linux/drivers/gpu/drm/i915/intel_runtime_pm.h

143 lines
5.3 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: MIT */
/*
* Copyright © 2019 Intel Corporation
*/
#ifndef __INTEL_RUNTIME_PM_H__
#define __INTEL_RUNTIME_PM_H__
#include <linux/types.h>
#include "intel_display.h"
#include "intel_wakeref.h"
struct drm_i915_private;
struct drm_printer;
struct intel_encoder;
enum i915_drm_suspend_mode {
I915_DRM_SUSPEND_IDLE,
I915_DRM_SUSPEND_MEM,
I915_DRM_SUSPEND_HIBERNATE,
};
void skl_enable_dc6(struct drm_i915_private *dev_priv);
void gen9_sanitize_dc_state(struct drm_i915_private *dev_priv);
void bxt_enable_dc9(struct drm_i915_private *dev_priv);
void bxt_disable_dc9(struct drm_i915_private *dev_priv);
void gen9_enable_dc5(struct drm_i915_private *dev_priv);
void intel_runtime_pm_init_early(struct drm_i915_private *dev_priv);
int intel_power_domains_init(struct drm_i915_private *);
void intel_power_domains_cleanup(struct drm_i915_private *dev_priv);
void intel_power_domains_init_hw(struct drm_i915_private *dev_priv, bool resume);
void intel_power_domains_fini_hw(struct drm_i915_private *dev_priv);
void icl_display_core_init(struct drm_i915_private *dev_priv, bool resume);
void icl_display_core_uninit(struct drm_i915_private *dev_priv);
void intel_power_domains_enable(struct drm_i915_private *dev_priv);
void intel_power_domains_disable(struct drm_i915_private *dev_priv);
void intel_power_domains_suspend(struct drm_i915_private *dev_priv,
enum i915_drm_suspend_mode);
void intel_power_domains_resume(struct drm_i915_private *dev_priv);
void hsw_enable_pc8(struct drm_i915_private *dev_priv);
void hsw_disable_pc8(struct drm_i915_private *dev_priv);
void bxt_display_core_init(struct drm_i915_private *dev_priv, bool resume);
void bxt_display_core_uninit(struct drm_i915_private *dev_priv);
void intel_runtime_pm_enable(struct drm_i915_private *dev_priv);
void intel_runtime_pm_disable(struct drm_i915_private *dev_priv);
void intel_runtime_pm_cleanup(struct drm_i915_private *dev_priv);
const char *
intel_display_power_domain_str(enum intel_display_power_domain domain);
bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain);
bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain);
intel_wakeref_t intel_display_power_get(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain);
intel_wakeref_t
intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain);
void intel_display_power_put_unchecked(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain);
drm/i915: Add support for asynchronous display power disabling By disabling a power domain asynchronously we can restrict holding a reference on that power domain to the actual code sequence that requires the power to be on for the HW access it's doing, by also avoiding unneeded on-off-on togglings of the power domain (since the disabling happens with a delay). One benefit is potential power saving due to the following two reasons: 1. The fact that we will now be holding the reference only for the necessary duration by the end of the patchset. While simply not delaying the disabling has the same benefit, it has the problem that frequent on-off-on power switching has its own power cost (see the 2. point below) and the debug trace for power well on/off events will cause a lot of dmesg spam (see details about this further below). 2. Avoiding the power cost of freuqent on-off-on power switching. This requires us to find the optimal disabling delay based on the measured power cost of on->off and off->on switching of each power well vs. the power of keeping the given power well on. In this patchset I'm not providing this optimal delay for two reasons: a) I don't have the means yet to perform the measurement (with high enough signal-to-noise ratio, or with the help of an energy counter that takes switching into account). I'm currently looking for a way to measure this. b) Before reducing the disabling delay we need an alternative way for debug tracing powerwell on/off events. Simply avoiding/throttling the debug messages is not a solution, see further below. Note that even in the case where we can't measure any considerable power cost of frequent on-off switching of powerwells, it still would make sense to do the disabling asynchronously (with 0 delay) to avoid blocking on the disabling. On VLV I measured this disabling time overhead to be 1ms on average with a worst case of 4ms. In the case of the AUX power domains on ICL we would also need to keep the sequence where we hold the power reference short, the way it would be by the end of this patchset where we hold it only for the actual AUX transfer. Anything else would make the locking we need for ICL TypeC ports (whenever we hold a reference on any AUX power domain) rather problematic, adding for instance unnecessary lockdep dependencies to the required TypeC port lock. I chose the disabling delay to be 100msec for now to avoid the unneeded toggling (and so not to introduce dmesg spamming) in the DP MST sideband signaling code. We could optimize this delay later, once we have the means to measure the switching power cost (see above). Note that simply removing/throttling the debug tracing for power well on/off events is not a solution. We need to know the exact spots of these events and cannot rely only on incorrect register accesses caught (due to not holding a wakeref at the time of access). Incorrect powerwell enabling/disabling could lead to other problems, for instance we need to keep certain powerwells enabled for the duration of modesets and AUX transfers. v2: - Clarify the commit log parts about power cost measurement and the problem of simply removing/throttling debug tracing. (Chris) - Optimize out local wakeref vars at intel_runtime_pm_put_raw() and intel_display_power_put_async() call sites if CONFIG_DRM_I915_DEBUG_RUNTIME_PM=n. (Chris) - Rebased on v2 of the wakeref w/o power-on guarantee patch. - Add missing docbook headers. v3: - Checkpatch spelling/missing-empty-line fix. v4: - Fix unintended local wakeref var optimization when using call-arguments with side-effects, by using inline funcs instead of macros. In this patch in particular this will fix the intel_display_power_grab_async_put_ref()->intel_runtime_pm_put_raw() call). No size change in practice (would be the same disregarding the corresponding change in intel_display_power_grab_async_put_ref()): $ size i915-macro.ko text data bss dec hex filename 2455190 105890 10272 2571352 273c58 i915-macro.ko $ size i915-inline.ko text data bss dec hex filename 2455195 105890 10272 2571357 273c5d i915-inline.ko Kudos to Stan for reporting the raw-wakeref WARNs this issue caused. His config has CONFIG_DRM_I915_DEBUG_RUNTIME_PM=n, which I didn't retest after v1, and we are also not testing this config in CI. Now tested both with CONFIG_DRM_I915_DEBUG_RUNTIME_PM=y/n on ICL, connecting both Chamelium and regular DP, HDMI sinks. Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Ville Syrjala <ville.syrjala@linux.intel.com> Cc: Stanislav Lisovskiy <stanislav.lisovskiy@intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: https://patchwork.freedesktop.org/patch/msgid/20190513192533.12586-1-imre.deak@intel.com
2019-05-14 03:25:33 +08:00
void __intel_display_power_put_async(struct drm_i915_private *i915,
enum intel_display_power_domain domain,
intel_wakeref_t wakeref);
void intel_display_power_flush_work(struct drm_i915_private *i915);
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
void intel_display_power_put(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain,
intel_wakeref_t wakeref);
drm/i915: Add support for asynchronous display power disabling By disabling a power domain asynchronously we can restrict holding a reference on that power domain to the actual code sequence that requires the power to be on for the HW access it's doing, by also avoiding unneeded on-off-on togglings of the power domain (since the disabling happens with a delay). One benefit is potential power saving due to the following two reasons: 1. The fact that we will now be holding the reference only for the necessary duration by the end of the patchset. While simply not delaying the disabling has the same benefit, it has the problem that frequent on-off-on power switching has its own power cost (see the 2. point below) and the debug trace for power well on/off events will cause a lot of dmesg spam (see details about this further below). 2. Avoiding the power cost of freuqent on-off-on power switching. This requires us to find the optimal disabling delay based on the measured power cost of on->off and off->on switching of each power well vs. the power of keeping the given power well on. In this patchset I'm not providing this optimal delay for two reasons: a) I don't have the means yet to perform the measurement (with high enough signal-to-noise ratio, or with the help of an energy counter that takes switching into account). I'm currently looking for a way to measure this. b) Before reducing the disabling delay we need an alternative way for debug tracing powerwell on/off events. Simply avoiding/throttling the debug messages is not a solution, see further below. Note that even in the case where we can't measure any considerable power cost of frequent on-off switching of powerwells, it still would make sense to do the disabling asynchronously (with 0 delay) to avoid blocking on the disabling. On VLV I measured this disabling time overhead to be 1ms on average with a worst case of 4ms. In the case of the AUX power domains on ICL we would also need to keep the sequence where we hold the power reference short, the way it would be by the end of this patchset where we hold it only for the actual AUX transfer. Anything else would make the locking we need for ICL TypeC ports (whenever we hold a reference on any AUX power domain) rather problematic, adding for instance unnecessary lockdep dependencies to the required TypeC port lock. I chose the disabling delay to be 100msec for now to avoid the unneeded toggling (and so not to introduce dmesg spamming) in the DP MST sideband signaling code. We could optimize this delay later, once we have the means to measure the switching power cost (see above). Note that simply removing/throttling the debug tracing for power well on/off events is not a solution. We need to know the exact spots of these events and cannot rely only on incorrect register accesses caught (due to not holding a wakeref at the time of access). Incorrect powerwell enabling/disabling could lead to other problems, for instance we need to keep certain powerwells enabled for the duration of modesets and AUX transfers. v2: - Clarify the commit log parts about power cost measurement and the problem of simply removing/throttling debug tracing. (Chris) - Optimize out local wakeref vars at intel_runtime_pm_put_raw() and intel_display_power_put_async() call sites if CONFIG_DRM_I915_DEBUG_RUNTIME_PM=n. (Chris) - Rebased on v2 of the wakeref w/o power-on guarantee patch. - Add missing docbook headers. v3: - Checkpatch spelling/missing-empty-line fix. v4: - Fix unintended local wakeref var optimization when using call-arguments with side-effects, by using inline funcs instead of macros. In this patch in particular this will fix the intel_display_power_grab_async_put_ref()->intel_runtime_pm_put_raw() call). No size change in practice (would be the same disregarding the corresponding change in intel_display_power_grab_async_put_ref()): $ size i915-macro.ko text data bss dec hex filename 2455190 105890 10272 2571352 273c58 i915-macro.ko $ size i915-inline.ko text data bss dec hex filename 2455195 105890 10272 2571357 273c5d i915-inline.ko Kudos to Stan for reporting the raw-wakeref WARNs this issue caused. His config has CONFIG_DRM_I915_DEBUG_RUNTIME_PM=n, which I didn't retest after v1, and we are also not testing this config in CI. Now tested both with CONFIG_DRM_I915_DEBUG_RUNTIME_PM=y/n on ICL, connecting both Chamelium and regular DP, HDMI sinks. Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Ville Syrjala <ville.syrjala@linux.intel.com> Cc: Stanislav Lisovskiy <stanislav.lisovskiy@intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: https://patchwork.freedesktop.org/patch/msgid/20190513192533.12586-1-imre.deak@intel.com
2019-05-14 03:25:33 +08:00
static inline void
intel_display_power_put_async(struct drm_i915_private *i915,
enum intel_display_power_domain domain,
intel_wakeref_t wakeref)
{
__intel_display_power_put_async(i915, domain, wakeref);
}
#else
drm/i915: Add support for asynchronous display power disabling By disabling a power domain asynchronously we can restrict holding a reference on that power domain to the actual code sequence that requires the power to be on for the HW access it's doing, by also avoiding unneeded on-off-on togglings of the power domain (since the disabling happens with a delay). One benefit is potential power saving due to the following two reasons: 1. The fact that we will now be holding the reference only for the necessary duration by the end of the patchset. While simply not delaying the disabling has the same benefit, it has the problem that frequent on-off-on power switching has its own power cost (see the 2. point below) and the debug trace for power well on/off events will cause a lot of dmesg spam (see details about this further below). 2. Avoiding the power cost of freuqent on-off-on power switching. This requires us to find the optimal disabling delay based on the measured power cost of on->off and off->on switching of each power well vs. the power of keeping the given power well on. In this patchset I'm not providing this optimal delay for two reasons: a) I don't have the means yet to perform the measurement (with high enough signal-to-noise ratio, or with the help of an energy counter that takes switching into account). I'm currently looking for a way to measure this. b) Before reducing the disabling delay we need an alternative way for debug tracing powerwell on/off events. Simply avoiding/throttling the debug messages is not a solution, see further below. Note that even in the case where we can't measure any considerable power cost of frequent on-off switching of powerwells, it still would make sense to do the disabling asynchronously (with 0 delay) to avoid blocking on the disabling. On VLV I measured this disabling time overhead to be 1ms on average with a worst case of 4ms. In the case of the AUX power domains on ICL we would also need to keep the sequence where we hold the power reference short, the way it would be by the end of this patchset where we hold it only for the actual AUX transfer. Anything else would make the locking we need for ICL TypeC ports (whenever we hold a reference on any AUX power domain) rather problematic, adding for instance unnecessary lockdep dependencies to the required TypeC port lock. I chose the disabling delay to be 100msec for now to avoid the unneeded toggling (and so not to introduce dmesg spamming) in the DP MST sideband signaling code. We could optimize this delay later, once we have the means to measure the switching power cost (see above). Note that simply removing/throttling the debug tracing for power well on/off events is not a solution. We need to know the exact spots of these events and cannot rely only on incorrect register accesses caught (due to not holding a wakeref at the time of access). Incorrect powerwell enabling/disabling could lead to other problems, for instance we need to keep certain powerwells enabled for the duration of modesets and AUX transfers. v2: - Clarify the commit log parts about power cost measurement and the problem of simply removing/throttling debug tracing. (Chris) - Optimize out local wakeref vars at intel_runtime_pm_put_raw() and intel_display_power_put_async() call sites if CONFIG_DRM_I915_DEBUG_RUNTIME_PM=n. (Chris) - Rebased on v2 of the wakeref w/o power-on guarantee patch. - Add missing docbook headers. v3: - Checkpatch spelling/missing-empty-line fix. v4: - Fix unintended local wakeref var optimization when using call-arguments with side-effects, by using inline funcs instead of macros. In this patch in particular this will fix the intel_display_power_grab_async_put_ref()->intel_runtime_pm_put_raw() call). No size change in practice (would be the same disregarding the corresponding change in intel_display_power_grab_async_put_ref()): $ size i915-macro.ko text data bss dec hex filename 2455190 105890 10272 2571352 273c58 i915-macro.ko $ size i915-inline.ko text data bss dec hex filename 2455195 105890 10272 2571357 273c5d i915-inline.ko Kudos to Stan for reporting the raw-wakeref WARNs this issue caused. His config has CONFIG_DRM_I915_DEBUG_RUNTIME_PM=n, which I didn't retest after v1, and we are also not testing this config in CI. Now tested both with CONFIG_DRM_I915_DEBUG_RUNTIME_PM=y/n on ICL, connecting both Chamelium and regular DP, HDMI sinks. Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Ville Syrjala <ville.syrjala@linux.intel.com> Cc: Stanislav Lisovskiy <stanislav.lisovskiy@intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: https://patchwork.freedesktop.org/patch/msgid/20190513192533.12586-1-imre.deak@intel.com
2019-05-14 03:25:33 +08:00
static inline void
intel_display_power_put(struct drm_i915_private *i915,
enum intel_display_power_domain domain,
intel_wakeref_t wakeref)
{
intel_display_power_put_unchecked(i915, domain);
}
static inline void
intel_display_power_put_async(struct drm_i915_private *i915,
enum intel_display_power_domain domain,
intel_wakeref_t wakeref)
{
__intel_display_power_put_async(i915, domain, -1);
}
#endif
#define with_intel_display_power(i915, domain, wf) \
for ((wf) = intel_display_power_get((i915), (domain)); (wf); \
intel_display_power_put_async((i915), (domain), (wf)), (wf) = 0)
void icl_dbuf_slices_update(struct drm_i915_private *dev_priv,
u8 req_slices);
intel_wakeref_t intel_runtime_pm_get(struct drm_i915_private *i915);
intel_wakeref_t intel_runtime_pm_get_if_in_use(struct drm_i915_private *i915);
intel_wakeref_t intel_runtime_pm_get_noresume(struct drm_i915_private *i915);
#define with_intel_runtime_pm(i915, wf) \
for ((wf) = intel_runtime_pm_get(i915); (wf); \
intel_runtime_pm_put((i915), (wf)), (wf) = 0)
#define with_intel_runtime_pm_if_in_use(i915, wf) \
for ((wf) = intel_runtime_pm_get_if_in_use(i915); (wf); \
intel_runtime_pm_put((i915), (wf)), (wf) = 0)
void intel_runtime_pm_put_unchecked(struct drm_i915_private *i915);
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
void intel_runtime_pm_put(struct drm_i915_private *i915, intel_wakeref_t wref);
#else
drm/i915: Add support for asynchronous display power disabling By disabling a power domain asynchronously we can restrict holding a reference on that power domain to the actual code sequence that requires the power to be on for the HW access it's doing, by also avoiding unneeded on-off-on togglings of the power domain (since the disabling happens with a delay). One benefit is potential power saving due to the following two reasons: 1. The fact that we will now be holding the reference only for the necessary duration by the end of the patchset. While simply not delaying the disabling has the same benefit, it has the problem that frequent on-off-on power switching has its own power cost (see the 2. point below) and the debug trace for power well on/off events will cause a lot of dmesg spam (see details about this further below). 2. Avoiding the power cost of freuqent on-off-on power switching. This requires us to find the optimal disabling delay based on the measured power cost of on->off and off->on switching of each power well vs. the power of keeping the given power well on. In this patchset I'm not providing this optimal delay for two reasons: a) I don't have the means yet to perform the measurement (with high enough signal-to-noise ratio, or with the help of an energy counter that takes switching into account). I'm currently looking for a way to measure this. b) Before reducing the disabling delay we need an alternative way for debug tracing powerwell on/off events. Simply avoiding/throttling the debug messages is not a solution, see further below. Note that even in the case where we can't measure any considerable power cost of frequent on-off switching of powerwells, it still would make sense to do the disabling asynchronously (with 0 delay) to avoid blocking on the disabling. On VLV I measured this disabling time overhead to be 1ms on average with a worst case of 4ms. In the case of the AUX power domains on ICL we would also need to keep the sequence where we hold the power reference short, the way it would be by the end of this patchset where we hold it only for the actual AUX transfer. Anything else would make the locking we need for ICL TypeC ports (whenever we hold a reference on any AUX power domain) rather problematic, adding for instance unnecessary lockdep dependencies to the required TypeC port lock. I chose the disabling delay to be 100msec for now to avoid the unneeded toggling (and so not to introduce dmesg spamming) in the DP MST sideband signaling code. We could optimize this delay later, once we have the means to measure the switching power cost (see above). Note that simply removing/throttling the debug tracing for power well on/off events is not a solution. We need to know the exact spots of these events and cannot rely only on incorrect register accesses caught (due to not holding a wakeref at the time of access). Incorrect powerwell enabling/disabling could lead to other problems, for instance we need to keep certain powerwells enabled for the duration of modesets and AUX transfers. v2: - Clarify the commit log parts about power cost measurement and the problem of simply removing/throttling debug tracing. (Chris) - Optimize out local wakeref vars at intel_runtime_pm_put_raw() and intel_display_power_put_async() call sites if CONFIG_DRM_I915_DEBUG_RUNTIME_PM=n. (Chris) - Rebased on v2 of the wakeref w/o power-on guarantee patch. - Add missing docbook headers. v3: - Checkpatch spelling/missing-empty-line fix. v4: - Fix unintended local wakeref var optimization when using call-arguments with side-effects, by using inline funcs instead of macros. In this patch in particular this will fix the intel_display_power_grab_async_put_ref()->intel_runtime_pm_put_raw() call). No size change in practice (would be the same disregarding the corresponding change in intel_display_power_grab_async_put_ref()): $ size i915-macro.ko text data bss dec hex filename 2455190 105890 10272 2571352 273c58 i915-macro.ko $ size i915-inline.ko text data bss dec hex filename 2455195 105890 10272 2571357 273c5d i915-inline.ko Kudos to Stan for reporting the raw-wakeref WARNs this issue caused. His config has CONFIG_DRM_I915_DEBUG_RUNTIME_PM=n, which I didn't retest after v1, and we are also not testing this config in CI. Now tested both with CONFIG_DRM_I915_DEBUG_RUNTIME_PM=y/n on ICL, connecting both Chamelium and regular DP, HDMI sinks. Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Ville Syrjala <ville.syrjala@linux.intel.com> Cc: Stanislav Lisovskiy <stanislav.lisovskiy@intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: https://patchwork.freedesktop.org/patch/msgid/20190513192533.12586-1-imre.deak@intel.com
2019-05-14 03:25:33 +08:00
static inline void
intel_runtime_pm_put(struct drm_i915_private *i915, intel_wakeref_t wref)
{
intel_runtime_pm_put_unchecked(i915);
}
#endif
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
void print_intel_runtime_pm_wakeref(struct drm_i915_private *i915,
struct drm_printer *p);
#else
static inline void print_intel_runtime_pm_wakeref(struct drm_i915_private *i915,
struct drm_printer *p)
{
}
#endif
void chv_phy_powergate_lanes(struct intel_encoder *encoder,
bool override, unsigned int mask);
bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
enum dpio_channel ch, bool override);
#endif /* __INTEL_RUNTIME_PM_H__ */