linux/arch/arm64/kernel/mte.c

182 lines
3.9 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2020 ARM Ltd.
*/
#include <linux/bitops.h>
#include <linux/mm.h>
#include <linux/prctl.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/thread_info.h>
#include <asm/cpufeature.h>
#include <asm/mte.h>
#include <asm/sysreg.h>
void mte_sync_tags(pte_t *ptep, pte_t pte)
{
struct page *page = pte_page(pte);
long i, nr_pages = compound_nr(page);
/* if PG_mte_tagged is set, tags have already been initialised */
for (i = 0; i < nr_pages; i++, page++) {
if (!test_and_set_bit(PG_mte_tagged, &page->flags))
mte_clear_page_tags(page_address(page));
}
}
int memcmp_pages(struct page *page1, struct page *page2)
{
char *addr1, *addr2;
int ret;
addr1 = page_address(page1);
addr2 = page_address(page2);
ret = memcmp(addr1, addr2, PAGE_SIZE);
if (!system_supports_mte() || ret)
return ret;
/*
* If the page content is identical but at least one of the pages is
* tagged, return non-zero to avoid KSM merging. If only one of the
* pages is tagged, set_pte_at() may zero or change the tags of the
* other page via mte_sync_tags().
*/
if (test_bit(PG_mte_tagged, &page1->flags) ||
test_bit(PG_mte_tagged, &page2->flags))
return addr1 != addr2;
return ret;
}
static void update_sctlr_el1_tcf0(u64 tcf0)
{
/* ISB required for the kernel uaccess routines */
sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF0_MASK, tcf0);
isb();
}
static void set_sctlr_el1_tcf0(u64 tcf0)
{
/*
* mte_thread_switch() checks current->thread.sctlr_tcf0 as an
* optimisation. Disable preemption so that it does not see
* the variable update before the SCTLR_EL1.TCF0 one.
*/
preempt_disable();
current->thread.sctlr_tcf0 = tcf0;
update_sctlr_el1_tcf0(tcf0);
preempt_enable();
}
static void update_gcr_el1_excl(u64 incl)
{
u64 excl = ~incl & SYS_GCR_EL1_EXCL_MASK;
/*
* Note that 'incl' is an include mask (controlled by the user via
* prctl()) while GCR_EL1 accepts an exclude mask.
* No need for ISB since this only affects EL0 currently, implicit
* with ERET.
*/
sysreg_clear_set_s(SYS_GCR_EL1, SYS_GCR_EL1_EXCL_MASK, excl);
}
static void set_gcr_el1_excl(u64 incl)
{
current->thread.gcr_user_incl = incl;
update_gcr_el1_excl(incl);
}
void flush_mte_state(void)
{
if (!system_supports_mte())
return;
/* clear any pending asynchronous tag fault */
dsb(ish);
write_sysreg_s(0, SYS_TFSRE0_EL1);
clear_thread_flag(TIF_MTE_ASYNC_FAULT);
/* disable tag checking */
set_sctlr_el1_tcf0(SCTLR_EL1_TCF0_NONE);
/* reset tag generation mask */
set_gcr_el1_excl(0);
}
void mte_thread_switch(struct task_struct *next)
{
if (!system_supports_mte())
return;
/* avoid expensive SCTLR_EL1 accesses if no change */
if (current->thread.sctlr_tcf0 != next->thread.sctlr_tcf0)
update_sctlr_el1_tcf0(next->thread.sctlr_tcf0);
update_gcr_el1_excl(next->thread.gcr_user_incl);
}
void mte_suspend_exit(void)
{
if (!system_supports_mte())
return;
update_gcr_el1_excl(current->thread.gcr_user_incl);
}
long set_mte_ctrl(struct task_struct *task, unsigned long arg)
{
u64 tcf0;
u64 gcr_incl = (arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT;
if (!system_supports_mte())
return 0;
switch (arg & PR_MTE_TCF_MASK) {
case PR_MTE_TCF_NONE:
tcf0 = SCTLR_EL1_TCF0_NONE;
break;
case PR_MTE_TCF_SYNC:
tcf0 = SCTLR_EL1_TCF0_SYNC;
break;
case PR_MTE_TCF_ASYNC:
tcf0 = SCTLR_EL1_TCF0_ASYNC;
break;
default:
return -EINVAL;
}
if (task != current) {
task->thread.sctlr_tcf0 = tcf0;
task->thread.gcr_user_incl = gcr_incl;
} else {
set_sctlr_el1_tcf0(tcf0);
set_gcr_el1_excl(gcr_incl);
}
return 0;
}
long get_mte_ctrl(struct task_struct *task)
{
unsigned long ret;
if (!system_supports_mte())
return 0;
ret = task->thread.gcr_user_incl << PR_MTE_TAG_SHIFT;
switch (task->thread.sctlr_tcf0) {
case SCTLR_EL1_TCF0_NONE:
return PR_MTE_TCF_NONE;
case SCTLR_EL1_TCF0_SYNC:
ret |= PR_MTE_TCF_SYNC;
break;
case SCTLR_EL1_TCF0_ASYNC:
ret |= PR_MTE_TCF_ASYNC;
break;
}
return ret;
}