XMEM_ADDR_HOLD_ENA_SHIFT 5
/**
* struct cs_data - struct with info on a chipselect setting
* @enable_mask: mask to enable the chipselect in the EBI2 config
* @slow_cfg0: offset to XMEMC slow CS config
* @fast_cfg1: offset to XMEMC fast CS config
*/
struct cs_data {
u32 enable_mask;
u16 slow_cfg;
u16 fast_cfg;
};
static const struct cs_data cs_info[] = {
{
/* CS0 */
.enable_mask = EBI2_CS0_ENABLE_MASK,
.slow_cfg = EBI2_XMEM_CS0_SLOW_CFG,
.fast_cfg = EBI2_XMEM_CS0_FAST_CFG,
},
{
/* CS1 */
.enable_mask = EBI2_CS1_ENABLE_MASK,
.slow_cfg = EBI2_XMEM_CS1_SLOW_CFG,
.fast_cfg = EBI2_XMEM_CS1_FAST_CFG,
},
{
/* CS2 */
.enable_mask = EBI2_CS2_ENABLE_MASK,
.slow_cfg = EBI2_XMEM_CS2_SLOW_CFG,
.fast_cfg = EBI2_XMEM_CS2_FAST_CFG,
},
{
/* CS3 */
.enable_mask = EBI2_CS3_ENABLE_MASK,
.slow_cfg = EBI2_XMEM_CS3_SLOW_CFG,
.fast_cfg = EBI2_XMEM_CS3_FAST_CFG,
},
{
/* CS4 */
.enable_mask = EBI2_CS4_ENABLE_MASK,
.slow_cfg = EBI2_XMEM_CS4_SLOW_CFG,
.fast_cfg = EBI2_XMEM_CS4_FAST_CFG,
},
{
/* CS5 */
.enable_mask = EBI2_CS5_ENABLE_MASK,
.slow_cfg = EBI2_XMEM_CS5_SLOW_CFG,
.fast_cfg = EBI2_XMEM_CS5_FAST_CFG,
},
};
/**
* struct ebi2_xmem_prop - describes an XMEM config property
* @prop: the device tree binding name
* @max: maximum value for the property
* @slowreg: true if this property is in the SLOW CS config register
* else it is assumed to be in the FAST config register
* @shift: the bit field start in the SLOW or FAST register for this
* property
*/
struct ebi2_xmem_prop {
const char *prop;
u32 max;
bool slowreg;
u16 shift;
};
static const struct ebi2_xmem_prop xmem_props[] = {
{
.prop = "qcom,xmem-recovery-cycles",
.max = 15,
.slowreg = true,
.shift = EBI2_XMEM_RECOVERY_SHIFT,
},
{
.prop = "qcom,xmem-write-hold-cycles",
.max = 15,
.slowreg = true,
.shift = EBI2_XMEM_WR_HOLD_SHIFT,
},
{
.prop = "qcom,xmem-write-delta-cycles",
.max = 255,
.slowreg = true,
.shift = EBI2_XMEM_WR_DELTA_SHIFT,
},
{
.prop = "qcom,xmem-read-delta-cycles",
.max = 255,
.slowreg = true,
.shift = EBI2_XMEM_RD_DELTA_SHIFT,
},
{
.prop = "qcom,xmem-write-wait-cycles",
.max = 15,
.slowreg = true,
.shift = EBI2_XMEM_WR_WAIT_SHIFT,
},
{
.prop = "qcom,xmem-read-wait-cycles",
.max = 15,
.slowreg = true,
.shift = EBI2_XMEM_RD_WAIT_SHIFT,
},
{
.prop = "qcom,xmem-address-hold-enable",
.max = 1, /* boolean prop */
.slowreg = false,
.shift = EBI2_XMEM_ADDR_HOLD_ENA_SHIFT,
},
{
.prop = "qcom,xmem-adv-to-oe-recovery-cycles",
.max = 3,
.slowreg = false,
.shift = EBI2_XMEM_ADV_OE_RECOVERY_SHIFT,
},
{
.prop = "qcom,xmem-read-hold-cycles",
.max = 15,
.slowreg = false,
.shift = EBI2_XMEM_RD_HOLD_SHIFT,
},
};
static void qcom_ebi2_setup_chipselect(struct device_node *np,
struct device *dev,
void __iomem *ebi2_base,
void __iomem *ebi2_xmem,
u32 csindex)
{
const struct cs_data *csd;
u32 slowcfg, fastcfg;
u32 val;
int ret;
int i;
csd = &cs_info[csindex];
val = readl(ebi2_base);
val |= csd->enable_mask;
writel(val, ebi2_base);
dev_dbg(dev, "enabled CS%u\n", csindex);
/* Next set up the XMEMC */
slowcfg = 0;
fastcfg = 0;
for (i = 0; i < ARRAY_SIZE(xmem_props); i++) {
const struct ebi2_xmem_prop *xp = &xmem_props[i];
/* All are regular u32 values */
ret = of_property_read_u32(np, xp->prop, &val);
if (ret) {
dev_dbg(dev, "could not read %s for CS%d\n",
xp->prop, csindex);
continue;
}
/* First check boolean props */
if (xp->max == 1 && val) {
if (xp->slowreg)
slowcfg |= BIT(xp->shift);
else
fastcfg |= BIT(xp->shift);
dev_dbg(dev, "set %s flag\n", xp->prop);
continue;
}
/* We're dealing with an u32 */
if (val > xp->max) {
dev_err(dev,
"too high value for %s: %u, capped at %u\n",
xp->prop, val, xp->max);
val = xp->max;
}
if (xp->slowreg)
slowcfg |= (val << xp->shift);
else
fastcfg |= (val << xp->shift);
dev_dbg(dev, "set %s to %u\n", xp->prop, val);
}
dev_info(dev, "CS%u: SLOW CFG 0x%08x, FAST CFG 0x%08x\n",
csindex, slowcfg, fastcfg);
if (slowcfg)
writel(slowcfg, ebi2_xmem + csd->slow_cfg);
if (fastcfg)
writel(fastcfg, ebi2_xmem + csd->fast_cfg);
}
static int qcom_ebi2_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct device_node *child;
struct device *dev = &pdev->dev;
struct resource *res;
void __iomem *ebi2_base;
void __iomem *ebi2_xmem;
struct clk *ebi2xclk;
struct clk *ebi2clk;
bool have_children = false;
u32 val;
int ret;
ebi2xclk = devm_clk_get(dev, "ebi2x");
if (IS_ERR(ebi2xclk))
return PTR_ERR(ebi2xclk);
ret = clk_prepare_enable(ebi2xclk);
if (ret) {
dev_err(dev, "could not enable EBI2X clk (%d)\n", ret);
return ret;
}
ebi2clk = devm_clk_get(dev, "ebi2");
if (IS_ERR(ebi2clk)) {
ret = PTR_ERR(ebi2clk);
goto err_disable_2x_clk;
}
ret = clk_prepare_enable(ebi2clk);
if (ret) {
dev_err(dev, "could not enable EBI2 clk\n");
goto err_disable_2x_clk;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
ebi2_base = devm_ioremap_resource(dev, res);
if (IS_ERR(ebi2_base)) {
ret = PTR_ERR(ebi2_base);
goto err_disable_clk;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
ebi2_xmem = devm_ioremap_resource(dev, res);
if (IS_ERR(ebi2_xmem)) {
ret = PTR_ERR(ebi2_xmem);
goto err_disable_clk;
}
/* Allegedly this turns the power save mode off */
writel(0UL, ebi2_xmem + EBI2_XMEM_CFG);
/* Disable all chipselects */
val = readl(ebi2_base);
val &= ~EBI2_CSN_MASK;
writel(val, ebi2_base);
/* Walk over the child nodes and see what chipselects we use */
for_each_available_child_of_node(np, child) {
u32 csindex;
/* Figure out the chipselect */
ret = of_property_read_u32(child, "reg", &csindex);
if (ret)
return ret;
if (csindex > 5) {
dev_err(dev,
"invalid chipselect %u, we only support 0-5\n",
csindex);
continue;
}
qcom_ebi2_setup_chipselect(child,
dev,
ebi2_base,
ebi2_xmem,
csindex);
/* We have at least one child */
have_children = true;
}
if (have_children)
return of_platform_default_populate(np, NULL, dev);
return 0;
err_disable_clk:
clk_disable_unprepare(ebi2clk);
err_disable_2x_clk:
clk_disable_unprepare(ebi2xclk);
return ret;
}
static const struct of_device_id qcom_ebi2_of_match[] = {
{ .compatible = "qcom,msm8660-ebi2", },
{ .compatible = "qcom,apq8060-ebi2", },
{ }
};
static struct platform_driver qcom_ebi2_driver = {
.probe = qcom_ebi2_probe,
.driver = {
.name = "qcom-ebi2",
.of_match_table = qcom_ebi2_of_match,
},
};
module_platform_driver(qcom_ebi2_driver);
MODULE_AUTHOR("Linus Walleij <linus.walleij@linaro.org>");
MODULE_DESCRIPTION("Qualcomm EBI2 driver");
MODULE_LICENSE("GPL");