linux/sound/firewire/bebob/bebob_maudio.c

793 lines
21 KiB
C
Raw Normal View History

ALSA: bebob: Add support for M-Audio usual Firewire series This commit allows this driver to support some models which M-Audio produces with DM1000/DM1000E with usual firmware. They are: - Firewire 410 - Firewire AudioPhile - Firewire Solo - Ozonic - NRV10 - FirewireLightBridge According to a person who worked in BridgeCo, some models are produced with 'Pre-BeBoB'. This means that these products were released before BeBoB was officially produced, and later BeBoB specification was formed. So these models have some quirks. M-Audio usual firmware quirks: - Just after powering on, 'Firewire 410' waits to download firmware. This state is changed when receiving cue. Then bus reset is generated and the device is recognized as a different model with the uploaded firmware. - 'Firewire Audiophile' also waits to download firmware but its vendor id/model id is the same as the one after loading firmware. - The information of channel mapping for MIDI conformant data channel is invalid against BridgeCo specification. This commit adds some codes for these quirks but don't support to upload firmware. This commit also adds specific operations to get metering information. The metering information also includes status of clock synchronization if the model supports to switch source of clock. The specification of FirewireLightBridge is unknown. So in this time, normal operations are applied for this model. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 21:45:25 +08:00
/*
* bebob_maudio.c - a part of driver for BeBoB based devices
*
* Copyright (c) 2013-2014 Takashi Sakamoto
*
* Licensed under the terms of the GNU General Public License, version 2.
*/
#include "./bebob.h"
#include <sound/control.h>
ALSA: bebob: Add support for M-Audio usual Firewire series This commit allows this driver to support some models which M-Audio produces with DM1000/DM1000E with usual firmware. They are: - Firewire 410 - Firewire AudioPhile - Firewire Solo - Ozonic - NRV10 - FirewireLightBridge According to a person who worked in BridgeCo, some models are produced with 'Pre-BeBoB'. This means that these products were released before BeBoB was officially produced, and later BeBoB specification was formed. So these models have some quirks. M-Audio usual firmware quirks: - Just after powering on, 'Firewire 410' waits to download firmware. This state is changed when receiving cue. Then bus reset is generated and the device is recognized as a different model with the uploaded firmware. - 'Firewire Audiophile' also waits to download firmware but its vendor id/model id is the same as the one after loading firmware. - The information of channel mapping for MIDI conformant data channel is invalid against BridgeCo specification. This commit adds some codes for these quirks but don't support to upload firmware. This commit also adds specific operations to get metering information. The metering information also includes status of clock synchronization if the model supports to switch source of clock. The specification of FirewireLightBridge is unknown. So in this time, normal operations are applied for this model. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 21:45:25 +08:00
/*
* Just powering on, Firewire 410/Audiophile/1814 and ProjectMix I/O wait to
ALSA: bebob: Add support for M-Audio usual Firewire series This commit allows this driver to support some models which M-Audio produces with DM1000/DM1000E with usual firmware. They are: - Firewire 410 - Firewire AudioPhile - Firewire Solo - Ozonic - NRV10 - FirewireLightBridge According to a person who worked in BridgeCo, some models are produced with 'Pre-BeBoB'. This means that these products were released before BeBoB was officially produced, and later BeBoB specification was formed. So these models have some quirks. M-Audio usual firmware quirks: - Just after powering on, 'Firewire 410' waits to download firmware. This state is changed when receiving cue. Then bus reset is generated and the device is recognized as a different model with the uploaded firmware. - 'Firewire Audiophile' also waits to download firmware but its vendor id/model id is the same as the one after loading firmware. - The information of channel mapping for MIDI conformant data channel is invalid against BridgeCo specification. This commit adds some codes for these quirks but don't support to upload firmware. This commit also adds specific operations to get metering information. The metering information also includes status of clock synchronization if the model supports to switch source of clock. The specification of FirewireLightBridge is unknown. So in this time, normal operations are applied for this model. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 21:45:25 +08:00
* download firmware blob. To enable these devices, drivers should upload
* firmware blob and send a command to initialize configuration to factory
* settings when completing uploading. Then these devices generate bus reset
* and are recognized as new devices with the firmware.
*
* But with firmware version 5058 or later, the firmware is stored to flash
* memory in the device and drivers can tell bootloader to load the firmware
* by sending a cue. This cue must be sent one time.
*
ALSA: bebob: Add support for M-Audio usual Firewire series This commit allows this driver to support some models which M-Audio produces with DM1000/DM1000E with usual firmware. They are: - Firewire 410 - Firewire AudioPhile - Firewire Solo - Ozonic - NRV10 - FirewireLightBridge According to a person who worked in BridgeCo, some models are produced with 'Pre-BeBoB'. This means that these products were released before BeBoB was officially produced, and later BeBoB specification was formed. So these models have some quirks. M-Audio usual firmware quirks: - Just after powering on, 'Firewire 410' waits to download firmware. This state is changed when receiving cue. Then bus reset is generated and the device is recognized as a different model with the uploaded firmware. - 'Firewire Audiophile' also waits to download firmware but its vendor id/model id is the same as the one after loading firmware. - The information of channel mapping for MIDI conformant data channel is invalid against BridgeCo specification. This commit adds some codes for these quirks but don't support to upload firmware. This commit also adds specific operations to get metering information. The metering information also includes status of clock synchronization if the model supports to switch source of clock. The specification of FirewireLightBridge is unknown. So in this time, normal operations are applied for this model. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 21:45:25 +08:00
* For streaming, both of output and input streams are needed for Firewire 410
* and Ozonic. The single stream is OK for the other devices even if the clock
* source is not SYT-Match (I note no devices use SYT-Match).
*
* Without streaming, the devices except for Firewire Audiophile can mix any
* input and output. For this reason, Audiophile cannot be used as standalone
* mixer.
*
* Firewire 1814 and ProjectMix I/O uses special firmware. It will be freezed
* when receiving any commands which the firmware can't understand. These
* devices utilize completely different system to control. It is some
* write-transaction directly into a certain address. All of addresses for mixer
* functionality is between 0xffc700700000 to 0xffc70070009c.
ALSA: bebob: Add support for M-Audio usual Firewire series This commit allows this driver to support some models which M-Audio produces with DM1000/DM1000E with usual firmware. They are: - Firewire 410 - Firewire AudioPhile - Firewire Solo - Ozonic - NRV10 - FirewireLightBridge According to a person who worked in BridgeCo, some models are produced with 'Pre-BeBoB'. This means that these products were released before BeBoB was officially produced, and later BeBoB specification was formed. So these models have some quirks. M-Audio usual firmware quirks: - Just after powering on, 'Firewire 410' waits to download firmware. This state is changed when receiving cue. Then bus reset is generated and the device is recognized as a different model with the uploaded firmware. - 'Firewire Audiophile' also waits to download firmware but its vendor id/model id is the same as the one after loading firmware. - The information of channel mapping for MIDI conformant data channel is invalid against BridgeCo specification. This commit adds some codes for these quirks but don't support to upload firmware. This commit also adds specific operations to get metering information. The metering information also includes status of clock synchronization if the model supports to switch source of clock. The specification of FirewireLightBridge is unknown. So in this time, normal operations are applied for this model. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 21:45:25 +08:00
*/
/* Offset from information register */
#define INFO_OFFSET_SW_DATE 0x20
/* Bootloader Protocol Version 1 */
#define MAUDIO_BOOTLOADER_CUE1 0x00000001
/*
* Initializing configuration to factory settings (= 0x1101), (swapped in line),
* Command code is zero (= 0x00),
* the number of operands is zero (= 0x00)(at least significant byte)
*/
#define MAUDIO_BOOTLOADER_CUE2 0x01110000
/* padding */
#define MAUDIO_BOOTLOADER_CUE3 0x00000000
#define MAUDIO_SPECIFIC_ADDRESS 0xffc700000000ULL
ALSA: bebob: Add support for M-Audio usual Firewire series This commit allows this driver to support some models which M-Audio produces with DM1000/DM1000E with usual firmware. They are: - Firewire 410 - Firewire AudioPhile - Firewire Solo - Ozonic - NRV10 - FirewireLightBridge According to a person who worked in BridgeCo, some models are produced with 'Pre-BeBoB'. This means that these products were released before BeBoB was officially produced, and later BeBoB specification was formed. So these models have some quirks. M-Audio usual firmware quirks: - Just after powering on, 'Firewire 410' waits to download firmware. This state is changed when receiving cue. Then bus reset is generated and the device is recognized as a different model with the uploaded firmware. - 'Firewire Audiophile' also waits to download firmware but its vendor id/model id is the same as the one after loading firmware. - The information of channel mapping for MIDI conformant data channel is invalid against BridgeCo specification. This commit adds some codes for these quirks but don't support to upload firmware. This commit also adds specific operations to get metering information. The metering information also includes status of clock synchronization if the model supports to switch source of clock. The specification of FirewireLightBridge is unknown. So in this time, normal operations are applied for this model. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 21:45:25 +08:00
#define METER_OFFSET 0x00600000
/* some device has sync info after metering data */
#define METER_SIZE_SPECIAL 84 /* with sync info */
ALSA: bebob: Add support for M-Audio usual Firewire series This commit allows this driver to support some models which M-Audio produces with DM1000/DM1000E with usual firmware. They are: - Firewire 410 - Firewire AudioPhile - Firewire Solo - Ozonic - NRV10 - FirewireLightBridge According to a person who worked in BridgeCo, some models are produced with 'Pre-BeBoB'. This means that these products were released before BeBoB was officially produced, and later BeBoB specification was formed. So these models have some quirks. M-Audio usual firmware quirks: - Just after powering on, 'Firewire 410' waits to download firmware. This state is changed when receiving cue. Then bus reset is generated and the device is recognized as a different model with the uploaded firmware. - 'Firewire Audiophile' also waits to download firmware but its vendor id/model id is the same as the one after loading firmware. - The information of channel mapping for MIDI conformant data channel is invalid against BridgeCo specification. This commit adds some codes for these quirks but don't support to upload firmware. This commit also adds specific operations to get metering information. The metering information also includes status of clock synchronization if the model supports to switch source of clock. The specification of FirewireLightBridge is unknown. So in this time, normal operations are applied for this model. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 21:45:25 +08:00
#define METER_SIZE_FW410 76 /* with sync info */
#define METER_SIZE_AUDIOPHILE 60 /* with sync info */
#define METER_SIZE_SOLO 52 /* with sync info */
#define METER_SIZE_OZONIC 48
#define METER_SIZE_NRV10 80
/* labels for metering */
#define ANA_IN "Analog In"
#define ANA_OUT "Analog Out"
#define DIG_IN "Digital In"
#define SPDIF_IN "S/PDIF In"
#define ADAT_IN "ADAT In"
#define DIG_OUT "Digital Out"
#define SPDIF_OUT "S/PDIF Out"
#define ADAT_OUT "ADAT Out"
#define STRM_IN "Stream In"
#define AUX_OUT "Aux Out"
#define HP_OUT "HP Out"
/* for NRV */
#define UNKNOWN_METER "Unknown"
struct special_params {
bool is1814;
unsigned int clk_src;
unsigned int dig_in_fmt;
unsigned int dig_out_fmt;
unsigned int clk_lock;
struct snd_ctl_elem_id *ctl_id_sync;
};
/*
* For some M-Audio devices, this module just send cue to load firmware. After
* loading, the device generates bus reset and newly detected.
*
* If we make any transactions to load firmware, the operation may failed.
*/
int snd_bebob_maudio_load_firmware(struct fw_unit *unit)
{
struct fw_device *device = fw_parent_device(unit);
int err, rcode;
u64 date;
__be32 cues[3] = {
MAUDIO_BOOTLOADER_CUE1,
MAUDIO_BOOTLOADER_CUE2,
MAUDIO_BOOTLOADER_CUE3
};
/* check date of software used to build */
err = snd_bebob_read_block(unit, INFO_OFFSET_SW_DATE,
&date, sizeof(u64));
if (err < 0)
goto end;
/*
* firmware version 5058 or later has date later than "20070401", but
* 'date' is not null-terminated.
*/
if (date < 0x3230303730343031LL) {
dev_err(&unit->device,
"Use firmware version 5058 or later\n");
err = -ENOSYS;
goto end;
}
rcode = fw_run_transaction(device->card, TCODE_WRITE_BLOCK_REQUEST,
device->node_id, device->generation,
device->max_speed, BEBOB_ADDR_REG_REQ,
cues, sizeof(cues));
if (rcode != RCODE_COMPLETE) {
dev_err(&unit->device,
"Failed to send a cue to load firmware\n");
err = -EIO;
}
end:
return err;
}
ALSA: bebob: Add support for M-Audio usual Firewire series This commit allows this driver to support some models which M-Audio produces with DM1000/DM1000E with usual firmware. They are: - Firewire 410 - Firewire AudioPhile - Firewire Solo - Ozonic - NRV10 - FirewireLightBridge According to a person who worked in BridgeCo, some models are produced with 'Pre-BeBoB'. This means that these products were released before BeBoB was officially produced, and later BeBoB specification was formed. So these models have some quirks. M-Audio usual firmware quirks: - Just after powering on, 'Firewire 410' waits to download firmware. This state is changed when receiving cue. Then bus reset is generated and the device is recognized as a different model with the uploaded firmware. - 'Firewire Audiophile' also waits to download firmware but its vendor id/model id is the same as the one after loading firmware. - The information of channel mapping for MIDI conformant data channel is invalid against BridgeCo specification. This commit adds some codes for these quirks but don't support to upload firmware. This commit also adds specific operations to get metering information. The metering information also includes status of clock synchronization if the model supports to switch source of clock. The specification of FirewireLightBridge is unknown. So in this time, normal operations are applied for this model. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 21:45:25 +08:00
static inline int
get_meter(struct snd_bebob *bebob, void *buf, unsigned int size)
{
return snd_fw_transaction(bebob->unit, TCODE_READ_BLOCK_REQUEST,
MAUDIO_SPECIFIC_ADDRESS + METER_OFFSET,
buf, size, 0);
}
static int
check_clk_sync(struct snd_bebob *bebob, unsigned int size, bool *sync)
{
int err;
u8 *buf;
buf = kmalloc(size, GFP_KERNEL);
if (buf == NULL)
return -ENOMEM;
err = get_meter(bebob, buf, size);
if (err < 0)
goto end;
/* if synced, this value is the same as SFC of FDF in CIP header */
*sync = (buf[size - 2] != 0xff);
end:
kfree(buf);
return err;
}
/*
* dig_fmt: 0x00:S/PDIF, 0x01:ADAT
* clk_lock: 0x00:unlock, 0x01:lock
*/
static int
avc_maudio_set_special_clk(struct snd_bebob *bebob, unsigned int clk_src,
unsigned int dig_in_fmt, unsigned int dig_out_fmt,
unsigned int clk_lock)
{
struct special_params *params = bebob->maudio_special_quirk;
int err;
u8 *buf;
if (amdtp_stream_running(&bebob->rx_stream) ||
amdtp_stream_running(&bebob->tx_stream))
return -EBUSY;
buf = kmalloc(12, GFP_KERNEL);
if (buf == NULL)
return -ENOMEM;
buf[0] = 0x00; /* CONTROL */
buf[1] = 0xff; /* UNIT */
buf[2] = 0x00; /* vendor dependent */
buf[3] = 0x04; /* company ID high */
buf[4] = 0x00; /* company ID middle */
buf[5] = 0x04; /* company ID low */
buf[6] = 0xff & clk_src; /* clock source */
buf[7] = 0xff & dig_in_fmt; /* input digital format */
buf[8] = 0xff & dig_out_fmt; /* output digital format */
buf[9] = 0xff & clk_lock; /* lock these settings */
buf[10] = 0x00; /* padding */
buf[11] = 0x00; /* padding */
err = fcp_avc_transaction(bebob->unit, buf, 12, buf, 12,
BIT(1) | BIT(2) | BIT(3) | BIT(4) |
BIT(5) | BIT(6) | BIT(7) | BIT(8) |
BIT(9));
if ((err > 0) && (err < 10))
err = -EIO;
else if (buf[0] == 0x08) /* NOT IMPLEMENTED */
err = -ENOSYS;
else if (buf[0] == 0x0a) /* REJECTED */
err = -EINVAL;
if (err < 0)
goto end;
params->clk_src = buf[6];
params->dig_in_fmt = buf[7];
params->dig_out_fmt = buf[8];
params->clk_lock = buf[9];
if (params->ctl_id_sync)
snd_ctl_notify(bebob->card, SNDRV_CTL_EVENT_MASK_VALUE,
params->ctl_id_sync);
err = 0;
end:
kfree(buf);
return err;
}
static void
special_stream_formation_set(struct snd_bebob *bebob)
{
static const unsigned int ch_table[2][2][3] = {
/* AMDTP_OUT_STREAM */
{ { 6, 6, 4 }, /* SPDIF */
{ 12, 8, 4 } }, /* ADAT */
/* AMDTP_IN_STREAM */
{ { 10, 10, 2 }, /* SPDIF */
{ 16, 12, 2 } } /* ADAT */
};
struct special_params *params = bebob->maudio_special_quirk;
unsigned int i, max;
max = SND_BEBOB_STRM_FMT_ENTRIES - 1;
if (!params->is1814)
max -= 2;
for (i = 0; i < max; i++) {
bebob->tx_stream_formations[i + 1].pcm =
ch_table[AMDTP_IN_STREAM][params->dig_in_fmt][i / 2];
bebob->tx_stream_formations[i + 1].midi = 1;
bebob->rx_stream_formations[i + 1].pcm =
ch_table[AMDTP_OUT_STREAM][params->dig_out_fmt][i / 2];
bebob->rx_stream_formations[i + 1].midi = 1;
}
}
static int add_special_controls(struct snd_bebob *bebob);
int
snd_bebob_maudio_special_discover(struct snd_bebob *bebob, bool is1814)
{
struct special_params *params;
int err;
params = kzalloc(sizeof(struct special_params), GFP_KERNEL);
if (params == NULL)
return -ENOMEM;
mutex_lock(&bebob->mutex);
bebob->maudio_special_quirk = (void *)params;
params->is1814 = is1814;
/* initialize these parameters because driver is not allowed to ask */
bebob->rx_stream.context = ERR_PTR(-1);
bebob->tx_stream.context = ERR_PTR(-1);
err = avc_maudio_set_special_clk(bebob, 0x03, 0x00, 0x00, 0x00);
if (err < 0) {
dev_err(&bebob->unit->device,
"fail to initialize clock params: %d\n", err);
goto end;
}
err = add_special_controls(bebob);
if (err < 0)
goto end;
special_stream_formation_set(bebob);
if (params->is1814) {
bebob->midi_input_ports = 1;
bebob->midi_output_ports = 1;
} else {
bebob->midi_input_ports = 2;
bebob->midi_output_ports = 2;
}
end:
if (err < 0) {
kfree(params);
bebob->maudio_special_quirk = NULL;
}
mutex_unlock(&bebob->mutex);
return err;
}
/* Input plug shows actual rate. Output plug is needless for this purpose. */
static int special_get_rate(struct snd_bebob *bebob, unsigned int *rate)
{
int err, trials;
trials = 0;
do {
err = avc_general_get_sig_fmt(bebob->unit, rate,
AVC_GENERAL_PLUG_DIR_IN, 0);
} while (err == -EAGAIN && ++trials < 3);
return err;
}
static int special_set_rate(struct snd_bebob *bebob, unsigned int rate)
{
struct special_params *params = bebob->maudio_special_quirk;
int err;
err = avc_general_set_sig_fmt(bebob->unit, rate,
AVC_GENERAL_PLUG_DIR_OUT, 0);
if (err < 0)
goto end;
/*
* Just after changing sampling rate for output, a followed command
* for input is easy to fail. This is a workaround fot this issue.
*/
msleep(100);
err = avc_general_set_sig_fmt(bebob->unit, rate,
AVC_GENERAL_PLUG_DIR_IN, 0);
if (err < 0)
goto end;
if (params->ctl_id_sync)
snd_ctl_notify(bebob->card, SNDRV_CTL_EVENT_MASK_VALUE,
params->ctl_id_sync);
end:
return err;
}
/* Clock source control for special firmware */
static char *const special_clk_labels[] = {
SND_BEBOB_CLOCK_INTERNAL " with Digital Mute", "Digital",
"Word Clock", SND_BEBOB_CLOCK_INTERNAL};
static int special_clk_get(struct snd_bebob *bebob, unsigned int *id)
{
struct special_params *params = bebob->maudio_special_quirk;
*id = params->clk_src;
return 0;
}
static int special_clk_ctl_info(struct snd_kcontrol *kctl,
struct snd_ctl_elem_info *einf)
{
einf->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
einf->count = 1;
einf->value.enumerated.items = ARRAY_SIZE(special_clk_labels);
if (einf->value.enumerated.item >= einf->value.enumerated.items)
einf->value.enumerated.item = einf->value.enumerated.items - 1;
strcpy(einf->value.enumerated.name,
special_clk_labels[einf->value.enumerated.item]);
return 0;
}
static int special_clk_ctl_get(struct snd_kcontrol *kctl,
struct snd_ctl_elem_value *uval)
{
struct snd_bebob *bebob = snd_kcontrol_chip(kctl);
struct special_params *params = bebob->maudio_special_quirk;
uval->value.enumerated.item[0] = params->clk_src;
return 0;
}
static int special_clk_ctl_put(struct snd_kcontrol *kctl,
struct snd_ctl_elem_value *uval)
{
struct snd_bebob *bebob = snd_kcontrol_chip(kctl);
struct special_params *params = bebob->maudio_special_quirk;
int err, id;
id = uval->value.enumerated.item[0];
if (id >= ARRAY_SIZE(special_clk_labels))
return 0;
mutex_lock(&bebob->mutex);
err = avc_maudio_set_special_clk(bebob, id,
params->dig_in_fmt,
params->dig_out_fmt,
params->clk_lock);
mutex_unlock(&bebob->mutex);
return err >= 0;
}
static struct snd_kcontrol_new special_clk_ctl = {
.name = "Clock Source",
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = special_clk_ctl_info,
.get = special_clk_ctl_get,
.put = special_clk_ctl_put
};
/* Clock synchronization control for special firmware */
static int special_sync_ctl_info(struct snd_kcontrol *kctl,
struct snd_ctl_elem_info *einf)
{
einf->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
einf->count = 1;
einf->value.integer.min = 0;
einf->value.integer.max = 1;
return 0;
}
static int special_sync_ctl_get(struct snd_kcontrol *kctl,
struct snd_ctl_elem_value *uval)
{
struct snd_bebob *bebob = snd_kcontrol_chip(kctl);
int err;
bool synced = 0;
err = check_clk_sync(bebob, METER_SIZE_SPECIAL, &synced);
if (err >= 0)
uval->value.integer.value[0] = synced;
return 0;
}
static struct snd_kcontrol_new special_sync_ctl = {
.name = "Sync Status",
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.info = special_sync_ctl_info,
.get = special_sync_ctl_get,
};
/* Digital interface control for special firmware */
static char *const special_dig_iface_labels[] = {
"S/PDIF Optical", "S/PDIF Coaxial", "ADAT Optical"
};
static int special_dig_in_iface_ctl_info(struct snd_kcontrol *kctl,
struct snd_ctl_elem_info *einf)
{
einf->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
einf->count = 1;
einf->value.enumerated.items = ARRAY_SIZE(special_dig_iface_labels);
if (einf->value.enumerated.item >= einf->value.enumerated.items)
einf->value.enumerated.item = einf->value.enumerated.items - 1;
strcpy(einf->value.enumerated.name,
special_dig_iface_labels[einf->value.enumerated.item]);
return 0;
}
static int special_dig_in_iface_ctl_get(struct snd_kcontrol *kctl,
struct snd_ctl_elem_value *uval)
{
struct snd_bebob *bebob = snd_kcontrol_chip(kctl);
struct special_params *params = bebob->maudio_special_quirk;
unsigned int dig_in_iface;
int err, val;
mutex_lock(&bebob->mutex);
err = avc_audio_get_selector(bebob->unit, 0x00, 0x04,
&dig_in_iface);
if (err < 0) {
dev_err(&bebob->unit->device,
"fail to get digital input interface: %d\n", err);
goto end;
}
/* encoded id for user value */
val = (params->dig_in_fmt << 1) | (dig_in_iface & 0x01);
/* for ADAT Optical */
if (val > 2)
val = 2;
uval->value.enumerated.item[0] = val;
end:
mutex_unlock(&bebob->mutex);
return err;
}
static int special_dig_in_iface_ctl_set(struct snd_kcontrol *kctl,
struct snd_ctl_elem_value *uval)
{
struct snd_bebob *bebob = snd_kcontrol_chip(kctl);
struct special_params *params = bebob->maudio_special_quirk;
unsigned int id, dig_in_fmt, dig_in_iface;
int err;
mutex_lock(&bebob->mutex);
id = uval->value.enumerated.item[0];
/* decode user value */
dig_in_fmt = (id >> 1) & 0x01;
dig_in_iface = id & 0x01;
err = avc_maudio_set_special_clk(bebob,
params->clk_src,
dig_in_fmt,
params->dig_out_fmt,
params->clk_lock);
if ((err < 0) || (params->dig_in_fmt > 0)) /* ADAT */
goto end;
err = avc_audio_set_selector(bebob->unit, 0x00, 0x04, dig_in_iface);
if (err < 0)
dev_err(&bebob->unit->device,
"fail to set digital input interface: %d\n", err);
end:
special_stream_formation_set(bebob);
mutex_unlock(&bebob->mutex);
return err;
}
static struct snd_kcontrol_new special_dig_in_iface_ctl = {
.name = "Digital Input Interface",
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = special_dig_in_iface_ctl_info,
.get = special_dig_in_iface_ctl_get,
.put = special_dig_in_iface_ctl_set
};
static int special_dig_out_iface_ctl_info(struct snd_kcontrol *kctl,
struct snd_ctl_elem_info *einf)
{
einf->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
einf->count = 1;
einf->value.enumerated.items = ARRAY_SIZE(special_dig_iface_labels) - 1;
if (einf->value.enumerated.item >= einf->value.enumerated.items)
einf->value.enumerated.item = einf->value.enumerated.items - 1;
strcpy(einf->value.enumerated.name,
special_dig_iface_labels[einf->value.enumerated.item + 1]);
return 0;
}
static int special_dig_out_iface_ctl_get(struct snd_kcontrol *kctl,
struct snd_ctl_elem_value *uval)
{
struct snd_bebob *bebob = snd_kcontrol_chip(kctl);
struct special_params *params = bebob->maudio_special_quirk;
mutex_lock(&bebob->mutex);
uval->value.enumerated.item[0] = params->dig_out_fmt;
mutex_unlock(&bebob->mutex);
return 0;
}
static int special_dig_out_iface_ctl_set(struct snd_kcontrol *kctl,
struct snd_ctl_elem_value *uval)
{
struct snd_bebob *bebob = snd_kcontrol_chip(kctl);
struct special_params *params = bebob->maudio_special_quirk;
unsigned int id;
int err;
mutex_lock(&bebob->mutex);
id = uval->value.enumerated.item[0];
err = avc_maudio_set_special_clk(bebob,
params->clk_src,
params->dig_in_fmt,
id, params->clk_lock);
if (err >= 0)
special_stream_formation_set(bebob);
mutex_unlock(&bebob->mutex);
return err;
}
static struct snd_kcontrol_new special_dig_out_iface_ctl = {
.name = "Digital Output Interface",
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = special_dig_out_iface_ctl_info,
.get = special_dig_out_iface_ctl_get,
.put = special_dig_out_iface_ctl_set
};
static int add_special_controls(struct snd_bebob *bebob)
{
struct snd_kcontrol *kctl;
struct special_params *params = bebob->maudio_special_quirk;
int err;
kctl = snd_ctl_new1(&special_clk_ctl, bebob);
err = snd_ctl_add(bebob->card, kctl);
if (err < 0)
goto end;
kctl = snd_ctl_new1(&special_sync_ctl, bebob);
err = snd_ctl_add(bebob->card, kctl);
if (err < 0)
goto end;
params->ctl_id_sync = &kctl->id;
kctl = snd_ctl_new1(&special_dig_in_iface_ctl, bebob);
err = snd_ctl_add(bebob->card, kctl);
if (err < 0)
goto end;
kctl = snd_ctl_new1(&special_dig_out_iface_ctl, bebob);
err = snd_ctl_add(bebob->card, kctl);
end:
return err;
}
/* Hardware metering for special firmware */
static char *const special_meter_labels[] = {
ANA_IN, ANA_IN, ANA_IN, ANA_IN,
SPDIF_IN,
ADAT_IN, ADAT_IN, ADAT_IN, ADAT_IN,
ANA_OUT, ANA_OUT,
SPDIF_OUT,
ADAT_OUT, ADAT_OUT, ADAT_OUT, ADAT_OUT,
HP_OUT, HP_OUT,
AUX_OUT
};
static int
special_meter_get(struct snd_bebob *bebob, u32 *target, unsigned int size)
{
u16 *buf;
unsigned int i, c, channels;
int err;
channels = ARRAY_SIZE(special_meter_labels) * 2;
if (size < channels * sizeof(u32))
return -EINVAL;
/* omit last 4 bytes because it's clock info. */
buf = kmalloc(METER_SIZE_SPECIAL - 4, GFP_KERNEL);
if (buf == NULL)
return -ENOMEM;
err = get_meter(bebob, (void *)buf, METER_SIZE_SPECIAL - 4);
if (err < 0)
goto end;
/* Its format is u16 and some channels are unknown. */
i = 0;
for (c = 2; c < channels + 2; c++)
target[i++] = be16_to_cpu(buf[c]) << 16;
end:
kfree(buf);
return err;
}
ALSA: bebob: Add support for M-Audio usual Firewire series This commit allows this driver to support some models which M-Audio produces with DM1000/DM1000E with usual firmware. They are: - Firewire 410 - Firewire AudioPhile - Firewire Solo - Ozonic - NRV10 - FirewireLightBridge According to a person who worked in BridgeCo, some models are produced with 'Pre-BeBoB'. This means that these products were released before BeBoB was officially produced, and later BeBoB specification was formed. So these models have some quirks. M-Audio usual firmware quirks: - Just after powering on, 'Firewire 410' waits to download firmware. This state is changed when receiving cue. Then bus reset is generated and the device is recognized as a different model with the uploaded firmware. - 'Firewire Audiophile' also waits to download firmware but its vendor id/model id is the same as the one after loading firmware. - The information of channel mapping for MIDI conformant data channel is invalid against BridgeCo specification. This commit adds some codes for these quirks but don't support to upload firmware. This commit also adds specific operations to get metering information. The metering information also includes status of clock synchronization if the model supports to switch source of clock. The specification of FirewireLightBridge is unknown. So in this time, normal operations are applied for this model. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 21:45:25 +08:00
/* last 4 bytes are omitted because it's clock info. */
static char *const fw410_meter_labels[] = {
ANA_IN, DIG_IN,
ANA_OUT, ANA_OUT, ANA_OUT, ANA_OUT, DIG_OUT,
HP_OUT
};
static char *const audiophile_meter_labels[] = {
ANA_IN, DIG_IN,
ANA_OUT, ANA_OUT, DIG_OUT,
HP_OUT, AUX_OUT,
};
static char *const solo_meter_labels[] = {
ANA_IN, DIG_IN,
STRM_IN, STRM_IN,
ANA_OUT, DIG_OUT
};
/* no clock info */
static char *const ozonic_meter_labels[] = {
ANA_IN, ANA_IN,
STRM_IN, STRM_IN,
ANA_OUT, ANA_OUT
};
/* TODO: need testers. these positions are based on authour's assumption */
static char *const nrv10_meter_labels[] = {
ANA_IN, ANA_IN, ANA_IN, ANA_IN,
DIG_IN,
ANA_OUT, ANA_OUT, ANA_OUT, ANA_OUT,
DIG_IN
};
static int
normal_meter_get(struct snd_bebob *bebob, u32 *buf, unsigned int size)
{
struct snd_bebob_meter_spec *spec = bebob->spec->meter;
unsigned int c, channels;
int err;
channels = spec->num * 2;
if (size < channels * sizeof(u32))
return -EINVAL;
err = get_meter(bebob, (void *)buf, size);
if (err < 0)
goto end;
for (c = 0; c < channels; c++)
be32_to_cpus(&buf[c]);
/* swap stream channels because inverted */
if (spec->labels == solo_meter_labels) {
swap(buf[4], buf[6]);
swap(buf[5], buf[7]);
}
end:
return err;
}
/* for special customized devices */
static struct snd_bebob_rate_spec special_rate_spec = {
.get = &special_get_rate,
.set = &special_set_rate,
};
static struct snd_bebob_clock_spec special_clk_spec = {
.num = ARRAY_SIZE(special_clk_labels),
.labels = special_clk_labels,
.get = &special_clk_get,
};
static struct snd_bebob_meter_spec special_meter_spec = {
.num = ARRAY_SIZE(special_meter_labels),
.labels = special_meter_labels,
.get = &special_meter_get
};
struct snd_bebob_spec maudio_special_spec = {
.clock = &special_clk_spec,
.rate = &special_rate_spec,
.meter = &special_meter_spec
};
ALSA: bebob: Add support for M-Audio usual Firewire series This commit allows this driver to support some models which M-Audio produces with DM1000/DM1000E with usual firmware. They are: - Firewire 410 - Firewire AudioPhile - Firewire Solo - Ozonic - NRV10 - FirewireLightBridge According to a person who worked in BridgeCo, some models are produced with 'Pre-BeBoB'. This means that these products were released before BeBoB was officially produced, and later BeBoB specification was formed. So these models have some quirks. M-Audio usual firmware quirks: - Just after powering on, 'Firewire 410' waits to download firmware. This state is changed when receiving cue. Then bus reset is generated and the device is recognized as a different model with the uploaded firmware. - 'Firewire Audiophile' also waits to download firmware but its vendor id/model id is the same as the one after loading firmware. - The information of channel mapping for MIDI conformant data channel is invalid against BridgeCo specification. This commit adds some codes for these quirks but don't support to upload firmware. This commit also adds specific operations to get metering information. The metering information also includes status of clock synchronization if the model supports to switch source of clock. The specification of FirewireLightBridge is unknown. So in this time, normal operations are applied for this model. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 21:45:25 +08:00
/* Firewire 410 specification */
static struct snd_bebob_rate_spec usual_rate_spec = {
.get = &snd_bebob_stream_get_rate,
.set = &snd_bebob_stream_set_rate,
};
static struct snd_bebob_meter_spec fw410_meter_spec = {
.num = ARRAY_SIZE(fw410_meter_labels),
.labels = fw410_meter_labels,
.get = &normal_meter_get
};
struct snd_bebob_spec maudio_fw410_spec = {
.clock = NULL,
.rate = &usual_rate_spec,
.meter = &fw410_meter_spec
};
/* Firewire Audiophile specification */
static struct snd_bebob_meter_spec audiophile_meter_spec = {
.num = ARRAY_SIZE(audiophile_meter_labels),
.labels = audiophile_meter_labels,
.get = &normal_meter_get
};
struct snd_bebob_spec maudio_audiophile_spec = {
.clock = NULL,
.rate = &usual_rate_spec,
.meter = &audiophile_meter_spec
};
/* Firewire Solo specification */
static struct snd_bebob_meter_spec solo_meter_spec = {
.num = ARRAY_SIZE(solo_meter_labels),
.labels = solo_meter_labels,
.get = &normal_meter_get
};
struct snd_bebob_spec maudio_solo_spec = {
.clock = NULL,
.rate = &usual_rate_spec,
.meter = &solo_meter_spec
};
/* Ozonic specification */
static struct snd_bebob_meter_spec ozonic_meter_spec = {
.num = ARRAY_SIZE(ozonic_meter_labels),
.labels = ozonic_meter_labels,
.get = &normal_meter_get
};
struct snd_bebob_spec maudio_ozonic_spec = {
.clock = NULL,
.rate = &usual_rate_spec,
.meter = &ozonic_meter_spec
};
/* NRV10 specification */
static struct snd_bebob_meter_spec nrv10_meter_spec = {
.num = ARRAY_SIZE(nrv10_meter_labels),
.labels = nrv10_meter_labels,
.get = &normal_meter_get
};
struct snd_bebob_spec maudio_nrv10_spec = {
.clock = NULL,
.rate = &usual_rate_spec,
.meter = &nrv10_meter_spec
};