linux/drivers/gpu/drm/vc4/vc4_hvs.c

261 lines
7.2 KiB
C
Raw Normal View History

/*
* Copyright (C) 2015 Broadcom
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/**
* DOC: VC4 HVS module.
*
* The HVS is the piece of hardware that does translation, scaling,
* colorspace conversion, and compositing of pixels stored in
* framebuffers into a FIFO of pixels going out to the Pixel Valve
* (CRTC). It operates at the system clock rate (the system audio
* clock gate, specifically), which is much higher than the pixel
* clock rate.
*
* There is a single global HVS, with multiple output FIFOs that can
* be consumed by the PVs. This file just manages the resources for
* the HVS, while the vc4_crtc.c code actually drives HVS setup for
* each CRTC.
*/
#include "linux/component.h"
#include "vc4_drv.h"
#include "vc4_regs.h"
#define HVS_REG(reg) { reg, #reg }
static const struct {
u32 reg;
const char *name;
} hvs_regs[] = {
HVS_REG(SCALER_DISPCTRL),
HVS_REG(SCALER_DISPSTAT),
HVS_REG(SCALER_DISPID),
HVS_REG(SCALER_DISPECTRL),
HVS_REG(SCALER_DISPPROF),
HVS_REG(SCALER_DISPDITHER),
HVS_REG(SCALER_DISPEOLN),
HVS_REG(SCALER_DISPLIST0),
HVS_REG(SCALER_DISPLIST1),
HVS_REG(SCALER_DISPLIST2),
HVS_REG(SCALER_DISPLSTAT),
HVS_REG(SCALER_DISPLACT0),
HVS_REG(SCALER_DISPLACT1),
HVS_REG(SCALER_DISPLACT2),
HVS_REG(SCALER_DISPCTRL0),
HVS_REG(SCALER_DISPBKGND0),
HVS_REG(SCALER_DISPSTAT0),
HVS_REG(SCALER_DISPBASE0),
HVS_REG(SCALER_DISPCTRL1),
HVS_REG(SCALER_DISPBKGND1),
HVS_REG(SCALER_DISPSTAT1),
HVS_REG(SCALER_DISPBASE1),
HVS_REG(SCALER_DISPCTRL2),
HVS_REG(SCALER_DISPBKGND2),
HVS_REG(SCALER_DISPSTAT2),
HVS_REG(SCALER_DISPBASE2),
HVS_REG(SCALER_DISPALPHA2),
};
void vc4_hvs_dump_state(struct drm_device *dev)
{
struct vc4_dev *vc4 = to_vc4_dev(dev);
int i;
for (i = 0; i < ARRAY_SIZE(hvs_regs); i++) {
DRM_INFO("0x%04x (%s): 0x%08x\n",
hvs_regs[i].reg, hvs_regs[i].name,
HVS_READ(hvs_regs[i].reg));
}
DRM_INFO("HVS ctx:\n");
for (i = 0; i < 64; i += 4) {
DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
readl((u32 __iomem *)vc4->hvs->dlist + i + 0),
readl((u32 __iomem *)vc4->hvs->dlist + i + 1),
readl((u32 __iomem *)vc4->hvs->dlist + i + 2),
readl((u32 __iomem *)vc4->hvs->dlist + i + 3));
}
}
#ifdef CONFIG_DEBUG_FS
int vc4_hvs_debugfs_regs(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *)m->private;
struct drm_device *dev = node->minor->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
int i;
for (i = 0; i < ARRAY_SIZE(hvs_regs); i++) {
seq_printf(m, "%s (0x%04x): 0x%08x\n",
hvs_regs[i].name, hvs_regs[i].reg,
HVS_READ(hvs_regs[i].reg));
}
return 0;
}
#endif
/* The filter kernel is composed of dwords each containing 3 9-bit
* signed integers packed next to each other.
*/
#define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
#define VC4_PPF_FILTER_WORD(c0, c1, c2) \
((((c0) & 0x1ff) << 0) | \
(((c1) & 0x1ff) << 9) | \
(((c2) & 0x1ff) << 18))
/* The whole filter kernel is arranged as the coefficients 0-16 going
* up, then a pad, then 17-31 going down and reversed within the
* dwords. This means that a linear phase kernel (where it's
* symmetrical at the boundary between 15 and 16) has the last 5
* dwords matching the first 5, but reversed.
*/
#define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8, \
c9, c10, c11, c12, c13, c14, c15) \
{VC4_PPF_FILTER_WORD(c0, c1, c2), \
VC4_PPF_FILTER_WORD(c3, c4, c5), \
VC4_PPF_FILTER_WORD(c6, c7, c8), \
VC4_PPF_FILTER_WORD(c9, c10, c11), \
VC4_PPF_FILTER_WORD(c12, c13, c14), \
VC4_PPF_FILTER_WORD(c15, c15, 0)}
#define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
#define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
/* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
* http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
*/
static const u32 mitchell_netravali_1_3_1_3_kernel[] =
VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
50, 82, 119, 155, 187, 213, 227);
static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
struct drm_mm_node *space,
const u32 *kernel)
{
int ret, i;
u32 __iomem *dst_kernel;
ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS, 1,
0);
if (ret) {
DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
ret);
return ret;
}
dst_kernel = hvs->dlist + space->start;
for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
writel(kernel[i], &dst_kernel[i]);
else {
writel(kernel[VC4_KERNEL_DWORDS - i - 1],
&dst_kernel[i]);
}
}
return 0;
}
static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
{
struct platform_device *pdev = to_platform_device(dev);
struct drm_device *drm = dev_get_drvdata(master);
struct vc4_dev *vc4 = drm->dev_private;
struct vc4_hvs *hvs = NULL;
int ret;
hvs = devm_kzalloc(&pdev->dev, sizeof(*hvs), GFP_KERNEL);
if (!hvs)
return -ENOMEM;
hvs->pdev = pdev;
hvs->regs = vc4_ioremap_regs(pdev, 0);
if (IS_ERR(hvs->regs))
return PTR_ERR(hvs->regs);
hvs->dlist = hvs->regs + SCALER_DLIST_START;
spin_lock_init(&hvs->mm_lock);
/* Set up the HVS display list memory manager. We never
* overwrite the setup from the bootloader (just 128b out of
* our 16K), since we don't want to scramble the screen when
* transitioning from the firmware's boot setup to runtime.
*/
drm_mm_init(&hvs->dlist_mm,
HVS_BOOTLOADER_DLIST_END,
(SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);
/* Set up the HVS LBM memory manager. We could have some more
* complicated data structure that allowed reuse of LBM areas
* between planes when they don't overlap on the screen, but
* for now we just allocate globally.
*/
drm_mm_init(&hvs->lbm_mm, 0, 96 * 1024);
/* Upload filter kernels. We only have the one for now, so we
* keep it around for the lifetime of the driver.
*/
ret = vc4_hvs_upload_linear_kernel(hvs,
&hvs->mitchell_netravali_filter,
mitchell_netravali_1_3_1_3_kernel);
if (ret)
return ret;
vc4->hvs = hvs;
return 0;
}
static void vc4_hvs_unbind(struct device *dev, struct device *master,
void *data)
{
struct drm_device *drm = dev_get_drvdata(master);
struct vc4_dev *vc4 = drm->dev_private;
if (vc4->hvs->mitchell_netravali_filter.allocated)
drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
drm_mm_takedown(&vc4->hvs->dlist_mm);
drm_mm_takedown(&vc4->hvs->lbm_mm);
vc4->hvs = NULL;
}
static const struct component_ops vc4_hvs_ops = {
.bind = vc4_hvs_bind,
.unbind = vc4_hvs_unbind,
};
static int vc4_hvs_dev_probe(struct platform_device *pdev)
{
return component_add(&pdev->dev, &vc4_hvs_ops);
}
static int vc4_hvs_dev_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &vc4_hvs_ops);
return 0;
}
static const struct of_device_id vc4_hvs_dt_match[] = {
{ .compatible = "brcm,bcm2835-hvs" },
{}
};
struct platform_driver vc4_hvs_driver = {
.probe = vc4_hvs_dev_probe,
.remove = vc4_hvs_dev_remove,
.driver = {
.name = "vc4_hvs",
.of_match_table = vc4_hvs_dt_match,
},
};