linux/net/ieee802154/wpan-class.c

227 lines
5.1 KiB
C
Raw Normal View History

/*
* Copyright (C) 2007, 2008, 2009 Siemens AG
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
*/
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <net/wpan-phy.h>
#include "ieee802154.h"
#define MASTER_SHOW_COMPLEX(name, format_string, args...) \
static ssize_t name ## _show(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
struct wpan_phy *phy = container_of(dev, struct wpan_phy, dev); \
int ret; \
\
mutex_lock(&phy->pib_lock); \
ret = snprintf(buf, PAGE_SIZE, format_string "\n", args); \
mutex_unlock(&phy->pib_lock); \
return ret; \
} \
static DEVICE_ATTR_RO(name);
#define MASTER_SHOW(field, format_string) \
MASTER_SHOW_COMPLEX(field, format_string, phy->field)
MASTER_SHOW(current_channel, "%d");
MASTER_SHOW(current_page, "%d");
MASTER_SHOW(transmit_power, "%d +- 1 dB");
MASTER_SHOW(cca_mode, "%d");
static ssize_t channels_supported_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct wpan_phy *phy = container_of(dev, struct wpan_phy, dev);
int ret;
int i, len = 0;
mutex_lock(&phy->pib_lock);
for (i = 0; i < 32; i++) {
ret = snprintf(buf + len, PAGE_SIZE - len,
"%#09x\n", phy->channels_supported[i]);
if (ret < 0)
break;
len += ret;
}
mutex_unlock(&phy->pib_lock);
return len;
}
static DEVICE_ATTR_RO(channels_supported);
static struct attribute *pmib_attrs[] = {
&dev_attr_current_channel.attr,
&dev_attr_current_page.attr,
&dev_attr_channels_supported.attr,
&dev_attr_transmit_power.attr,
&dev_attr_cca_mode.attr,
NULL,
};
ATTRIBUTE_GROUPS(pmib);
static void wpan_phy_release(struct device *d)
{
struct wpan_phy *phy = container_of(d, struct wpan_phy, dev);
kfree(phy);
}
static struct class wpan_phy_class = {
.name = "ieee802154",
.dev_release = wpan_phy_release,
.dev_groups = pmib_groups,
};
static DEFINE_MUTEX(wpan_phy_mutex);
static int wpan_phy_idx;
static int wpan_phy_match(struct device *dev, const void *data)
{
return !strcmp(dev_name(dev), (const char *)data);
}
struct wpan_phy *wpan_phy_find(const char *str)
{
struct device *dev;
if (WARN_ON(!str))
return NULL;
dev = class_find_device(&wpan_phy_class, NULL, str, wpan_phy_match);
if (!dev)
return NULL;
return container_of(dev, struct wpan_phy, dev);
}
EXPORT_SYMBOL(wpan_phy_find);
struct wpan_phy_iter_data {
int (*fn)(struct wpan_phy *phy, void *data);
void *data;
};
static int wpan_phy_iter(struct device *dev, void *_data)
{
struct wpan_phy_iter_data *wpid = _data;
struct wpan_phy *phy = container_of(dev, struct wpan_phy, dev);
return wpid->fn(phy, wpid->data);
}
int wpan_phy_for_each(int (*fn)(struct wpan_phy *phy, void *data),
void *data)
{
struct wpan_phy_iter_data wpid = {
.fn = fn,
.data = data,
};
return class_for_each_device(&wpan_phy_class, NULL,
&wpid, wpan_phy_iter);
}
EXPORT_SYMBOL(wpan_phy_for_each);
static int wpan_phy_idx_valid(int idx)
{
return idx >= 0;
}
struct wpan_phy *wpan_phy_alloc(size_t priv_size)
{
struct wpan_phy *phy = kzalloc(sizeof(*phy) + priv_size,
GFP_KERNEL);
if (!phy)
goto out;
mutex_lock(&wpan_phy_mutex);
phy->idx = wpan_phy_idx++;
if (unlikely(!wpan_phy_idx_valid(phy->idx))) {
wpan_phy_idx--;
mutex_unlock(&wpan_phy_mutex);
kfree(phy);
goto out;
}
mutex_unlock(&wpan_phy_mutex);
mutex_init(&phy->pib_lock);
device_initialize(&phy->dev);
dev_set_name(&phy->dev, "wpan-phy%d", phy->idx);
phy->dev.class = &wpan_phy_class;
phy->current_channel = -1; /* not initialised */
phy->current_page = 0; /* for compatibility */
return phy;
out:
return NULL;
}
EXPORT_SYMBOL(wpan_phy_alloc);
int wpan_phy_register(struct wpan_phy *phy)
{
return device_add(&phy->dev);
}
EXPORT_SYMBOL(wpan_phy_register);
void wpan_phy_unregister(struct wpan_phy *phy)
{
device_del(&phy->dev);
}
EXPORT_SYMBOL(wpan_phy_unregister);
void wpan_phy_free(struct wpan_phy *phy)
{
put_device(&phy->dev);
}
EXPORT_SYMBOL(wpan_phy_free);
static int __init wpan_phy_class_init(void)
{
int rc;
rc = class_register(&wpan_phy_class);
if (rc)
goto err;
rc = ieee802154_nl_init();
if (rc)
goto err_nl;
return 0;
err_nl:
class_unregister(&wpan_phy_class);
err:
return rc;
}
subsys_initcall(wpan_phy_class_init);
static void __exit wpan_phy_class_exit(void)
{
ieee802154_nl_exit();
class_unregister(&wpan_phy_class);
}
module_exit(wpan_phy_class_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("IEEE 802.15.4 configuration interface");
MODULE_AUTHOR("Dmitry Eremin-Solenikov");