linux/drivers/tty/serial/sirfsoc_uart.c

849 lines
22 KiB
C
Raw Normal View History

/*
* Driver for CSR SiRFprimaII onboard UARTs.
*
* Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
*
* Licensed under GPLv2 or later.
*/
#include <linux/module.h>
#include <linux/ioport.h>
#include <linux/platform_device.h>
#include <linux/init.h>
#include <linux/sysrq.h>
#include <linux/console.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial_core.h>
#include <linux/serial.h>
#include <linux/clk.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <asm/irq.h>
#include <asm/mach/irq.h>
#include <linux/pinctrl/consumer.h>
#include "sirfsoc_uart.h"
static unsigned int
sirfsoc_uart_pio_tx_chars(struct sirfsoc_uart_port *sirfport, int count);
static unsigned int
sirfsoc_uart_pio_rx_chars(struct uart_port *port, unsigned int max_rx_count);
static struct uart_driver sirfsoc_uart_drv;
static const struct sirfsoc_baudrate_to_regv baudrate_to_regv[] = {
{4000000, 2359296},
{3500000, 1310721},
{3000000, 1572865},
{2500000, 1245186},
{2000000, 1572866},
{1500000, 1245188},
{1152000, 1638404},
{1000000, 1572869},
{921600, 1114120},
{576000, 1245196},
{500000, 1245198},
{460800, 1572876},
{230400, 1310750},
{115200, 1310781},
{57600, 1310843},
{38400, 1114328},
{19200, 1114545},
{9600, 1114979},
};
static struct sirfsoc_uart_port sirfsoc_uart_ports[SIRFSOC_UART_NR] = {
[0] = {
.port = {
.iotype = UPIO_MEM,
.flags = UPF_BOOT_AUTOCONF,
.line = 0,
},
},
[1] = {
.port = {
.iotype = UPIO_MEM,
.flags = UPF_BOOT_AUTOCONF,
.line = 1,
},
},
[2] = {
.port = {
.iotype = UPIO_MEM,
.flags = UPF_BOOT_AUTOCONF,
.line = 2,
},
},
[3] = {
.port = {
.iotype = UPIO_MEM,
.flags = UPF_BOOT_AUTOCONF,
.line = 3,
},
},
[4] = {
.port = {
.iotype = UPIO_MEM,
.flags = UPF_BOOT_AUTOCONF,
.line = 4,
},
},
};
static inline struct sirfsoc_uart_port *to_sirfport(struct uart_port *port)
{
return container_of(port, struct sirfsoc_uart_port, port);
}
static inline unsigned int sirfsoc_uart_tx_empty(struct uart_port *port)
{
unsigned long reg;
reg = rd_regl(port, SIRFUART_TX_FIFO_STATUS);
if (reg & SIRFUART_FIFOEMPTY_MASK(port))
return TIOCSER_TEMT;
else
return 0;
}
static unsigned int sirfsoc_uart_get_mctrl(struct uart_port *port)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
if (!(sirfport->ms_enabled)) {
goto cts_asserted;
} else if (sirfport->hw_flow_ctrl) {
if (!(rd_regl(port, SIRFUART_AFC_CTRL) &
SIRFUART_CTS_IN_STATUS))
goto cts_asserted;
else
goto cts_deasserted;
}
cts_deasserted:
return TIOCM_CAR | TIOCM_DSR;
cts_asserted:
return TIOCM_CAR | TIOCM_DSR | TIOCM_CTS;
}
static void sirfsoc_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
unsigned int assert = mctrl & TIOCM_RTS;
unsigned int val = assert ? SIRFUART_AFC_CTRL_RX_THD : 0x0;
unsigned int current_val;
if (sirfport->hw_flow_ctrl) {
current_val = rd_regl(port, SIRFUART_AFC_CTRL) & ~0xFF;
val |= current_val;
wr_regl(port, SIRFUART_AFC_CTRL, val);
}
}
static void sirfsoc_uart_stop_tx(struct uart_port *port)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
unsigned int regv;
if (!sirfport->is_marco) {
regv = rd_regl(port, SIRFUART_INT_EN);
wr_regl(port, SIRFUART_INT_EN, regv & ~SIRFUART_TX_INT_EN);
} else {
wr_regl(port, SIRFUART_INT_EN_CLR, SIRFUART_TX_INT_EN);
}
}
void sirfsoc_uart_start_tx(struct uart_port *port)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
unsigned long regv;
sirfsoc_uart_pio_tx_chars(sirfport, 1);
wr_regl(port, SIRFUART_TX_FIFO_OP, SIRFUART_TX_FIFO_START);
if (!sirfport->is_marco) {
regv = rd_regl(port, SIRFUART_INT_EN);
wr_regl(port, SIRFUART_INT_EN, regv | SIRFUART_TX_INT_EN);
} else {
wr_regl(port, SIRFUART_INT_EN, SIRFUART_TX_INT_EN);
}
}
static void sirfsoc_uart_stop_rx(struct uart_port *port)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
unsigned long regv;
wr_regl(port, SIRFUART_RX_FIFO_OP, 0);
if (!sirfport->is_marco) {
regv = rd_regl(port, SIRFUART_INT_EN);
wr_regl(port, SIRFUART_INT_EN, regv & ~SIRFUART_RX_IO_INT_EN);
} else {
wr_regl(port, SIRFUART_INT_EN_CLR, SIRFUART_RX_IO_INT_EN);
}
}
static void sirfsoc_uart_disable_ms(struct uart_port *port)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
unsigned long reg;
sirfport->ms_enabled = 0;
if (!sirfport->hw_flow_ctrl)
return;
reg = rd_regl(port, SIRFUART_AFC_CTRL);
wr_regl(port, SIRFUART_AFC_CTRL, reg & ~0x3FF);
if (!sirfport->is_marco) {
reg = rd_regl(port, SIRFUART_INT_EN);
wr_regl(port, SIRFUART_INT_EN, reg & ~SIRFUART_CTS_INT_EN);
} else {
wr_regl(port, SIRFUART_INT_EN_CLR, SIRFUART_CTS_INT_EN);
}
}
static void sirfsoc_uart_enable_ms(struct uart_port *port)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
unsigned long reg;
unsigned long flg;
if (!sirfport->hw_flow_ctrl)
return;
flg = SIRFUART_AFC_RX_EN | SIRFUART_AFC_TX_EN;
reg = rd_regl(port, SIRFUART_AFC_CTRL);
wr_regl(port, SIRFUART_AFC_CTRL, reg | flg);
if (!sirfport->is_marco) {
reg = rd_regl(port, SIRFUART_INT_EN);
wr_regl(port, SIRFUART_INT_EN, reg | SIRFUART_CTS_INT_EN);
} else {
wr_regl(port, SIRFUART_INT_EN, SIRFUART_CTS_INT_EN);
}
uart_handle_cts_change(port,
!(rd_regl(port, SIRFUART_AFC_CTRL) & SIRFUART_CTS_IN_STATUS));
sirfport->ms_enabled = 1;
}
static void sirfsoc_uart_break_ctl(struct uart_port *port, int break_state)
{
unsigned long ulcon = rd_regl(port, SIRFUART_LINE_CTRL);
if (break_state)
ulcon |= SIRFUART_SET_BREAK;
else
ulcon &= ~SIRFUART_SET_BREAK;
wr_regl(port, SIRFUART_LINE_CTRL, ulcon);
}
static unsigned int
sirfsoc_uart_pio_rx_chars(struct uart_port *port, unsigned int max_rx_count)
{
unsigned int ch, rx_count = 0;
while (!(rd_regl(port, SIRFUART_RX_FIFO_STATUS) &
SIRFUART_FIFOEMPTY_MASK(port))) {
ch = rd_regl(port, SIRFUART_RX_FIFO_DATA) | SIRFUART_DUMMY_READ;
if (unlikely(uart_handle_sysrq_char(port, ch)))
continue;
uart_insert_char(port, 0, 0, ch, TTY_NORMAL);
rx_count++;
if (rx_count >= max_rx_count)
break;
}
port->icount.rx += rx_count;
tty_flip_buffer_push(&port->state->port);
return rx_count;
}
static unsigned int
sirfsoc_uart_pio_tx_chars(struct sirfsoc_uart_port *sirfport, int count)
{
struct uart_port *port = &sirfport->port;
struct circ_buf *xmit = &port->state->xmit;
unsigned int num_tx = 0;
while (!uart_circ_empty(xmit) &&
!(rd_regl(port, SIRFUART_TX_FIFO_STATUS) &
SIRFUART_FIFOFULL_MASK(port)) &&
count--) {
wr_regl(port, SIRFUART_TX_FIFO_DATA, xmit->buf[xmit->tail]);
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
port->icount.tx++;
num_tx++;
}
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(port);
return num_tx;
}
static irqreturn_t sirfsoc_uart_isr(int irq, void *dev_id)
{
unsigned long intr_status;
unsigned long cts_status;
unsigned long flag = TTY_NORMAL;
struct sirfsoc_uart_port *sirfport = (struct sirfsoc_uart_port *)dev_id;
struct uart_port *port = &sirfport->port;
struct uart_state *state = port->state;
struct circ_buf *xmit = &port->state->xmit;
spin_lock(&port->lock);
intr_status = rd_regl(port, SIRFUART_INT_STATUS);
wr_regl(port, SIRFUART_INT_STATUS, intr_status);
intr_status &= rd_regl(port, SIRFUART_INT_EN);
if (unlikely(intr_status & (SIRFUART_ERR_INT_STAT))) {
if (intr_status & SIRFUART_RXD_BREAK) {
if (uart_handle_break(port))
goto recv_char;
uart_insert_char(port, intr_status,
SIRFUART_RX_OFLOW, 0, TTY_BREAK);
spin_unlock(&port->lock);
return IRQ_HANDLED;
}
if (intr_status & SIRFUART_RX_OFLOW)
port->icount.overrun++;
if (intr_status & SIRFUART_FRM_ERR) {
port->icount.frame++;
flag = TTY_FRAME;
}
if (intr_status & SIRFUART_PARITY_ERR)
flag = TTY_PARITY;
wr_regl(port, SIRFUART_RX_FIFO_OP, SIRFUART_RX_FIFO_RESET);
wr_regl(port, SIRFUART_RX_FIFO_OP, 0);
wr_regl(port, SIRFUART_RX_FIFO_OP, SIRFUART_RX_FIFO_START);
intr_status &= port->read_status_mask;
uart_insert_char(port, intr_status,
SIRFUART_RX_OFLOW_INT, 0, flag);
}
recv_char:
if (intr_status & SIRFUART_CTS_INT_EN) {
cts_status = !(rd_regl(port, SIRFUART_AFC_CTRL) &
SIRFUART_CTS_IN_STATUS);
if (cts_status != 0) {
uart_handle_cts_change(port, 1);
} else {
uart_handle_cts_change(port, 0);
wake_up_interruptible(&state->port.delta_msr_wait);
}
}
if (intr_status & SIRFUART_RX_IO_INT_EN)
sirfsoc_uart_pio_rx_chars(port, SIRFSOC_UART_IO_RX_MAX_CNT);
if (intr_status & SIRFUART_TX_INT_EN) {
if (uart_circ_empty(xmit) || uart_tx_stopped(port)) {
spin_unlock(&port->lock);
return IRQ_HANDLED;
} else {
sirfsoc_uart_pio_tx_chars(sirfport,
SIRFSOC_UART_IO_TX_REASONABLE_CNT);
if ((uart_circ_empty(xmit)) &&
(rd_regl(port, SIRFUART_TX_FIFO_STATUS) &
SIRFUART_FIFOEMPTY_MASK(port)))
sirfsoc_uart_stop_tx(port);
}
}
spin_unlock(&port->lock);
return IRQ_HANDLED;
}
static void sirfsoc_uart_start_rx(struct uart_port *port)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
if (!sirfport->is_marco) {
unsigned long regv;
regv = rd_regl(port, SIRFUART_INT_EN);
wr_regl(port, SIRFUART_INT_EN, regv | SIRFUART_RX_IO_INT_EN);
} else {
wr_regl(port, SIRFUART_INT_EN, SIRFUART_RX_IO_INT_EN);
}
wr_regl(port, SIRFUART_RX_FIFO_OP, SIRFUART_RX_FIFO_RESET);
wr_regl(port, SIRFUART_RX_FIFO_OP, 0);
wr_regl(port, SIRFUART_RX_FIFO_OP, SIRFUART_RX_FIFO_START);
}
static unsigned int
sirfsoc_calc_sample_div(unsigned long baud_rate,
unsigned long ioclk_rate, unsigned long *setted_baud)
{
unsigned long min_delta = ~0UL;
unsigned short sample_div;
unsigned int regv = 0;
unsigned long ioclk_div;
unsigned long baud_tmp;
int temp_delta;
for (sample_div = SIRF_MIN_SAMPLE_DIV;
sample_div <= SIRF_MAX_SAMPLE_DIV; sample_div++) {
ioclk_div = (ioclk_rate / (baud_rate * (sample_div + 1))) - 1;
if (ioclk_div > SIRF_IOCLK_DIV_MAX)
continue;
baud_tmp = ioclk_rate / ((ioclk_div + 1) * (sample_div + 1));
temp_delta = baud_tmp - baud_rate;
temp_delta = (temp_delta > 0) ? temp_delta : -temp_delta;
if (temp_delta < min_delta) {
regv = regv & (~SIRF_IOCLK_DIV_MASK);
regv = regv | ioclk_div;
regv = regv & (~SIRF_SAMPLE_DIV_MASK);
regv = regv | (sample_div << SIRF_SAMPLE_DIV_SHIFT);
min_delta = temp_delta;
*setted_baud = baud_tmp;
}
}
return regv;
}
static void sirfsoc_uart_set_termios(struct uart_port *port,
struct ktermios *termios,
struct ktermios *old)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
unsigned long config_reg = 0;
unsigned long baud_rate;
unsigned long setted_baud;
unsigned long flags;
unsigned long ic;
unsigned int clk_div_reg = 0;
unsigned long temp_reg_val;
unsigned long rx_time_out;
int threshold_div;
int temp;
switch (termios->c_cflag & CSIZE) {
default:
case CS8:
config_reg |= SIRFUART_DATA_BIT_LEN_8;
break;
case CS7:
config_reg |= SIRFUART_DATA_BIT_LEN_7;
break;
case CS6:
config_reg |= SIRFUART_DATA_BIT_LEN_6;
break;
case CS5:
config_reg |= SIRFUART_DATA_BIT_LEN_5;
break;
}
if (termios->c_cflag & CSTOPB)
config_reg |= SIRFUART_STOP_BIT_LEN_2;
baud_rate = uart_get_baud_rate(port, termios, old, 0, 4000000);
spin_lock_irqsave(&port->lock, flags);
port->read_status_mask = SIRFUART_RX_OFLOW_INT;
port->ignore_status_mask = 0;
/* read flags */
if (termios->c_iflag & INPCK)
port->read_status_mask |=
SIRFUART_FRM_ERR_INT | SIRFUART_PARITY_ERR_INT;
if (termios->c_iflag & (BRKINT | PARMRK))
port->read_status_mask |= SIRFUART_RXD_BREAK_INT;
/* ignore flags */
if (termios->c_iflag & IGNPAR)
port->ignore_status_mask |=
SIRFUART_FRM_ERR_INT | SIRFUART_PARITY_ERR_INT;
if ((termios->c_cflag & CREAD) == 0)
port->ignore_status_mask |= SIRFUART_DUMMY_READ;
/* enable parity if PARENB is set*/
if (termios->c_cflag & PARENB) {
if (termios->c_cflag & CMSPAR) {
if (termios->c_cflag & PARODD)
config_reg |= SIRFUART_STICK_BIT_MARK;
else
config_reg |= SIRFUART_STICK_BIT_SPACE;
} else if (termios->c_cflag & PARODD) {
config_reg |= SIRFUART_STICK_BIT_ODD;
} else {
config_reg |= SIRFUART_STICK_BIT_EVEN;
}
}
/* Hardware Flow Control Settings */
if (UART_ENABLE_MS(port, termios->c_cflag)) {
if (!sirfport->ms_enabled)
sirfsoc_uart_enable_ms(port);
} else {
if (sirfport->ms_enabled)
sirfsoc_uart_disable_ms(port);
}
if (port->uartclk == 150000000) {
/* common rate: fast calculation */
for (ic = 0; ic < SIRF_BAUD_RATE_SUPPORT_NR; ic++)
if (baud_rate == baudrate_to_regv[ic].baud_rate)
clk_div_reg = baudrate_to_regv[ic].reg_val;
}
setted_baud = baud_rate;
/* arbitary rate setting */
if (unlikely(clk_div_reg == 0))
clk_div_reg = sirfsoc_calc_sample_div(baud_rate, port->uartclk,
&setted_baud);
wr_regl(port, SIRFUART_DIVISOR, clk_div_reg);
if (tty_termios_baud_rate(termios))
tty_termios_encode_baud_rate(termios, setted_baud, setted_baud);
/* set receive timeout */
rx_time_out = SIRFSOC_UART_RX_TIMEOUT(baud_rate, 20000);
rx_time_out = (rx_time_out > 0xFFFF) ? 0xFFFF : rx_time_out;
config_reg |= SIRFUART_RECV_TIMEOUT(rx_time_out);
temp_reg_val = rd_regl(port, SIRFUART_TX_FIFO_OP);
wr_regl(port, SIRFUART_RX_FIFO_OP, 0);
wr_regl(port, SIRFUART_TX_FIFO_OP,
temp_reg_val & ~SIRFUART_TX_FIFO_START);
wr_regl(port, SIRFUART_TX_DMA_IO_CTRL, SIRFUART_TX_MODE_IO);
wr_regl(port, SIRFUART_RX_DMA_IO_CTRL, SIRFUART_RX_MODE_IO);
wr_regl(port, SIRFUART_LINE_CTRL, config_reg);
/* Reset Rx/Tx FIFO Threshold level for proper baudrate */
if (baud_rate < 1000000)
threshold_div = 1;
else
threshold_div = 2;
temp = port->line == 1 ? 16 : 64;
wr_regl(port, SIRFUART_TX_FIFO_CTRL, temp / threshold_div);
wr_regl(port, SIRFUART_RX_FIFO_CTRL, temp / threshold_div);
temp_reg_val |= SIRFUART_TX_FIFO_START;
wr_regl(port, SIRFUART_TX_FIFO_OP, temp_reg_val);
uart_update_timeout(port, termios->c_cflag, baud_rate);
sirfsoc_uart_start_rx(port);
wr_regl(port, SIRFUART_TX_RX_EN, SIRFUART_TX_EN | SIRFUART_RX_EN);
spin_unlock_irqrestore(&port->lock, flags);
}
static void startup_uart_controller(struct uart_port *port)
{
unsigned long temp_regv;
int temp;
temp_regv = rd_regl(port, SIRFUART_TX_DMA_IO_CTRL);
wr_regl(port, SIRFUART_TX_DMA_IO_CTRL, temp_regv | SIRFUART_TX_MODE_IO);
temp_regv = rd_regl(port, SIRFUART_RX_DMA_IO_CTRL);
wr_regl(port, SIRFUART_RX_DMA_IO_CTRL, temp_regv | SIRFUART_RX_MODE_IO);
wr_regl(port, SIRFUART_TX_DMA_IO_LEN, 0);
wr_regl(port, SIRFUART_RX_DMA_IO_LEN, 0);
wr_regl(port, SIRFUART_TX_RX_EN, SIRFUART_RX_EN | SIRFUART_TX_EN);
wr_regl(port, SIRFUART_TX_FIFO_OP, SIRFUART_TX_FIFO_RESET);
wr_regl(port, SIRFUART_TX_FIFO_OP, 0);
wr_regl(port, SIRFUART_RX_FIFO_OP, SIRFUART_RX_FIFO_RESET);
wr_regl(port, SIRFUART_RX_FIFO_OP, 0);
temp = port->line == 1 ? 16 : 64;
wr_regl(port, SIRFUART_TX_FIFO_CTRL, temp);
wr_regl(port, SIRFUART_RX_FIFO_CTRL, temp);
}
static int sirfsoc_uart_startup(struct uart_port *port)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
unsigned int index = port->line;
int ret;
set_irq_flags(port->irq, IRQF_VALID | IRQF_NOAUTOEN);
ret = request_irq(port->irq,
sirfsoc_uart_isr,
0,
SIRFUART_PORT_NAME,
sirfport);
if (ret != 0) {
dev_err(port->dev, "UART%d request IRQ line (%d) failed.\n",
index, port->irq);
goto irq_err;
}
startup_uart_controller(port);
enable_irq(port->irq);
irq_err:
return ret;
}
static void sirfsoc_uart_shutdown(struct uart_port *port)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
if (!sirfport->is_marco)
wr_regl(port, SIRFUART_INT_EN, 0);
else
wr_regl(port, SIRFUART_INT_EN_CLR, ~0UL);
free_irq(port->irq, sirfport);
if (sirfport->ms_enabled) {
sirfsoc_uart_disable_ms(port);
sirfport->ms_enabled = 0;
}
}
static const char *sirfsoc_uart_type(struct uart_port *port)
{
return port->type == SIRFSOC_PORT_TYPE ? SIRFUART_PORT_NAME : NULL;
}
static int sirfsoc_uart_request_port(struct uart_port *port)
{
void *ret;
ret = request_mem_region(port->mapbase,
SIRFUART_MAP_SIZE, SIRFUART_PORT_NAME);
return ret ? 0 : -EBUSY;
}
static void sirfsoc_uart_release_port(struct uart_port *port)
{
release_mem_region(port->mapbase, SIRFUART_MAP_SIZE);
}
static void sirfsoc_uart_config_port(struct uart_port *port, int flags)
{
if (flags & UART_CONFIG_TYPE) {
port->type = SIRFSOC_PORT_TYPE;
sirfsoc_uart_request_port(port);
}
}
static struct uart_ops sirfsoc_uart_ops = {
.tx_empty = sirfsoc_uart_tx_empty,
.get_mctrl = sirfsoc_uart_get_mctrl,
.set_mctrl = sirfsoc_uart_set_mctrl,
.stop_tx = sirfsoc_uart_stop_tx,
.start_tx = sirfsoc_uart_start_tx,
.stop_rx = sirfsoc_uart_stop_rx,
.enable_ms = sirfsoc_uart_enable_ms,
.break_ctl = sirfsoc_uart_break_ctl,
.startup = sirfsoc_uart_startup,
.shutdown = sirfsoc_uart_shutdown,
.set_termios = sirfsoc_uart_set_termios,
.type = sirfsoc_uart_type,
.release_port = sirfsoc_uart_release_port,
.request_port = sirfsoc_uart_request_port,
.config_port = sirfsoc_uart_config_port,
};
#ifdef CONFIG_SERIAL_SIRFSOC_CONSOLE
static int __init sirfsoc_uart_console_setup(struct console *co, char *options)
{
unsigned int baud = 115200;
unsigned int bits = 8;
unsigned int parity = 'n';
unsigned int flow = 'n';
struct uart_port *port = &sirfsoc_uart_ports[co->index].port;
if (co->index < 0 || co->index >= SIRFSOC_UART_NR)
return -EINVAL;
if (!port->mapbase)
return -ENODEV;
if (options)
uart_parse_options(options, &baud, &parity, &bits, &flow);
port->cons = co;
return uart_set_options(port, co, baud, parity, bits, flow);
}
static void sirfsoc_uart_console_putchar(struct uart_port *port, int ch)
{
while (rd_regl(port,
SIRFUART_TX_FIFO_STATUS) & SIRFUART_FIFOFULL_MASK(port))
cpu_relax();
wr_regb(port, SIRFUART_TX_FIFO_DATA, ch);
}
static void sirfsoc_uart_console_write(struct console *co, const char *s,
unsigned int count)
{
struct uart_port *port = &sirfsoc_uart_ports[co->index].port;
uart_console_write(port, s, count, sirfsoc_uart_console_putchar);
}
static struct console sirfsoc_uart_console = {
.name = SIRFSOC_UART_NAME,
.device = uart_console_device,
.flags = CON_PRINTBUFFER,
.index = -1,
.write = sirfsoc_uart_console_write,
.setup = sirfsoc_uart_console_setup,
.data = &sirfsoc_uart_drv,
};
static int __init sirfsoc_uart_console_init(void)
{
register_console(&sirfsoc_uart_console);
return 0;
}
console_initcall(sirfsoc_uart_console_init);
#endif
static struct uart_driver sirfsoc_uart_drv = {
.owner = THIS_MODULE,
.driver_name = SIRFUART_PORT_NAME,
.nr = SIRFSOC_UART_NR,
.dev_name = SIRFSOC_UART_NAME,
.major = SIRFSOC_UART_MAJOR,
.minor = SIRFSOC_UART_MINOR,
#ifdef CONFIG_SERIAL_SIRFSOC_CONSOLE
.cons = &sirfsoc_uart_console,
#else
.cons = NULL,
#endif
};
int sirfsoc_uart_probe(struct platform_device *pdev)
{
struct sirfsoc_uart_port *sirfport;
struct uart_port *port;
struct resource *res;
int ret;
if (of_property_read_u32(pdev->dev.of_node, "cell-index", &pdev->id)) {
dev_err(&pdev->dev,
"Unable to find cell-index in uart node.\n");
ret = -EFAULT;
goto err;
}
sirfport = &sirfsoc_uart_ports[pdev->id];
port = &sirfport->port;
port->dev = &pdev->dev;
port->private_data = sirfport;
if (of_device_is_compatible(pdev->dev.of_node, "sirf,marco-uart"))
sirfport->is_marco = true;
if (of_find_property(pdev->dev.of_node, "hw_flow_ctrl", NULL))
sirfport->hw_flow_ctrl = 1;
if (of_property_read_u32(pdev->dev.of_node,
"fifosize",
&port->fifosize)) {
dev_err(&pdev->dev,
"Unable to find fifosize in uart node.\n");
ret = -EFAULT;
goto err;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res == NULL) {
dev_err(&pdev->dev, "Insufficient resources.\n");
ret = -EFAULT;
goto err;
}
port->mapbase = res->start;
port->membase = devm_ioremap(&pdev->dev, res->start, resource_size(res));
if (!port->membase) {
dev_err(&pdev->dev, "Cannot remap resource.\n");
ret = -ENOMEM;
goto err;
}
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (res == NULL) {
dev_err(&pdev->dev, "Insufficient resources.\n");
ret = -EFAULT;
goto err;
}
port->irq = res->start;
if (sirfport->hw_flow_ctrl) {
sirfport->p = pinctrl_get_select_default(&pdev->dev);
if (IS_ERR(sirfport->p)) {
ret = PTR_ERR(sirfport->p);
goto err;
}
}
sirfport->clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(sirfport->clk)) {
ret = PTR_ERR(sirfport->clk);
goto clk_err;
}
clk_prepare_enable(sirfport->clk);
port->uartclk = clk_get_rate(sirfport->clk);
port->ops = &sirfsoc_uart_ops;
spin_lock_init(&port->lock);
platform_set_drvdata(pdev, sirfport);
ret = uart_add_one_port(&sirfsoc_uart_drv, port);
if (ret != 0) {
dev_err(&pdev->dev, "Cannot add UART port(%d).\n", pdev->id);
goto port_err;
}
return 0;
port_err:
clk_disable_unprepare(sirfport->clk);
clk_put(sirfport->clk);
clk_err:
if (sirfport->hw_flow_ctrl)
pinctrl_put(sirfport->p);
err:
return ret;
}
static int sirfsoc_uart_remove(struct platform_device *pdev)
{
struct sirfsoc_uart_port *sirfport = platform_get_drvdata(pdev);
struct uart_port *port = &sirfport->port;
if (sirfport->hw_flow_ctrl)
pinctrl_put(sirfport->p);
clk_disable_unprepare(sirfport->clk);
clk_put(sirfport->clk);
uart_remove_one_port(&sirfsoc_uart_drv, port);
return 0;
}
static int
sirfsoc_uart_suspend(struct platform_device *pdev, pm_message_t state)
{
struct sirfsoc_uart_port *sirfport = platform_get_drvdata(pdev);
struct uart_port *port = &sirfport->port;
uart_suspend_port(&sirfsoc_uart_drv, port);
return 0;
}
static int sirfsoc_uart_resume(struct platform_device *pdev)
{
struct sirfsoc_uart_port *sirfport = platform_get_drvdata(pdev);
struct uart_port *port = &sirfport->port;
uart_resume_port(&sirfsoc_uart_drv, port);
return 0;
}
static struct of_device_id sirfsoc_uart_ids[] = {
{ .compatible = "sirf,prima2-uart", },
{ .compatible = "sirf,marco-uart", },
{}
};
MODULE_DEVICE_TABLE(of, sirfsoc_uart_ids);
static struct platform_driver sirfsoc_uart_driver = {
.probe = sirfsoc_uart_probe,
.remove = sirfsoc_uart_remove,
.suspend = sirfsoc_uart_suspend,
.resume = sirfsoc_uart_resume,
.driver = {
.name = SIRFUART_PORT_NAME,
.owner = THIS_MODULE,
.of_match_table = sirfsoc_uart_ids,
},
};
static int __init sirfsoc_uart_init(void)
{
int ret = 0;
ret = uart_register_driver(&sirfsoc_uart_drv);
if (ret)
goto out;
ret = platform_driver_register(&sirfsoc_uart_driver);
if (ret)
uart_unregister_driver(&sirfsoc_uart_drv);
out:
return ret;
}
module_init(sirfsoc_uart_init);
static void __exit sirfsoc_uart_exit(void)
{
platform_driver_unregister(&sirfsoc_uart_driver);
uart_unregister_driver(&sirfsoc_uart_drv);
}
module_exit(sirfsoc_uart_exit);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Bin Shi <Bin.Shi@csr.com>, Rong Wang<Rong.Wang@csr.com>");
MODULE_DESCRIPTION("CSR SiRFprimaII Uart Driver");